Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
JCI Insight ; 5(24)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33141765

RESUMO

Alveolar macrophages (AMs) are differentially regulated by human surfactant protein-A1 (SP-A1) or SP-A2. However, AMs are very heterogeneous and differences are difficult to characterize in intact cells. Using the Toponome Imaging System (TIS), an imaging technique that uses sequential immunostaining to identify patterns of biomarker expression or combinatorial molecular phenotypes (CMPs), we studied individual single cells and identified subgroups of AMs (n = 168) from SP-A-KO mice and mice expressing either SP-A1 or SP-A2. The effects, as shown by CMPs, of SP-A1 and SP-A2 on AMs were significant and differed. SP-A1 AMs were the most diverse and shared the fewest CMPs with KO and SP-A2. Clustering analysis of each group showed 3 clusters where the CMP-based phenotype was distinct in each cluster. Moreover, a clustering analysis of all 168 AMs revealed 10 clusters, many dominated by 1 group. Some CMP overlap among groups was observed with SP-A2 AMs sharing the most CMPs and SP-A1 AMs the fewest. The CMP-based patterns identified here provide a basis for understanding not only AMs' diversity, but also most importantly, the molecular basis for the diversity of functional differences in mouse models where the impact of genetics of innate immune molecules on AMs has been studied.


Assuntos
Macrófagos Alveolares/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Animais , Humanos , Imunidade Inata/fisiologia , Macrófagos Alveolares/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Proteoma/metabolismo , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/fisiologia , Surfactantes Pulmonares/metabolismo
2.
Front Immunol ; 11: 622598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542724

RESUMO

Surfactant proteins A (SP-A) and D (SP-D) are soluble innate immune molecules which maintain lung homeostasis through their dual roles as anti-infectious and immunomodulatory agents. SP-A and SP-D bind numerous viruses including influenza A virus, respiratory syncytial virus (RSV) and human immunodeficiency virus (HIV), enhancing their clearance from mucosal points of entry and modulating the inflammatory response. They also have diverse roles in mediating innate and adaptive cell functions and in clearing apoptotic cells, allergens and other noxious particles. Here, we review how the properties of these first line defense molecules modulate inflammatory responses, as well as host-mediated immunopathology in response to viral infections. Since SP-A and SP-D are known to offer protection from viral and other infections, if their levels are decreased in some disease states as they are in severe asthma and chronic obstructive pulmonary disease (COPD), this may confer an increased risk of viral infection and exacerbations of disease. Recombinant molecules of SP-A and SP-D could be useful in both blocking respiratory viral infection while also modulating the immune system to prevent excessive inflammatory responses seen in, for example, RSV or coronavirus disease 2019 (COVID-19). Recombinant SP-A and SP-D could have therapeutic potential in neutralizing both current and future strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus as well as modulating the inflammation-mediated pathology associated with COVID-19. A recombinant fragment of human (rfh)SP-D has recently been shown to neutralize SARS-CoV-2. Further work investigating the potential therapeutic role of SP-A and SP-D in COVID-19 and other infectious and inflammatory diseases is indicated.


Assuntos
Antivirais/uso terapêutico , Fatores Imunológicos/uso terapêutico , Proteína A Associada a Surfactante Pulmonar/fisiologia , Proteína B Associada a Surfactante Pulmonar/fisiologia , Animais , Antivirais/imunologia , Colectinas/deficiência , Humanos , Fatores Imunológicos/imunologia , Inflamação/tratamento farmacológico , Proteína A Associada a Surfactante Pulmonar/imunologia , Proteína A Associada a Surfactante Pulmonar/uso terapêutico , Proteína B Associada a Surfactante Pulmonar/imunologia , Proteína B Associada a Surfactante Pulmonar/uso terapêutico , Receptores Depuradores/imunologia , Viroses/tratamento farmacológico , Tratamento Farmacológico da COVID-19
3.
Front Immunol ; 10: 2613, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781112

RESUMO

Surfactant protein A (SP-A) provides surfactant stability, first line host defense, and lung homeostasis by binding surfactant phospholipids, pathogens, alveolar macrophages (AMs), and epithelial cells. Non-primates express one SP-A protein whereas humans express two: SP-A1 and SP-A2 with core intra- and inter-species differences in the collagen-like domain. Here, we used macrophages and solid phase binding assays to discern structural correlates of rat (r) and human (h) SP-A function. Binding assays using recombinant rSP-A expressed in insect cells showed that lack of proline hydroxylation, truncations of amino-terminal oligomerization domains, and site-directed serine (S) or alanine (A) mutagenesis of cysteine 6 (C6S), glutamate 195 (E195A), and glutamate 171 (E171A) in the carbohydrate recognition domain (CRD) all impaired SP-A binding. Replacement of arginine 197 with alanine found in hSP-A (R197A), however, restored the binding of hydroxyproline-deficient rSP-A to the SP-A receptor SP-R210 similar to native rat and human SP-A. In silico calculation of Ca++ coordination bond length and solvent accessibility surface area revealed that the "humanized" R197A substitution alters topology and solvent accessibility of the Ca++ coordination residues of the CRD domain. Binding assays in mouse AMs that were exposed to either endogenous SP-A or hSP-A1 (6A2) and hSP-A2 (1A0) isoforms in vivo revealed that mouse SP-A is a functional hybrid of hSP-A1 and hSP-A2 in regulating SP-A receptor occupancy and binding affinity. Binding assays using neonatal and adult human AMs indicates that the interaction of SP-A1 and SP-A2 with AMs is developmentally regulated. Furthermore, our data indicate that the auxiliary ion coordination loop encompassing the conserved E171 residue may comprise a conserved site of interaction with macrophages, and SP-R210 specifically, that merits further investigation to discern conserved and divergent SP-A functions between species. In summary, our findings support the notion that complex structural adaptation of SP-A regulate conserved and species specific AM functions in vertebrates.


Assuntos
Proteína A Associada a Surfactante Pulmonar/química , Animais , Humanos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Domínios Proteicos , Multimerização Proteica , Proteína A Associada a Surfactante Pulmonar/fisiologia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
4.
J Immunol ; 203(5): 1122-1130, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31350355

RESUMO

Surfactant protein-A (SP-A) is an important mediator of pulmonary immunity. A specific genetic variation in SP-A2, corresponding to a glutamine (Q) to lysine (K) amino acid substitution at position 223 of the lectin domain, was shown to alter the ability of SP-A to inhibit eosinophil degranulation. Because a large subgroup of asthmatics have associated eosinophilia, often accompanied by inflammation associated with delayed clearance, our goal was to define how SP-A mediates eosinophil resolution in allergic airways and whether genetic variation affects this activity. Wild-type, SP-A knockout (SP-A KO) and humanized (SP-A2 223Q/Q, SP-A2 223K/K) C57BL/6 mice were challenged in an allergic OVA model, and parameters of inflammation were examined. Peripheral blood eosinophils were isolated to assess the effect of SP-A genetic variation on apoptosis and chemotaxis. Five days postchallenge, SP-A KO and humanized SP-A2 223K/K mice had persistent eosinophilia in bronchoalveolar lavage fluid compared with wild-type and SP-A2 223Q/Q mice, suggesting an impairment in eosinophil resolution. In vitro, human SP-A containing either the 223Q or the 223K allele was chemoattractant for eosinophils whereas only 223Q resulted in decreased eosinophil viability. Our results suggest that SP-A aids in the resolution of allergic airway inflammation by promoting eosinophil clearance from lung tissue through chemotaxis, independent of SP-A2 Q223K, and by inducing apoptosis of eosinophils, which is altered by the polymorphism.


Assuntos
Asma/complicações , Eosinofilia/fisiopatologia , Proteína A Associada a Surfactante Pulmonar/fisiologia , Animais , Apoptose/efeitos dos fármacos , Quimiocina CCL11/análise , Variação Genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/farmacologia
6.
PLoS One ; 13(7): e0199824, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969487

RESUMO

Surfactant proteins are important collectin immune molecules with a wide distribution throughout the body, including the ocular system. Mice with gene deletions for the surfactant protein genes Sftpa1 and Sftpd were observed to have visual impairment and thinning of the outer nuclear layers of the retina. We hypothesized that gene deletion of Sftpa1 and Sftpd (Sftpa1tm1Kor/J and Sftpd-/-) results in early retinal degeneration in these mice. Sftpa1tm1Kor/J and Sftpd-/- retinas were evaluated by histopathology and optical coherence tomography (OCT). Retinas from Sftpa1tm1Kor/J and Sftpd -/- mice showed early retinal degeneration with loss of the outer nuclear layer. After screening of mice for known retinal degeneration mutations, the mice were found to carry a previously unrecognized Pde6brd1 genotype which resulted from earlier breeding of the strain with Black Swiss mice during their generation. The mutation was outbred and the genotype of Sftpa1tm1Kor/J and Sftpd-/- was confirmed. Outbreeding of the Pde6brd1 mutation resulted in restoration of normal retinal architecture confirmed by in vivo and in vitro examination. We can therefore conclude that loss of Sftpa1 and Sftpd do not result in retinal degeneration. We have now generated retinal Sftpa1 and Sftpd targeted mice that exhibit normal retinal histology.


Assuntos
Mutação , Proteína A Associada a Surfactante Pulmonar/fisiologia , Proteína D Associada a Surfactante Pulmonar/fisiologia , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Animais , Modelos Animais de Doenças , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/metabolismo
7.
Respir Res ; 15: 85, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25091948

RESUMO

Surfactant protein A has been shown to enhance opsonization and clearance of Staphylococcus aureus in vitro. Here, the phagocytosis of alveolar S. aureus was investigated in vivo using intravital microscopy. Fluorescence labelled S. aureus Newman cells were intratracheally administered to anesthetized mice and the alveolar surface was observed for fifteen minutes. Confirming previously reported in vitro data, surfactant protein A-deficient mice showed a significantly reduced uptake of bacteria compared to wild-type mice.


Assuntos
Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Fagocitose/fisiologia , Proteína A Associada a Surfactante Pulmonar/fisiologia , Staphylococcus aureus/metabolismo , Animais , Pulmão/química , Pulmão/microbiologia , Macrófagos Alveolares/química , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Staphylococcus aureus/química
8.
J Med Invest ; 61(1-2): 1-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24705741

RESUMO

Surfactant protein A (SP-A) is a large multimeric protein found in the airways and alveoli of the lungs. SP-A is a member of the collectin family of proteins, characterized by NH2-terminal collagen-like regions and COOH-terminal lectin domains. Although other surfactant proteins such as SP-B function to reduce surface tension in the lungs, SP-A as well as SP-D regulates the pulmonary immune response. To date, a number of studies have shown the immunoregulatory function of SP-A, mainly in the field of infectious diseases. By binding to a wide variety of pathogens, SP-A opsonizes and enhances pathogen uptake by phagocytes. In addition to the effect on pathogens, recent studies have shown that SP-A also modulates lung immune system in the area of non-infectious lung diseases. In this review, the potential role of SP-A in the multiple aspects of pulmonary host defense will be discussed, focusing mainly on non-infectious lung diseases such as acute and chronic pulmonary fibrosis and lung cancer. J. Med. Invest. 61: 1-6, February, 2014.


Assuntos
Pneumopatias/imunologia , Pneumopatias/fisiopatologia , Proteína A Associada a Surfactante Pulmonar/fisiologia , Humanos , Sistema Imunitário/fisiologia , Pulmão/fisiopatologia , Fibrose Pulmonar/fisiopatologia
9.
Gene ; 531(2): 126-32, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23069847

RESUMO

Pulmonary surfactant protein A (SP-A) plays a key role in innate lung host defense, in surfactant-related functions, and in parturition. In the course of evolution, the genetic complexity of SP-A has increased, particularly in the regulatory regions (i.e. promoter, untranslated regions). Although most species have a single SP-A gene, two genes encode SP-A in humans and primates (SFTPA1 and SFTPA2). This may account for the multiple functions attributed to human SP-A, as well as the regulatory complexity of its expression by a relatively diverse set of protein and non-protein cellular factors. The interplay between enhancer cis-acting DNA sequences and trans-acting proteins that recognize these DNA elements is essential for gene regulation, primarily at the transcription initiation level. Furthermore, regulation at the mRNA level is essential to ensure proper physiological levels of SP-A under different conditions. To date, numerous studies have shown significant complexity of the regulation of SP-A expression at different levels, including transcription, splicing, mRNA decay, and translation. A number of trans-acting factors have also been described to play a role in the control of SP-A expression. The aim of this report is to describe the genetic complexity of the SFTPA1 and SFTPA2 genes, as well as to review regulatory mechanisms that control SP-A expression in humans and other animal species.


Assuntos
Proteína A Associada a Surfactante Pulmonar/genética , Animais , Sequência de Bases/fisiologia , Regulação da Expressão Gênica , Variação Genética/fisiologia , Humanos , Regiões Promotoras Genéticas/fisiologia , Proteína A Associada a Surfactante Pulmonar/fisiologia , RNA Mensageiro/genética , Transcrição Gênica/genética , Regiões não Traduzidas/genética , Regiões não Traduzidas/fisiologia
10.
J Biol Chem ; 287(44): 37406-19, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22948158

RESUMO

The innate immune system protects the host from bacterial and viral invasion. Surfactant protein A (SPA), a lung-specific collectin, stimulates macrophage chemotaxis. However, the mechanisms regulating this function are unknown. Hyaluronan (HA) and its receptors RHAMM (receptor for HA-mediated motility, CD168) and CD44 also regulate cell migration and inflammation. We therefore examined the role of HA, RHAMM, and CD44 in SPA-stimulated macrophage chemotaxis. Using antibody blockade and murine macrophages, SPA-stimulated macrophage chemotaxis was dependent on TLR2 but not the other SPA receptors examined. Anti-TLR2 blocked SPA-induced production of TGFß. In turn, TGFß1-stimulated chemotaxis was inhibited by HA-binding peptide and anti-RHAMM antibody but not anti-TLR2 antibody. Macrophages from TLR2(-/-) mice failed to migrate in response to SPA but responded normally to TGFß1 and HA, effects that were blocked by anti-RHAMM antibody. Macrophages from WT and CD44(-/-) mice had similar responses to SPA, whereas those from RHAMM(-/-) mice had decreased chemotaxis to SPA, TGFß1, and HA. In primary macrophages, SPA-stimulated TGFß production was dependent on TLR2, JNK, and ERK but not p38. Pam3Cys, a specific TLR2 agonist, stimulated phosphorylation of JNK, ERK, and p38, but only JNK and ERK inhibition blocked Pam3Cys-stimulated chemotaxis. We have uncovered a novel pathway for SPA-stimulated macrophage chemotaxis where SPA stimulation via TLR2 drives JNK- and ERK-dependent TGFß production. TGFß1, in turn, stimulates macrophage chemotaxis in a RHAMM and HA-dependent manner. These findings are highly relevant to the regulation of innate immune responses by SPA with key roles for specific components of the extracellular matrix.


Assuntos
Quimiotaxia , Proteínas da Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/fisiologia , Macrófagos/fisiologia , Proteína A Associada a Surfactante Pulmonar/fisiologia , Receptor 2 Toll-Like/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Proteínas da Matriz Extracelular/genética , Técnicas de Inativação de Genes , Receptores de Hialuronatos/genética , Ácido Hialurônico/metabolismo , Lipoproteínas/farmacologia , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Camundongos , Vison , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pseudópodes/metabolismo , Pseudópodes/fisiologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Fator de Crescimento Transformador beta1/metabolismo
11.
J Immunol ; 188(10): 4897-905, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22508928

RESUMO

Graft-versus-host disease (GVHD) is a severe and frequent complication of allogeneic bone marrow transplantation (BMT) that involves the gastrointestinal (GI) tract and lungs. The pathobiology of GVHD is complex and involves immune cell recognition of host Ags as foreign. We hypothesize a central role for the collectin surfactant protein A (SP-A) in regulating the development of GVHD after allogeneic BMT. C57BL/6 (H2b; WT) and SP-A-deficient mice on a C57BL/6 background (H2b; SP-A(-/-)) mice underwent allogeneic or syngeneic BMT with cells from either C3HeB/FeJ (H2k; SP-A-deficient recipient mice that have undergone an allogeneic BMT [SP-A(-/-)alloBMT] or SP-A-sufficient recipient mice that have undergone an allogeneic BMT) or C57BL/6 (H2b; SP-A-deficient recipient mice that have undergone a syngeneic BMT or SP-A-sufficient recipient mice that have undergone a syngeneic BMT) mice. Five weeks post-BMT, mice were necropsied, and lung and GI tissue were analyzed. SP-A(-/-) alloBMT or SP-A-sufficient recipient mice that have undergone an allogeneic BMT had no significant differences in lung pathology; however, SP-A(-/-)alloBMT mice developed marked features of GI GVHD, including decreased body weight, increased tissue inflammation, and lymphocytic infiltration. SP-A(-/-)alloBMT mice also had increased colon expression of IL-1ß, IL-6, TNF-α, and IFN-γ and as well as increased Th17 cells and diminished regulatory T cells. Our results demonstrate the first evidence, to our knowledge, of a critical role for SP-A in modulating GI GVHD. In these studies, we demonstrate that mice deficient in SP-A that have undergone an allogeneic BMT have a greater incidence of GI GVHD that is associated with increased Th17 cells and decreased regulatory T cells. The results of these studies demonstrate that SP-A protects against the development of GI GVHD and establishes a role for SP-A in regulating the immune response in the GI tract.


Assuntos
Gastroenteropatias/imunologia , Gastroenteropatias/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Proteína A Associada a Surfactante Pulmonar/fisiologia , Animais , Transplante de Medula Óssea/imunologia , Transplante de Medula Óssea/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Gastroenteropatias/genética , Doença Enxerto-Hospedeiro/genética , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína A Associada a Surfactante Pulmonar/deficiência , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th17/imunologia , Células Th17/patologia
12.
Am J Respir Crit Care Med ; 185(5): 525-36, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22198976

RESUMO

RATIONALE: Surfactant protein (SP)-D and SP-A have been implicated in immunomodulation in the lung. It has been reported that patients with idiopathic pulmonary fibrosis (IPF) often have elevated serum levels of SP-A and SP-D, although their role in the disease is not known. OBJECTIVES: The goal of this study was to test the hypothesis that SP-D plays an important role in lung fibrosis using a mouse model of fibrosis induced by bleomycin (BLM). METHODS: Triple transgenic inducible SP-D mice (iSP-D mice), in which rat SP-D is expressed in response to doxycycline (Dox) treatment, were administered BLM (100 U/kg) or saline subcutaneously using miniosmotic pumps. MEASUREMENTS AND MAIN RESULTS: BLM-treated iSP-D mice off Dox (SP-D off) had increased lung fibrosis compared with mice on Dox (SP-D on). SP-D deficiency also increased macrophage-dominant cell infiltration and the expression of profibrotic cytokines (transforming growth factor [TGF]-ß1, platelet-derived growth factor-AA). Alveolar macrophages isolated from BLM-treated iSP-D mice off Dox (SP-D off) secreted more TGF-ß1. Fibrocytes, which are bone marrow-derived mesenchymal progenitor cells, were increased to a greater extent in the lungs of the BLM-treated iSP-D mice off Dox (SP-D off). Fibrocytes isolated from BLM-treated iSP-D mice off Dox (SP-D off) expressed more of the profibrotic cytokine TGF-ß1 and more CXCR4, a chemokine receptor that is important in fibrocyte migration into the lungs. Exogenous SP-D administered intratracheally attenuated BLM-induced lung fibrosis in SP-D(-/-) mice. CONCLUSIONS: These data suggest that alveolar SP-D regulates numbers of macrophages and fibrocytes in the lungs, profibrotic cytokine expression, and fibrotic lung remodeling in response to BLM injury.


Assuntos
Bleomicina/toxicidade , Fibrose Pulmonar Idiopática/fisiopatologia , Proteína D Associada a Surfactante Pulmonar/fisiologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/fisiopatologia , Remodelação das Vias Aéreas/fisiologia , Animais , Líquido da Lavagem Broncoalveolar/química , Citocinas/fisiologia , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/fisiopatologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína A Associada a Surfactante Pulmonar/análise , Proteína A Associada a Surfactante Pulmonar/fisiologia , Proteína D Associada a Surfactante Pulmonar/análise , Ratos
13.
Front Biosci (Elite Ed) ; 4(2): 651-61, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201901

RESUMO

Innate immunity mediated by pattern recognition proteins is relevant in the host defense against fungi. SP-A and SP-D are two such proteins belonging to the class of collagen domain containing C-type lectins, or collectins. They bind to the sugar moieties present on the cell walls of various fungi in a dose dependent manner via their carbohydrate recognition domain (CRD). SP-A and SP-D directly interact with alveolar macrophages, neutrophils, lymphocytes. We review these roles of SP-A and SP-D against various clinically relevant fungal pathogens and fungal allergens. SP-A and SP-D gene deficient mice showed increased susceptibility/ resistance to various fungal infections. Patients of fungal infections and allergies are reported with alterations in the serum or lung lavage levels of SP-A and SP-D. There are studies associating the gene polymorphisms in SP-A and SP-D with alterations in their levels or functions or susceptibility of the host to fungal diseases. In view of the protective role of SP-D in murine models of Aspergillus fumigatus infections and allergies, therapeutic use of SP-D could be explored further.


Assuntos
Hipersensibilidade/prevenção & controle , Micoses/prevenção & controle , Proteína A Associada a Surfactante Pulmonar/fisiologia , Proteína D Associada a Surfactante Pulmonar/fisiologia , Animais , Humanos , Hipersensibilidade/imunologia , Imunidade Inata , Camundongos , Micoses/imunologia , Micoses/microbiologia , Conformação Proteica , Proteína A Associada a Surfactante Pulmonar/química , Proteína D Associada a Surfactante Pulmonar/química
14.
PLoS One ; 6(11): e27091, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22069491

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute pneumonitis in immunocompromised patients and chronic lung infections in individuals with cystic fibrosis and other bronchiectasis. Over 75% of clinical isolates of P. aeruginosa secrete elastase B (LasB), an elastolytic metalloproteinase that is encoded by the lasB gene. Previously, in vitro studies have demonstrated that LasB degrades a number of components in both the innate and adaptive immune systems. These include surfactant proteins, antibacterial peptides, cytokines, chemokines and immunoglobulins. However, the contribution of LasB to lung infection by P. aeruginosa and to inactivation of pulmonary innate immunity in vivo needs more clarification. In this study, we examined the mechanisms underlying enhanced clearance of the ΔlasB mutant in mouse lungs. The ΔlasB mutant was attenuated in virulence when compared to the wild-type strain PAO1 during lung infection in SP-A+/+ mice. However, the ΔlasB mutant was as virulent as PAO1 in the lungs of SP-A⁻/⁻ mice. Detailed analysis showed that the ΔlasB mutant was more susceptible to SP-A-mediated opsonization but not membrane permeabilization. In vitro and in vivo phagocytosis experiments revealed that SP-A augmented the phagocytosis of ΔlasB mutant bacteria more efficiently than the isogenic wild-type PAO1. The ΔlasB mutant was found to have a severely reduced ability to degrade SP-A, consequently making it unable to evade opsonization by the collectin during phagocytosis. These results suggest that P. aeruginosa LasB protects against SP-A-mediated opsonization by degrading the collectin.


Assuntos
Proteínas de Bactérias/metabolismo , Pulmão/microbiologia , Metaloendopeptidases/metabolismo , Fagocitose/fisiologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteína A Associada a Surfactante Pulmonar/fisiologia , Animais , Proteínas de Bactérias/genética , Western Blotting , Permeabilidade da Membrana Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Mutação/genética , Proteínas Opsonizantes/metabolismo , Infecções por Pseudomonas/patologia , Infecções por Pseudomonas/prevenção & controle
15.
Cytokine ; 56(2): 442-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21865055

RESUMO

Surfactant protein A (SP-A) functions in homeostasis of lung surfactant and in innate immunity. SP-A is secreted by the fetal lung into amniotic fluid. Additionally it has been detected in gestational tissues. We propose that SP-A influences intrauterine inflammation that is commonly associated with preterm birth, the main underlying cause of neonatal mortality and morbidity. We used our previously established mouse model of LPS-induced preterm birth of live-born pups to investigate the role of SP-A in preterm birth. Mice overexpressing rat SP-A (rSP-A) under the control of human SP-C promoter were used. Cytokine concentrations in maternal and fetal serum and in amniotic fluid and mRNA levels of several inflammatory mediators in lungs and in intrauterine tissues were quantified using Cytometric Bead Array and RNase Protection Assay, respectively. Higher levels of SP-A mRNA were observed in fetal lungs and intrauterine tissues of rSP-A mice compared with wild-type. Using Western blot we detected excess of SP-A protein in fetal lung and in amniotic fluid of rSP-A animals. Despite some differences in the basal levels of TNF-α and IL-10 between rSP-A and wild-type animals, there were no differences in the duration of pregnancy. However, the levels of TNF-α, IL-10 and some other inflammatory mediators in intrauterine tissues and in amniotic fluid differed significantly between the mouse lines after maternal LPS given at 17dpc. We conclude that SP-A modulates the levels of intrauterine inflammatory mediators involved in preterm birth and may contribute to inflammatory processes related to spontaneous preterm labor.


Assuntos
Inflamação/fisiopatologia , Lipopolissacarídeos/farmacologia , Nascimento Prematuro , Proteína A Associada a Surfactante Pulmonar/fisiologia , Animais , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Proteína A Associada a Surfactante Pulmonar/genética , RNA Mensageiro/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
16.
J Immunol ; 186(4): 2397-411, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21248257

RESUMO

Surfactant protein A (SP-A), the most abundant pulmonary soluble collectin, modulates innate and adaptive immunity of the lung, partially via its direct effects on alveolar macrophages (AM), the most predominant intra-alveolar cells under physiological conditions. Enhanced phagocytosis and endocytosis are key functional consequences of AM/SP-A interaction, suggesting a SP-A-mediated modulation of small Rab (Ras related in brain) GTPases that are pivotal membrane organizers in both processes. In this article, we show that SP-A specifically and transiently enhances the protein expression of endogenous Rab7 and Rab7b, but not Rab5 and Rab11, in primary AM from rats and mice. SP-A-enhanced GTPases are functionally active as determined by increased interaction of Rab7 with its downstream effector Rab7 interacting lysosomal protein (RILP) and enhanced maturation of cathepsin-D, a function of Rab7b. In AM and RAW264.7 macrophages, the SP-A-enhanced lysosomal delivery of GFP-Escherichia coli is abolished by the inhibition of Rab7 and Rab7 small interfering RNA transfection, respectively. The constitutive expression of Rab7 in AM from SP-A(-/-) mice is significantly reduced compared with SP-A(+/+) mice and is restored by SP-A. Rab7 blocking peptides antagonize SP-A-rescued lysosomal delivery of GFP-E. coli in AM from SP-A(-/-) mice. Activation of Rab7, but not Rab7b, by SP-A depends on the PI3K/Akt/protein kinase Cζ (PKCζ) signal transduction pathway in AM and RAW264.7 macrophages. SP-A induces a Rab7/PKCζ interaction in these cells, and the disruption of PKCζ by small interfering RNA knockdown abolishes the effect of SP-A on Rab7. The data demonstrate a novel role for SP-A in modulating endolysosomal trafficking via Rab7 in primary AM and define biochemical pathways involved.


Assuntos
Endossomos/imunologia , Lisossomos/imunologia , Macrófagos Alveolares/imunologia , Proteína A Associada a Surfactante Pulmonar/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Endossomos/enzimologia , Endossomos/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Macrófagos Alveolares/enzimologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Oncogênica v-akt , Fosfatidilinositol 3-Quinases/fisiologia , Proteína Quinase C/fisiologia , Transporte Proteico/genética , Transporte Proteico/imunologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteína A Associada a Surfactante Pulmonar/deficiência , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteínas rab de Ligação ao GTP/fisiologia , proteínas de unión al GTP Rab7
17.
J Clin Endocrinol Metab ; 96(4): E624-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21270323

RESUMO

CONTEXT: Labor is characterized by "decidual activation" with production of inflammatory mediators. Recent data suggest that surfactant protein-A (SP-A) may be critical to the onset of labor in mice. Whether this is also true in humans is unclear. OBJECTIVES: The aim was to investigate: 1) the expression of SP-A at the maternal-fetal interface; 2) the effect of SP-A on the production of inflammatory mediators by human decidua; and 3) the association between single nucleotide polymorphisms in maternal SP-A genes and spontaneous preterm birth. RESEARCH DESIGN AND METHODS: In situ expression of SP-A was investigated by immunohistochemistry and quantitative RT-PCR. Term decidual stromal cells were isolated, purified, and treated with/without SP-A (1-100 µg/ml), IL-1ß, and/or thrombin. Levels of inflammatory mediators [IL-6, IL-8, TNFα, matrix metalloproteinase-3, monocyte chemotactic protein-1, IL-1ß, PGE(2), prostaglandin F(2α) (PGF(2α))] and angiogenic factors (soluble fms-like tyrosine kinase-1, vascular endothelial growth factor) were measured in conditioned supernatant by ELISA and corrected for protein content. The effect of SP-A on eicosanoid gene expression was measured by quantitative RT-PCR. RESULTS: SP-A localized to endometrium/decidua. High-dose SP-A (100 µg/ml) inhibited PGF(2α) by term decidual stromal cells without affecting the production of other inflammatory mediators, and this effect occurred at a posttranscriptional level. Decidual SP-A expression decreased significantly with labor. Single nucleotide polymorphisms in the SP-A genes do not appear to be associated with preterm birth. CONCLUSIONS: SP-A is produced by human endometrium/decidua, where it significantly and selectively inhibits PGF(2α) production. Its expression decreases with labor. These novel observations suggest that decidual SP-A likely plays a critical role in regulating prostaglandin production within the uterus, culminating at term in decidual activation and the onset of labor.


Assuntos
Decídua/efeitos dos fármacos , Dinoprosta/metabolismo , Início do Trabalho de Parto/fisiologia , Proteína A Associada a Surfactante Pulmonar/farmacologia , Nascimento a Termo , Estudos de Casos e Controles , Técnicas de Cultura de Células , Células Cultivadas , Decídua/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Feminino , Ruptura Prematura de Membranas Fetais/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Início do Trabalho de Parto/efeitos dos fármacos , Início do Trabalho de Parto/genética , Início do Trabalho de Parto/metabolismo , Polimorfismo de Nucleotídeo Único , Gravidez , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/fisiologia , Nascimento a Termo/efeitos dos fármacos , Nascimento a Termo/genética , Nascimento a Termo/metabolismo
18.
J Immunol ; 186(5): 2842-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21257967

RESUMO

Although many studies have shown that pulmonary surfactant protein (SP)-A functions in innate immunity, fewer studies have addressed its role in adaptive immunity and allergic hypersensitivity. We hypothesized that SP-A modulates the phenotype and prevalence of dendritic cells (DCs) and CD4(+) T cells to inhibit Th2-associated inflammatory indices associated with allergen-induced inflammation. In an OVA model of allergic hypersensitivity, SP-A(-/-) mice had greater eosinophilia, Th2-associated cytokine levels, and IgE levels compared with wild-type counterparts. Although both OVA-exposed groups had similar proportions of CD86(+) DCs and Foxp3(+) T regulatory cells, the SP-A(-/-) mice had elevated proportions of CD4(+) activated and effector memory T cells in their lungs compared with wild-type mice. Ex vivo recall stimulation of CD4(+) T cell pools demonstrated that cells from the SP-A(-/-) OVA mice had the greatest proliferative and IL-4-producing capacity, and this capability was attenuated with exogenous SP-A treatment. Additionally, tracking proliferation in vivo demonstrated that CD4(+) activated and effector memory T cells expanded to the greatest extent in the lungs of SP-A(-/-) OVA mice. Taken together, our data suggested that SP-A influences the prevalence, types, and functions of CD4(+) T cells in the lungs during allergic inflammation and that SP deficiency modifies the severity of inflammation in allergic hypersensitivity conditions like asthma.


Assuntos
Alérgenos/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Memória Imunológica , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/imunologia , Proteína A Associada a Surfactante Pulmonar/deficiência , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Memória Imunológica/genética , Imunofenotipagem , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Pulmão/metabolismo , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/administração & dosagem , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/fisiologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/patologia , Hipersensibilidade Respiratória/prevenção & controle , Índice de Gravidade de Doença , Células Th2/imunologia , Células Th2/metabolismo , Células Th2/patologia
19.
Am J Respir Cell Mol Biol ; 44(2): 175-84, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20348208

RESUMO

Surfactant protein A (SP-A) mediates innate immune cell responses to LPS, a cell wall component of gram-negative bacteria that is found ubiquitously in the environment and is associated with adverse health effects. Inhaled LPS induces lung inflammation and increases airway responsiveness (AR). However, the role of SP-A in mediating LPS-induced AR is not well-defined. Nitric oxide (NO) is described as a potent bronchodilator, and previous studies showed that SP-A modulates the LPS-induced production of NO. Hence, we tested the hypothesis that increased AR, observed in response to aerosolized LPS exposure, would be significantly reduced in an SP-A-deficient condition. Wild-type (WT) and SP-A null (SP-A(-/-)) mice were challenged with aerosolized LPS. Results indicate that despite similar inflammatory indices, LPS-treated SP-A(-/-) mice had attenuated AR after methacholine challenge, compared with WT mice. The attenuated AR could not be attributed to inherent differences in SP-D concentrations or airway smooth muscle contractile and relaxation properties, because these measures were similar between WT and SP-A(-/-) mice. LPS-treated SP-A(-/-) mice, however, had elevated nitrite concentrations, inducible nitric oxide synthase (iNOS) expression, and NOS activity in their lungs. Moreover, the administration of the iNOS-specific inhibitor 1400W completely abrogated the attenuated AR. Thus, when exposed to aerosolized LPS, SP-A(-/-) mice demonstrate a relative airway hyporesponsiveness that appears to be mediated at least partly via an iNOS-dependent mechanism. These findings may have clinical significance, because recent studies reported associations between surfactant protein polymorphisms and a variety of lung diseases.


Assuntos
Lipopolissacarídeos/farmacologia , Pulmão/imunologia , Pulmão/fisiopatologia , Óxido Nítrico/fisiologia , Proteína A Associada a Surfactante Pulmonar/deficiência , Animais , Imunidade Inata , Pulmão/efeitos dos fármacos , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/imunologia , Proteína A Associada a Surfactante Pulmonar/fisiologia , Proteína D Associada a Surfactante Pulmonar/metabolismo
20.
J Pharmacol Exp Ther ; 336(3): 672-81, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21159752

RESUMO

Surfactant protein-A (SP-A) and Toll-like receptor-4 (TLR4) proteins are recognized as pathogen-recognition receptors. An exaggerated activation of TLR4 induces inflammatory response, whereas SP-A protein down-regulates inflammation. We hypothesized that SP-A-TLR4 interaction may lead to inhibition of inflammation. In this study, we investigated interaction between native baboon lung SP-A and baboon and human TLR4-MD2 proteins by coimmunoprecipitation/immunoblotting and microwell-based methods. The interaction between SP-A and TLR4-MD2 proteins was then analyzed using a bioinformatics approach. In the in silico model of SP-A-TLR4-MD2 complex, we identified potential binding regions and amino acids at the interface of SP-A-TLR4. Using this information, we synthesized a library of human SP-A-derived peptides that contained interacting amino acids. Next, we tested whether the TLR4-interacting SP-A peptides would suppress inflammatory cytokines. The peptides were screened for any changes in the tumor necrosis factor-α (TNF-α) response against lipopolysaccharide (LPS) stimuli in the mouse JAWS II dendritic cell line. Different approaches used in this study suggested binding between SP-A and TLR4-MD2 proteins. In cells pretreated with peptides, three of seven peptides increased TNF-α production against LPS. However, two of these peptides (SPA4: GDFRYSDGTPVNYTNWYRGE and SPA5: YVGLTEGPSPGDFRYSDFTP) decreased the TNF-α production in LPS-challenged JAWS II dendritic cells; SPA4 peptide showed more pronounced inhibitory effect than SPA5 peptide. In conclusion, we identify a human SP-A-derived peptide (SPA4 peptide) that interacts with TLR4-MD2 protein and inhibits the LPS-stimulated release of TNF-α in JAWS II dendritic cells.


Assuntos
Células Dendríticas/metabolismo , Pulmão/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteína A Associada a Surfactante Pulmonar/fisiologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Transformada , Humanos , Pulmão/citologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Papio anubis , Fragmentos de Peptídeos/fisiologia , Ligação Proteica/fisiologia , Receptor 4 Toll-Like/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...