Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 23(13): 1035-49, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25919114

RESUMO

UNLABELLED: Tight junctions (TJs) seal paracellular clefts in epithelia/endothelia and form tissue barriers for proper organ function. TJ-associated marvel proteins (TAMPs; tricellulin, occludin, marvelD3) are thought to be relevant to regulation. Under normal conditions, tricellulin tightens tricellular junctions against macromolecules. Traces of tricellulin occur in bicellular junctions. AIMS: As pathological disturbances have not been analyzed, the structure and function of human tricellulin, including potentially redox-sensitive Cys sites, were investigated under reducing/oxidizing conditions at 3- and 2-cell contacts. RESULTS: Ischemia, hypoxia, and reductants redistributed tricellulin from 3- to 2-cell contacts. The extracellular loop 2 (ECL2; conserved Cys321, Cys335) trans-oligomerized between three opposing cells. Substitutions of these residues caused bicellular localization. Cys362 in transmembrane domain 4 contributed to bicellular heterophilic cis-interactions along the cell membrane with claudin-1 and marvelD3, while Cys395 in the cytosolic C-terminal tail promoted homophilic tricellullar cis-interactions. The Cys sites included in homo-/heterophilic bi-/tricellular cis-/trans-interactions contributed to cell barrier tightness for small/large molecules. INNOVATION: Tricellulin forms TJs via trans- and cis-association in 3-cell contacts, as demonstrated electron and quantified fluorescence microscopically; it tightens 3- and 2-cell contacts. Tricellulin's ECL2 specifically seals 3-cell contacts redox dependently; a structural model is proposed. CONCLUSIONS: TAMP ECL2 and claudins' ECL1 share functionally and structurally similar features involved in homo-/heterophilic tightening of cell-cell contacts. Tricellulin is a specific redox sensor and sealing element at 3-cell contacts and may compensate as a redox mediator for occludin loss at 2-cell contacts in vivo and in vitro. Molecular interaction mechanisms were proposed that contribute to tricellulin's function. In conclusion, tricellulin is a junctional redox regulator for ischemia-related alterations.


Assuntos
Cisteína/metabolismo , Isquemia/metabolismo , Rim/irrigação sanguínea , Proteína 2 com Domínio MARVEL/metabolismo , Ocludina/metabolismo , Junções Íntimas/metabolismo , Animais , Sítios de Ligação , Hipóxia Celular , Permeabilidade da Membrana Celular , Cães , Células Epiteliais/fisiologia , Células HEK293 , Humanos , Isquemia/patologia , Rim/metabolismo , Rim/patologia , Proteína 2 com Domínio MARVEL/química , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
2.
Yakugaku Zasshi ; 134(5): 615-21, 2014.
Artigo em Japonês | MEDLINE | ID: mdl-24790043

RESUMO

Within an epithelial cellular sheet, the paracellular pathway can be divided into two routes: one between two adjacent cells and one at tricellular contacts, where the vertices of three cells meet. For epithelial barrier function, tight junctions restrict solute permeability through the paracellular pathway between two cells, while tricellular contacts contain specialized structures of tight junctions, named tricellular tight junctions (tTJs). Two types of membrane proteins, tricellulin and angulin family proteins (angulin-1/LSR, angulin-2/ILDR1 and angulin-3/ILDR2) have been identified as molecular components of tTJs. Angulins recruit triellulin to tTJs and these tTJ-associated proteins are required for normal tTJ formation as well as strong epithelial barrier function. Furthermore, mutations in tricellulin and angulin-2/ILDR1 genes cause autosomal recessive familial deafness, DFNB49 and DFNB42, respectively. Further analyses of the angulin-tricellulin system should lead to better understanding of the molecular mechanism and regulation of tTJs.


Assuntos
Comunicação Celular , Junções Íntimas/metabolismo , Animais , Epitélio/metabolismo , Proteína 2 com Domínio MARVEL/química , Proteína 2 com Domínio MARVEL/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...