Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Genome Biol ; 25(1): 128, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773499

RESUMO

BACKGROUND: Cellular iron homeostasis is regulated by iron regulatory proteins (IRP1 and IRP2) that sense iron levels (and other metabolic cues) and modulate mRNA translation or stability via interaction with iron regulatory elements (IREs). IRP2 is viewed as the primary regulator in the liver, yet our previous datasets showing diurnal rhythms for certain IRE-containing mRNAs suggest a nuanced temporal control mechanism. The purpose of this study is to gain insights into the daily regulatory dynamics across IRE-bearing mRNAs, specific IRP involvement, and underlying systemic and cellular rhythmicity cues in mouse liver. RESULTS: We uncover high-amplitude diurnal oscillations in the regulation of key IRE-containing transcripts in the liver, compatible with maximal IRP activity at the onset of the dark phase. Although IRP2 protein levels also exhibit some diurnal variations and peak at the light-dark transition, ribosome profiling in IRP2-deficient mice reveals that maximal repression of target mRNAs at this timepoint still occurs. We further find that diurnal regulation of IRE-containing mRNAs can continue in the absence of a functional circadian clock as long as feeding is rhythmic. CONCLUSIONS: Our findings suggest temporally controlled redundancy in IRP activities, with IRP2 mediating regulation of IRE-containing transcripts in the light phase and redundancy, conceivably with IRP1, at dark onset. Moreover, we highlight the significance of feeding-associated signals in driving rhythmicity. Our work highlights the dynamic nature and regulatory complexity in a metabolic pathway that had previously been considered well-understood.


Assuntos
Ritmo Circadiano , Proteína 1 Reguladora do Ferro , Proteína 2 Reguladora do Ferro , Ferro , Fígado , RNA Mensageiro , Animais , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Ritmo Circadiano/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Camundongos , Fígado/metabolismo , Ferro/metabolismo , Regulação da Expressão Gênica , Elementos de Resposta , Camundongos Endogâmicos C57BL , Masculino , Comportamento Alimentar
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732071

RESUMO

Iron regulatory proteins (IRP1 and IRP2) are the master regulators of mammalian iron homeostasis. They bind to the iron-responsive elements (IREs) of the transcripts of iron-related genes to regulate their expression, thereby maintaining cellular iron availability. The primary method to measure the IRE-binding activity of IRPs is the electrophoresis mobility shift assay (EMSA). This method is particularly useful for evaluating IRP1 activity, since IRP1 is a bifunctional enzyme and its protein levels remain similar during conversion between the IRE-binding protein and cytosolic aconitase forms. Here, we exploited a method of using a biotinylated-IRE probe to separate IRE-binding IRPs followed by immunoblotting to analyze the IRE-binding activity. This method allows for the successful measurement of IRP activity in cultured cells and mouse tissues under various iron conditions. By separating IRE-binding IRPs from the rest of the lysates, this method increases the specificity of IRP antibodies and verifies whether a band represents an IRP, thereby revealing some previously unrecognized information about IRPs. With this method, we showed that the S711-phosphorylated IRP1 was found only in the IRE-binding form in PMA-treated Hep3B cells. Second, we found a truncated IRE-binding IRP2 isoform that is generated by proteolytic cleavage on sites in the 73aa insert region of the IRP2 protein. Third, we found that higher levels of SDS, compared to 1-2% SDS in regular loading buffer, could dramatically increase the band intensity of IRPs in immunoblots, especially in HL-60 cells. Fourth, we found that the addition of SDS or LDS to cell lysates activated protein degradation at 37 °C or room temperature, especially in HL-60 cell lysates. As this method is more practical, sensitive, and cost-effective, we believe that its application will enhance future research on iron regulation and metabolism.


Assuntos
Proteína 1 Reguladora do Ferro , Ferro , Humanos , Animais , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Camundongos , Proteína 2 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Biotinilação , Elementos de Resposta , Fosforilação , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Ligação Proteica , Linhagem Celular Tumoral
3.
JCI Insight ; 9(5)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301068

RESUMO

Acute bacterial orchitis (AO) is a prevalent cause of intrascrotal inflammation, often resulting in sub- or infertility. A frequent cause eliciting AO is uropathogenic Escherichia coli (UPEC), a gram negative pathovar, characterized by the expression of various iron acquisition systems to survive in a low-iron environment. On the host side, iron is tightly regulated by iron regulatory proteins 1 and 2 (IRP1 and -2) and these factors are reported to play a role in testicular and immune cell function; however, their precise role remains unclear. Here, we showed in a mouse model of UPEC-induced orchitis that the absence of IRP1 results in less testicular damage and a reduced immune response. Compared with infected wild-type (WT) mice, testes of UPEC-infected Irp1-/- mice showed impaired ERK signaling. Conversely, IRP2 deletion led to a stronger inflammatory response. Notably, differences in immune cell infiltrations were observed among the different genotypes. In contrast with WT and Irp2-/- mice, no increase in monocytes and neutrophils was detected in testes of Irp1-/- mice upon UPEC infection. Interestingly, in Irp1-/- UPEC-infected testes, we observed an increase in a subpopulation of macrophages (F4/80+CD206+) associated with antiinflammatory and wound-healing activities compared with WT. These findings suggest that IRP1 deletion may protect against UPEC-induced inflammation by modulating ERK signaling and dampening the immune response.


Assuntos
Proteína 1 Reguladora do Ferro , Orquite , Masculino , Humanos , Camundongos , Animais , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Orquite/microbiologia , Inflamação , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Ferro/metabolismo
4.
Sci Rep ; 13(1): 5073, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977734

RESUMO

The interaction between the stem-loop structure of the Alzheimer's amyloid precursor protein IRE mRNA and iron regulatory protein was examined by employing molecular docking and multi-spectroscopic techniques. A detailed molecular docking analysis of APP IRE mRNA∙IRP1 reveals that 11 residues are involved in hydrogen bonding as the main driving force for the interaction. Fluorescence binding results revealed a strong interaction between APP IRE mRNA and IRP1 with a binding affinity and an average binding sites of 31.3 × 106 M-1 and 1.0, respectively. Addition of Fe2+(anaerobic) showed a decreased (3.3-fold) binding affinity of APP mRNA∙IRP1. Further, thermodynamic parameters of APP mRNA∙IRP1 interactions were an enthalpy-driven and entropy-favored event, with a large negative ΔH (-25.7 ± 2.5 kJ/mol) and a positive ΔS (65.0 ± 3.7 J/mol·K). A negative ΔH value for the complex formation suggested the contribution of hydrogen bonds and van der Waals forces. The addition of iron increased the enthalpic contribution by 38% and decreased the entropic influence by 97%. Furthermore, the stopped-flow kinetics of APP IRE mRNA∙IRP1 also confirmed the complex formation, having the rate of association (kon) and the rate of dissociation (koff) as 341 µM-1 s-1, and 11 s-1, respectively. The addition of Fe2+ has decreased the rate of association (kon) by ~ three-fold, whereas the rate of dissociation (koff) has increased by ~ two-fold. The activation energy for APP mRNA∙IRP1 complex was 52.5 ± 2.1 kJ/mol. The addition of Fe2+ changed appreciably the activation energy for the binding of APP mRNA with IRP1. Moreover, circular dichroism spectroscopy has confirmed further the APP mRNA∙IRP1 complex formation and IRP1 secondary structure change with the addition of APP mRNA. In the interaction between APP mRNA and IRP1, iron promotes structural changes in the APP IRE mRNA∙IRP1 complexes by changing the number of hydrogen bonds and promoting a conformational change in the IRP1 structure when it is bound to the APP IRE mRNA. It further illustrates how IRE stem-loop structure influences selectively the thermodynamics and kinetics of these protein-RNA interactions.


Assuntos
Doença de Alzheimer , Ferro , Humanos , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteínas Reguladoras de Ferro/genética , Simulação de Acoplamento Molecular , Ligação Proteica , Elementos de Resposta , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise Espectral
5.
J Exp Clin Cancer Res ; 42(1): 5, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600258

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a multifactor-driven malignant tumor with rapid progression, which causes the difficulty to substantially improve the prognosis of HCC. Limited understanding of the mechanisms in HCC impedes the development of efficacious therapies. Despite Krüpple-Like factors (KLFs) were reported to be participated in HCC pathogenesis, the function of KLF14 in HCC remains largely unexplored. METHODS: We generated KLF14 overexpressed and silenced liver cancer cells, and nude mouse xenograft models for the in vitro and in vivo study. Luciferase reporter assay, ChIP-qPCR, Co-IP, immunofluorescence were performed for mechanism research. The expression of KLF14 in HCC samples was analyzed by quantitative RT-PCR, Western blotting, and immunohistochemistry (IHC) analysis. RESULTS: KLF14 was significantly downregulated in human HCC tissues, which was highly correlated with poor prognosis. Inhibition of KLF14 promoted liver cancer cells proliferation and overexpression of KLF14 suppressed cells growth. KLF14 exerts its anti-tumor function by inhibiting Iron-responsive element-binding protein 2 (IRP2), which then causes transferrin receptor-1(TfR1) downregulation and ferritin upregulation on the basis of IRP-IREs system. This then leading to cellular iron deficiency and HCC cells growth suppression in vitro and in vivo. Interestingly, KLF14 suppressed the transcription of IRP2 via recruiting SIRT1 to reduce the histone acetylation of the IRP2 promoter, resulting in iron depletion and cell growth suppression. More important, we found fluphenazine is an activator of KLF14, inhibiting HCC cells growth through inducing iron deficiency. CONCLUSION: KLF14 acts as a tumor suppressor which inhibits the proliferation of HCC cells by modulating cellular iron metabolism via the repression of IRP2. We identified Fluphenazine, as an activator of KLF14, could be a potential compound for HCC therapy. Our findings therefore provide an innovative insight into the pathogenesis of HCC and a promising therapeutic target.


Assuntos
Carcinoma Hepatocelular , Proteína 2 Reguladora do Ferro , Ferro , Fatores de Transcrição Kruppel-Like , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Flufenazina , Regulação Neoplásica da Expressão Gênica , Homeostase , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
6.
Cell Death Dis ; 13(4): 418, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35490179

RESUMO

Iron deposits are neuropathological hallmark of Parkinson's disease (PD). Iron regulatory protein 2 (IRP2) is a key factor in regulating brain iron homeostasis. Although two ubiquitin ligases that promote IRP2 degradation have been identified, the deubiquitylase for stabilization of IRP2 in PD remains undefined. Here, we report OTUD3 (OTU domain-containing protein 3) functions as a deubiquitylase for IRP2, interacts with IRP2 in the cytoplasm, de-polyubiquitylates, and stabilizes IRP2 protein in an iron-independent manner. Depletion of OTUD3 results in a disorder of iron metabolism. OTUD3 knockout mice display nigral iron accumulation, motor deficits, and nigrostriatal dopaminergic neurodegeneration, which resembles the pathology of PD. Consistently, decreased levels of OTUD3 are detected in transgenic PD mice expressing A53T mutant of human α-synuclein. Five single nucleotide polymorphism mutations of OTUD3 are present in cases of sporadic PD or controls, although no significant associations of OTUD3 SNPs with sporadic PD are detected. Taken together, these findings demonstrate that OTUD3 is a bona fide deubiquitylase for IRP2 and plays a critical role in the nigral iron deposits in PD.


Assuntos
Proteína 2 Reguladora do Ferro/metabolismo , Doença de Parkinson , Proteases Específicas de Ubiquitina/metabolismo , Animais , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
7.
Life Sci Alliance ; 4(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462321

RESUMO

STAG2, a component of the mitotically essential cohesin complex, is highly mutated in several different tumour types, including glioblastoma and bladder cancer. Whereas cohesin has roles in many cancer-related pathways, such as chromosome instability, DNA repair and gene expression, the complex nature of cohesin function has made it difficult to determine how STAG2 loss might either promote tumorigenesis or be leveraged therapeutically across divergent cancer types. Here, we have performed whole-genome CRISPR-Cas9 screens for STAG2-dependent genetic interactions in three distinct cellular backgrounds. Surprisingly, STAG1, the paralog of STAG2, was the only negative genetic interaction that was shared across all three backgrounds. We also uncovered a paralogous synthetic lethal mechanism behind a genetic interaction between STAG2 and the iron regulatory gene IREB2 Finally, investigation of an unusually strong context-dependent genetic interaction in HAP1 cells revealed factors that could be important for alleviating cohesin loading stress. Together, our results reveal new facets of STAG2 and cohesin function across a variety of genetic contexts.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Carcinogênese , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Humanos , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutações Sintéticas Letais , Coesinas
8.
Blood ; 138(16): 1490-1503, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34265052

RESUMO

Extracellular vesicles (EVs) transfer functional molecules between cells. CD63 is a widely recognized EV marker that contributes to EV secretion from cells. However, the regulation of its expression remains largely unknown. Ferritin is a cellular iron storage protein that can also be secreted by the exosome pathway, and serum ferritin levels classically reflect body iron stores. Iron metabolism-associated proteins such as ferritin are intricately regulated by cellular iron levels via the iron responsive element-iron regulatory protein (IRE-IRP) system. Herein, we present a novel mechanism demonstrating that the expression of the EV-associated protein CD63 is under the regulation of the IRE-IRP system. We discovered a canonical IRE in the 5' untranslated region of CD63 messenger RNA that is responsible for regulating its expression in response to increased iron. Cellular iron loading caused a marked increase in CD63 expression and the secretion of CD63+ EVs from cells, which were shown to contain ferritin-H and ferritin-L. Our results demonstrate that under iron loading, intracellular ferritin is transferred via nuclear receptor coactivator 4 (NCOA4) to CD63+ EVs that are then secreted. Such iron-regulated secretion of the major iron storage protein ferritin via CD63+ EVs, is significant for understanding the local cell-to-cell exchange of ferritin and iron.


Assuntos
Apoferritinas/metabolismo , Vesículas Extracelulares/metabolismo , Ferritinas/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Oxirredutases/metabolismo , Tetraspanina 30/metabolismo , Apoferritinas/genética , Linhagem Celular , Vesículas Extracelulares/genética , Ferritinas/genética , Inativação Gênica , Humanos , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/genética , Oxirredutases/genética , Transporte Proteico , RNA Mensageiro/genética , Tetraspanina 30/genética , Regulação para Cima
9.
J Biol Chem ; 296: 100452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33631196

RESUMO

The development of thermogenic adipocytes concurs with mitochondrial biogenesis, an iron-dependent pathway. Iron regulatory proteins (IRP) 1 and 2 are RNA-binding proteins that regulate intracellular iron homeostasis. IRPs bind to the iron-response element (IRE) of their target mRNAs, balancing iron uptake and deposition at the posttranscriptional levels. However, IRP/IRE-dependent iron regulation in adipocytes is largely unknown. We hypothesized that iron demands are higher in brown/beige adipocytes than white adipocytes to maintain the thermogenic mitochondrial capacity. To test this hypothesis, we investigated the IRP/IRE regulatory system in different depots of adipose tissue. Our results revealed that 1) IRP/IRE interaction was increased in proportional to the thermogenic function of the adipose depot, 2) adipose iron content was increased in adipose tissue browning upon ß3-adrenoceptor stimulation, while decreased in thermoneutral conditions, and 3) modulation of iron content was linked with mitochondrial biogenesis. Moreover, the iron requirement was higher in HIB1B brown adipocytes than 3T3-L1 white adipocytes during differentiation. The reduction of the labile iron pool (LIP) suppressed the differentiation of brown/beige adipocytes and mitochondrial biogenesis. Using the 59Fe-Tf, we also demonstrated that thermogenic stimuli triggered cell-autonomous iron uptake and mitochondrial compartmentalization as well as enhanced mitochondrial respiration. Collectively, our work demonstrated that IRP/IRE signaling and subsequent adaptation in iron metabolism are a critical determinant for the thermogenic function of adipocytes.


Assuntos
Aconitato Hidratase/metabolismo , Adipócitos/metabolismo , Ferro/metabolismo , Termogênese/fisiologia , Células 3T3-L1 , Aclimatação , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Regulação da Temperatura Corporal/fisiologia , Diferenciação Celular , Homeostase , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Biogênese de Organelas , RNA Mensageiro/metabolismo , Transdução de Sinais
10.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525417

RESUMO

Evidence is reviewed for the role of glutathione in providing a ligand for the cytosolic iron pool. The possibility of histidine and carnosine forming ternary complexes with iron(II)glutathione is discussed and the physiological significance of these interactions considered. The role of carnosine in muscle, brain, and kidney physiology is far from established and evidence is presented that the iron(II)-binding capability of carnosine relates to this role.


Assuntos
Carnosina/metabolismo , Glutationa/metabolismo , Histidina/metabolismo , Quelantes de Ferro/metabolismo , Ferro/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Rim/citologia , Rim/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculos/citologia , Músculos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
J Pathol ; 251(3): 284-296, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32304229

RESUMO

Ferredoxin reductase (FDXR) is a mitochondrial flavoprotein that initiates electron transport from NADPH to several cytochromes P450 via two electron carriers, ferredoxin 1 (FDX1) and FDX2. FDXR is the sole ferredoxin reductase in humans and plays a critical role in steroidogenesis and biosynthesis of heme and iron-sulfur clusters. However, much less is known about the role of FDXR in cancer. Here, we show that FDXR plays a role in tumorigenesis by modulating expression of the tumor suppressor p73. By using genetically modified mouse models, we recently showed that mice deficient in either Fdxr or Trp73 had a shorter lifespan and were prone to spontaneous tumors as compared with wild-type (WT) mice. Interestingly, compound Trp73 +/- ;Fdxr +/- mice lived longer and developed fewer tumors when compared with Fdxr +/- or Trp73 +/- mice. Moreover, we found that cellular senescence was increased in Trp73 +/- and Fdxr +/- mouse embryonic fibroblasts (MEFs), which was further increased in Trp73 +/- ;Fdxr +/- MEFs, as compared with that in WT MEFs. As FDXR is regulated by p73, we examined whether there was a feedback regulation between p73 and FDXR. Indeed, we found that Trp73 expression was decreased by loss of Fdxr in MEFs and that FDXR is required for p73 expression in multiple human cancer cell lines independent of p53. Mechanistically, we found that loss of FDXR, via FDX2, increased expression of iron-binding protein 2 (IRP2), which subsequently repressed TP73 mRNA stability. We also showed that TP73 transcript contained an iron response element in its 3'UTR, which was required for IRP2 to destabilize TP73 mRNA. Together, these data reveal a novel regulation of p73 by FDXR via IRP2 and that the FDXR-p73 axis plays a critical role in aging and tumor suppression. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proliferação de Células , Senescência Celular , Ferredoxina-NADP Redutase/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Neoplasias/enzimologia , Proteína Tumoral p73/metabolismo , Animais , Ferredoxina-NADP Redutase/deficiência , Ferredoxina-NADP Redutase/genética , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Transdução de Sinais , Carga Tumoral , Proteína Tumoral p73/deficiência , Proteína Tumoral p73/genética
13.
Mol Cancer Res ; 18(7): 1039-1049, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32276991

RESUMO

Iron regulatory protein 2 (IRP2) is a key regulator of iron homeostasis and is found to be altered in several types of human cancer. However, how IRP2 contributes to tumorigenesis remains to be elucidated. In this study, we sought to investigate the role of IRP2 in tumorigenesis and found that IRP2 promotes cell growth by repressing TAp63, a member of p53 tumor suppressor family. Specifically, we found that IRP2 overexpression decreased, whereas IRP2 deficiency increased, TAp63 expression. We also showed that the repression of TAp63 by IRP2 was independent of tumor suppressor p53. To uncover the molecular basis, we found that IRP2 stabilized TAp63 mRNA by binding to an iron response element in the 3'UTR of p63 mRNA. To determine the biological significance of this regulation, we showed that IRP2 facilitates cell proliferation, at least in part, via repressing TAp63 expression. Moreover, we found that IRP2 deficiency markedly alleviated cellular senescence in TAp63-deficient mouse embryo fibroblasts. Together, we have uncovered a novel regulation of TAp63 by IRP2 and our data suggest that IRP2 exerts its oncogenic activities at least in part by repressing TAp63 expression. IMPLICATIONS: We have revealed a novel regulation of TAp63 by IRP2 and our data suggest that IRP2 exerts its oncogenic activities, at least in part, by repressing TAp63 expression.


Assuntos
Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Neoplasias/genética , RNA Mensageiro/química , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Regulação para Cima , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias/metabolismo , Estabilidade de RNA , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
14.
FEBS J ; 287(21): 4747-4766, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32112499

RESUMO

Central presbycusis is caused by degradation of the auditory centre during ageing. Its main characteristics are difficulties in understanding language and localizing sound. Presbycusis is an increasingly critical public health problem, but the underlying molecular mechanism has not been fully elucidated. Ferroptosis is a form of regulated cell death caused by iron- and reactive oxygen species-induced lipid peroxidation. Ferroptosis is related to many pathological processes, but whether it participates in the degeneration of the auditory system remains unclear. To investigate this, we measured iron levels in a simulated ageing model established by the addition of d-galactose (d-gal). We found, for the first time, that iron accumulated within cells and that the ultrastructural features of ferroptosis appeared in the auditory cortex with ageing. These changes were accompanied by upregulation of iron regulatory protein 2 (IRP-2), which led to an increase in transferrin receptor 1 (TfR-1), thus increasing iron entry into cells and potentially leading to ferroptosis. In addition, the malondialdehyde (MDA) content and the occurrence of mitochondrial DNA common deletions (CDs) increased, neuron degeneration appeared, and glutathione (GSH) and superoxide dismutase (SOD) activity decreased. Furthermore, we found that treatment with the iron chelator deferoxamine (DFO) and knockdown of IRP-2 both relieved ferroptosis during the simulated ageing process, thus achieving a partial protective effect to delay ageing. In summary, we describe here the first discovery that age-related iron deposition and ferroptosis may be associated with auditory cortex neurodegeneration. Relieving ferroptosis might thus be a new intervention strategy for age-related hearing loss.


Assuntos
Apoptose/genética , Córtex Auditivo/metabolismo , Ferroptose/genética , Doenças Neurodegenerativas/genética , Fatores Etários , Animais , Apoptose/efeitos dos fármacos , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/ultraestrutura , Quelantes/farmacologia , Desferroxamina/farmacologia , Ferroptose/efeitos dos fármacos , Expressão Gênica , Humanos , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Masculino , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Células PC12 , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
15.
Cell Chem Biol ; 27(4): 376-386, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32220334

RESUMO

Nonapoptotic cell death is important for human health and disease. Here, we show how various tools and techniques drawn from the chemical biology field have played a central role in the discovery and characterization of nonapoptotic cell death pathways. Focusing on the example of ferroptosis, we describe how phenotypic screening, chemoproteomics, chemical genetic analysis, and other methods enabled the elucidation of this pathway. Synthetic small-molecule inducers and inhibitors of ferroptosis identified in early studies have now been leveraged to identify an even broader set of compounds that affect ferroptosis and to validate new chemical methods and probes for various ferroptosis-associated processes. A number of limitations associated with specific chemical biology tools or techniques have also emerged and must be carefully considered. Nevertheless, the study of ferroptosis provides a roadmap for how chemical biology methods may be used to discover and characterize nonapoptotic cell death mechanisms.


Assuntos
Ferroptose , Bibliotecas de Moléculas Pequenas/química , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistemas CRISPR-Cas/genética , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Ferroptose/efeitos dos fármacos , Humanos , Proteína 2 Reguladora do Ferro/antagonistas & inibidores , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
16.
Nat Commun ; 11(1): 296, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941883

RESUMO

Regulation of cellular iron homeostasis is crucial as both iron excess and deficiency cause hematological and neurodegenerative diseases. Here we show that mice lacking iron-regulatory protein 2 (Irp2), a regulator of cellular iron homeostasis, develop diabetes. Irp2 post-transcriptionally regulates the iron-uptake protein transferrin receptor 1 (TfR1) and the iron-storage protein ferritin, and dysregulation of these proteins due to Irp2 loss causes functional iron deficiency in ß cells. This impairs Fe-S cluster biosynthesis, reducing the function of Cdkal1, an Fe-S cluster enzyme that catalyzes methylthiolation of t6A37 in tRNALysUUU to ms2t6A37. As a consequence, lysine codons in proinsulin are misread and proinsulin processing is impaired, reducing insulin content and secretion. Iron normalizes ms2t6A37 and proinsulin lysine incorporation, restoring insulin content and secretion in Irp2-/- ß cells. These studies reveal a previously unidentified link between insulin processing and cellular iron deficiency that may have relevance to type 2 diabetes in humans.


Assuntos
Insulina/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Ferro/metabolismo , RNA de Transferência de Lisina/metabolismo , tRNA Metiltransferases/metabolismo , Animais , Linhagem Celular Tumoral , Intolerância à Glucose/genética , Homeostase , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Insulinoma/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteínas Ferro-Enxofre/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , RNA de Transferência de Lisina/genética , Ratos , Resposta a Proteínas não Dobradas/genética , tRNA Metiltransferases/genética
17.
FASEB J ; 34(2): 2301-2311, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907996

RESUMO

Iron is an essential element to all living organisms and plays a vital role in many cellular processes, such as DNA synthesis and energy production. The Mdm2 oncogene is an E3 ligase and known to promote tumor growth. However, the role of Mdm2 in iron homeostasis is not certain. Here, we showed that Mdm2 expression was increased by iron depletion but decreased by iron repletion. We also showed that Iron Regulatory Protein 2 (IRP2) mediated iron-regulated Mdm2 expression. Specifically, Mdm2 expression was increased by ectopic IRP2 but decreased by knockdown or knockout of IRP2 in human cancer cells as well as in mouse embryonic fibroblasts. In addition, we showed that IRP2-regulated Mdm2 expression was independent of tumor suppressor p53. Mechanistically, we found that IRP2 stabilized Mdm2 transcript via binding to an iron response element (IRE) in the 3'UTR of Mdm2 mRNA. Finally, we showed that Mdm2 is required for IRP2-mediated cell proliferation and Mdm2 expression is highly associated with IRP2 in both the normal and cancerous liver tissues. Together, we uncover a novel regulation of Mdm2 by IRP2 via mRNA stability and that the IRP2-Mdm2 axis may play a critical role in cell growth.


Assuntos
Proliferação de Células , Regulação da Expressão Gênica , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Estabilidade de RNA , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Células HCT116 , Células Hep G2 , Humanos , Proteína 2 Reguladora do Ferro/genética , Células MCF-7 , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-mdm2/genética
18.
Neurochem Int ; 134: 104657, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31904393

RESUMO

Parkinson's disease (PD) is accompanied by iron overload in the brain. However, whether iron accumulation is the cause or effect of PD is still unknown. Iron regulatory protein 2 (IRP2) plays a critical role in keeping iron homeostasis, and our previous data showed that the deletion of the IRP2 gene caused iron deposits in organs of mice. Therefore, we further investigated the role of iron overload induced by IRP2 gene deletion in the development of the MPTP-induced PD mouse model in vivo, and the underlying regulatory mechanisms in primary cultures of astrocytes in vitro. Data from neurobehavioral, immunohistochemistry, TUNEL and Elisa studies showed that MPTP treatment enhanced the symptoms of PD in vivo, increased cell apoptosis and decreased dopamine levels in IRP2-/- mice. In addition, the expression of L-ferritin and iron contents increased significantly in the substantia nigra (SN) of IRP2-/- mice. Moreover, MPTP treatment significantly increased the expression of DMT1 (-IRE) and decreased the expression of TfR1 in IRP2-/- mice. Further investigations with primary cultures of astrocytes from IRP2-/- mice showed that MPP+ increased the expression of L-ferritin and DMT1 (-IRE), and decreased the expression of TfR1. Our results demonstrated that IRP2 gene deletion induced iron accumulation in the SN, which exacerbated the neuronal apoptosis and Parkinsonism symptoms. At the same time, IRP2 gene deletion increased the iron contents in astrocytes around neurons, which further decreased their protection for neurons and increased the cell apoptosis, ultimately forming a vicious cycle that leads to the onset and progression of PD.


Assuntos
Sobrecarga de Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Ferro/metabolismo , Doença de Parkinson/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Transporte de Cátions/metabolismo , Dopamina/metabolismo , Sobrecarga de Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/genética , Substância Negra/metabolismo
19.
Anim Sci J ; 90(10): 1377-1387, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31436009

RESUMO

The purpose of this study was to determine whether the enteric coating process affects growth performance, Fe bioavailability, and gene expression levels that maintain iron balance in the body. The test was divided into the control group, ferrous sulfate group, ferrous fumarate group, ferrous glycine chelate(1:1) (Fe-Gly(1:1)) group, ferrous glycine chelate(2:1) (Fe-Gly(2:1)) group, enteric-coated Fe-Gly(1:1) group, and enteric-coated Fe-Gly(2:1) group. The results showed that the growth performance of the rats in each iron supplement group was no significant difference among them. The results of serum biochemical indicators showed that the antioxidant capacity of the rats in the iron supplement group after enteric coating increased. The iron supplementation effect of Fe-Gly(1:1) and Fe-Gly(2:1) was better than that of ferrous sulfate, and the effect of Fe-Gly(1:1) after enteric coating was enhanced. The expression levels of IRP1 and IRP2 in the genes of enteric-coated Fe-Gly(1:1) and enteric-coated Fe-Gly(2:1) were significantly higher than those of ferrous sulfate. The expression levels of IRP1 and IRP2 in the protein of enteric-coated Fe-Gly(1:1) group were significantly higher than those in the Fe-Gly(1:1) group. The above results show that Fe-Gly can improve the bioavailability and antioxidant capacity of iron and reduce the iron output of feces after enteric coating.


Assuntos
Compostos Ferrosos/farmacologia , Ferro/metabolismo , Animais , Antioxidantes , Disponibilidade Biológica , Suplementos Nutricionais/análise , Compostos Ferrosos/metabolismo , Homeostase/genética , Homeostase/fisiologia , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/genética , Ratos , Ratos Sprague-Dawley , Comprimidos com Revestimento Entérico/análise
20.
Gene ; 710: 399-405, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31200088

RESUMO

Iron-responsive elements (IREs) are ~35-nucleotide (nt) stem-loop RNA structures located in 5' or 3' untranslated regions (UTRs) of mRNAs that mediate post-transcriptional regulation by their association with IRE-binding proteins (IRPs). IREs are characterized by their apical 6-nt loop motif 5'-CAGWGH-3' (W = A or U and H = A, C or U), the so-called pseudotriloop, of which the loop nts C1 and G5 are paired, and the none-paired C between the two stem regions. In this study, the yeast three-hybrid (Y3H) system was used to investigate the relevance of the pseudotriloop structure of ferritin light chain (FTL) for the IRE-IRP interaction and the binding affinities between variant IRE(-like) structures and the two IRP isoforms, IRP1 and 2. Destabilization of the pseudotriloop structure by a G5-to-A mutation reduced binding of IRP1 and 2, while restoring the pseudotriloop conformation by the compensatory C1-to-U mutation, restored binding to both IRPs. In particular, IRP1 showed even stronger binding to the C1U-G5A mutant than to the wildtype FTL IRE. On the other hand, deletion of the bulged-out U6 of the pseudotriloop did not significantly affect its binding to either IRP1 or 2, but substitution with C particularly enhanced the binding to IRP1. In comparison to FTL IRE, IRE-like structures of 5'-aminolevulinate synthase 2 (ALAS2) and SLC40A1 (also known as ferroportin-1) showed similar or, in the case of endothelial PAS domain protein 1 (EPAS1) IRE, slightly weaker binding affinity to IRPs. SLC11A2 (a.k.a. divalent metal transporter-1) IRE exhibited relatively weak binding to IRP1 and medium binding to IRP2. Notably, the IRE-like structure of α-synuclein showed no detectable binding to either IRP under the conditions used in this Y3H assay. Our results indicate that Y3H can be used to characterize binding between IRPs and various IRE-like structures in vivo.


Assuntos
Apoferritinas/química , Apoferritinas/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , 5-Aminolevulinato Sintetase/química , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Animais , Apoferritinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/genética , Mutação , Conformação de Ácido Nucleico , Técnicas do Sistema de Duplo-Híbrido , Regiões não Traduzidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...