Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Fish Shellfish Immunol ; 149: 109566, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636735

RESUMO

Fish rely on innate immune system for immunity, and nucleotide-binding oligomerization domain-like receptors (NLRs) are a vital group of receptor for recognition. In the present study, NOD1 gene was cloned and characterized from golden pompano Trachinotus ovatus, a commercially important aquaculture fish species. The ORF of T. ovatus NOD1 was 2820 bp long, encoding 939 amino acid residues with a highly conserved domains containing CARD-NACHT-LRRs. Phylogenetic analysis revealed that the T. ovatus NOD1 clustered with those of fish and separated from those of birds and mammals. T. ovatus NOD1 has wide tissue distribution with the highest expression in gills. Bacterial challenges (Streptococcus agalactiae and Vibrio alginolyticus) significantly up-regulated the expression of NOD1 with different response time. The results of T. ovatus NOD1 ligand recognition and signaling pathway analysis revealed that T. ovatus NOD1 could recognize iE-DAP at the concentration of ≧ 100 ng/mL and able to activate NF-κB signaling pathway. This study confirmed that NOD1 play a crucial role in the innate immunity of T. ovatus. The findings of this study improve our understanding on the immune function of NOD1 in teleost, especially T. ovatus.


Assuntos
Sequência de Aminoácidos , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Proteína Adaptadora de Sinalização NOD1 , Filogenia , Alinhamento de Sequência , Vibrio alginolyticus , Animais , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD1/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Imunidade Inata/genética , Doenças dos Peixes/imunologia , Alinhamento de Sequência/veterinária , Vibrio alginolyticus/fisiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Vibrioses/imunologia , Vibrioses/veterinária , Ácido Diaminopimélico/química , Ácido Diaminopimélico/análogos & derivados , Perciformes/imunologia , Perciformes/genética , Peixes/imunologia , Peixes/genética
2.
Pharmacol Res ; 171: 105775, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273489

RESUMO

Nucleotide-binding oligomerization domain 1 (NOD1), a pattern recognition receptor (PRR) that detects bacterial peptidoglycan fragments and other danger signals, has been linked to inflammatory pathologies. NOD1, which is expressed by immune and non-immune cells, is activated after recognizing microbe-associated molecular patterns (MAMPs). This recognition triggers host defense responses and both immune memory and tolerance can also be achieved during these processes. Since the gut microbiota is currently considered a master regulator of human physiology central in health and disease and the intestine metabolizes a wide range of nutrients, drugs and hormones, it is a fact that dysbiosis can alter tissues and organs homeostasis. These systemic alterations occur in response to gastrointestinal immune adaptations that are not yet fully understood. Even if previous evidence confirms the connection between the microbiota, the immune system and metabolic disorders, much remains to be discovered about the contribution of NOD1 to low-grade inflammatory pathologies such as obesity, diabetes and cardiovascular diseases. This review compiles the most recent findings in this area, while providing a dynamic and practical framework with future approaches for research and clinical applications on targeting NOD1. This knowledge can help to rate the consequences of the disease and to stratify the patients for therapeutic interventions.


Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Animais , Encefalopatias/imunologia , Encefalopatias/microbiologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Gastroenteropatias/imunologia , Gastroenteropatias/microbiologia , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Proteína Adaptadora de Sinalização NOD2/imunologia
3.
J Immunol ; 206(9): 2206-2220, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33846227

RESUMO

Interactions between pattern-recognition receptors shape innate immune responses to pathogens. NOD1 and TLR4 are synergistically interacting receptors playing a pivotal role in the recognition of Gram-negative bacteria. However, mechanisms of their cooperation are poorly understood. It is unclear whether synergy is produced at the level of signaling pathways downstream of NOD1 and TLR4 or at more distal levels such as gene transcription. We analyzed sequential stages of human macrophage activation by a combination of NOD1 and TLR4 agonists (N-acetyl-d-muramyl-l-alanyl-d-isoglutamyl-meso-diaminopimelic acid [M-triDAP] and LPS, respectively). We show that events preceding or not requiring activation of transcription, such as activation of signaling kinases, rapid boost of glycolysis, and most importantly, nuclear translocation of NF-κB, are regulated nonsynergistically. However, at the output of the nucleus, the combination of M-triDAP and LPS synergistically induces expression of a subset of M-triDAP- and LPS-inducible genes, particularly those encoding proinflammatory cytokines (TNF, IL1B, IL6, IL12B, and IL23A). This synergistic response develops between 1 and 4 h of agonist treatment and requires continuous signaling through NOD1. The synergistically regulated genes have a lower basal expression and higher inducibility at 4 h than those regulated nonsynergistically. Both gene subsets include NF-κB-inducible genes. Therefore, activation of the NF-κB pathway does not explain synergistic gene induction, implying involvement of other transcription factors. Inhibition of IKKß or p38 MAPK lowers agonist-induced TNF mRNA expression but does not abolish synergy. Thus, nonsynergistic activation of NOD1- and TLR4-dependent signaling pathways results in the synergistic induction of a proinflammatory transcriptional program.


Assuntos
Proteína Adaptadora de Sinalização NOD1/imunologia , Receptor 4 Toll-Like/imunologia , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Citocinas/genética , Citocinas/imunologia , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos , Proteína Adaptadora de Sinalização NOD1/agonistas , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/agonistas
4.
Front Immunol ; 12: 603192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746949

RESUMO

Increasing evidence suggests that NODs are involved in liver diseases; however, the underlying mechanisms remain obscure. In the present study, we analyzed the effect of NOD1 agonist pretreatment on acute liver failure induced by lipopolysaccharide (LPS) in D-galactosamine (D-GalN)-sensitized mice. We found that pretreatment with the NOD1 agonist markedly reduced LPS/D-GalN-induced mortality, elevation of serum ALT levels, and hepatocyte apoptosis. The protective effect of NOD1 agonist was independent of tumor necrosis factor (TNF)-α inhibition. NOD1 agonist pretreatment also attenuated TNF-α/D-GalN-induced apoptotic liver damage. The anti-apoptotic protein A20 expression was more pronounced in NOD1 agonist pretreated mice than in controls, and knockdown of A20 abrogated the protective effect of NOD1 agonist on LPS/D-GalN-induced liver injury and hepatocyte apoptosis. Further experiments showed that NOD1 agonist-induced A20 upregulation required the presence of kupffer cells and TNF-α. Taken together, our data strongly indicate that NOD1 is involved in the regulation of liver injury and could be a potential therapeutic target for liver diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Galactosamina/toxicidade , Hepatócitos/imunologia , Lipopolissacarídeos/toxicidade , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia , Regulação para Cima/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/patologia , Masculino , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Regulação para Cima/genética , Regulação para Cima/imunologia
5.
J Allergy Clin Immunol ; 148(2): 394-406, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33508265

RESUMO

BACKGROUND: Asthma severity has been linked to exposure to gram-negative bacteria from the environment that are recognized by NOD1 receptor and are present in house dust mite (HDM) extracts. NOD1 polymorphism has been associated with asthma. OBJECTIVE: We sought to evaluate whether either host or HDM-derived microbiota may contribute to NOD1-dependent disease severity. METHODS: A model of HDM-induced experimental asthma was used and the effect of NOD1 deficiency was evaluated. Contribution of host microbiota was evaluated by fecal transplantation. Contribution of HDM-derived microbiota was assessed by 16S ribosomal RNA sequencing, mass spectrometry analysis, and peptidoglycan depletion of the extracts. RESULTS: In this model, loss of the bacterial sensor NOD1 and its adaptor RIPK2 improved asthma features. Such inhibitory effect was not related to dysbiosis caused by NOD1 deficiency, as shown by fecal transplantation of Nod1-deficient microbiota to wild-type germ-free mice. The 16S ribosomal RNA gene sequencing and mass spectrometry analysis of HDM allergen, revealed the presence of some muropeptides from gram-negative bacteria that belong to the Bartonellaceae family. While such HDM-associated muropeptides were found to activate NOD1 signaling in epithelial cells, peptidoglycan-depleted HDM had a decreased ability to instigate asthma in vivo. CONCLUSIONS: These data show that NOD1-dependent sensing of HDM-associated gram-negative bacteria aggravates the severity of experimental asthma, suggesting that inhibiting the NOD1 signaling pathway may be a therapeutic approach to treating asthma.


Assuntos
Asma/imunologia , Microbioma Gastrointestinal/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Pyroglyphidae/imunologia , Transdução de Sinais/imunologia , Animais , Asma/induzido quimicamente , Asma/genética , Asma/microbiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/genética , Transdução de Sinais/genética
6.
Cell Rep ; 34(4): 108677, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503439

RESUMO

Pioneering studies from the early 1980s suggested that bacterial peptidoglycan-derived muramyl peptides (MPs) could exert either stimulatory or immunosuppressive functions depending, in part, on chronicity of exposure. However, this Janus-faced property of MPs remains largely unexplored. Here, we demonstrate the immunosuppressive potential of Nod1, the bacterial sensor of diaminopimelic acid (DAP)-containing MPs. Using a model of self-limiting peritonitis, we show that systemic Nod1 activation promotes an autophagy-dependent reprogramming of macrophages toward an alternative phenotype. Moreover, Nod1 stimulation induces the expansion of myeloid-derived suppressor cells (MDSCs) and maintains their immunosuppressive potential via arginase-1 activity. Supporting the role of MDSCs and tumor-associated macrophages in cancer, we demonstrate that myeloid-intrinsic Nod1 expression sustains intra-tumoral arginase-1 levels to foster an immunosuppressive and tumor-permissive microenvironment during colorectal cancer (CRC) development. Our findings support the notion that bacterial products, via Nod1 detection, modulate the immunosuppressive activity of myeloid cells and fuel tumor progression in CRC.


Assuntos
Neoplasias Colorretais/imunologia , Células Supressoras Mieloides/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Animais , Carcinogênese/imunologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Camundongos , Microambiente Tumoral/imunologia
7.
Fish Shellfish Immunol ; 110: 75-85, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33444736

RESUMO

As a lower vertebrate, the immune defense mechanism of fish mainly depends on the innate immune system. Nucleotide-binding oligomerization domain-like receptors (NLRs) are an important class of pattern recognition receptors in the innate immune system. In this study, NOD1 gene was cloned and characterized in Nile tilapia (Oreochromis niloticus). The ORF of Nile tilapia NOD1 gene was 2826 bp long and encoded 941 amino acid residues with a structure of CARD-NACHT-LRRs that was similar to the other counterparts in mammals and fishes. Phylogenetic and synteny analysis showed that NOD1 was conserved among different fishes and existed at least in the early stage of fish evolution. Expression pattern revealed that NOD1 mRNA was constitutively expressed in the tested tissues, while had high expression level in main immune organs and mucosal immune tissues (liver, head kidney, spleen, blood, gill, and intestine). Following Streptococcus agalactiae challenge, Nile tilapia NOD1 mRNA expression levels were altered in immune organs (liver, head kidney, spleen, blood), and the expression pattern was similar in liver, spleen and blood. Furthermore, the ligand recognition and signaling pathway of Nile tilapia NOD1 were also analyzed, it showed that NOD1 could recognize Tri-DAP intracellularly and activated NF-κB signaling pathway. In summary, our results indicated that the Nile tilapia NOD1 may play an important role in innate immune system and provided a basis for the functional study of NOD1 in teleost.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Regulação da Expressão Gênica , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/imunologia , Animais , Ácido Diaminopimélico , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia
8.
J Sci Food Agric ; 101(3): 1218-1227, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32789879

RESUMO

BACKGROUND: Long-term high-concentrate (HC) diet feeding increased bacterial endotoxins, which translocated into the mammary glands of dairy goats and induced inflammatory response. γ-d-Glutamyl-meso-diaminopimelic acid (iE-DAP), bacterial peptidoglycan component, triggered inflammatory response through activating nucleotide oligomerization domain protein 1 (NOD1) signaling pathway. While dietary supplemented with sodium butyrate (SB) relieved inflammatory response and improved animal health and production. To investigate the effects and the mechanisms of action of SB on the inflammatory response in the mammary glands of dairy goats fed HC diet, 12 Saanen dairy goats were randomly assigned into HC group and SB regulated (BHC) group. RESULTS: The results showed that SB supplementation attenuated ruminal pH decrease caused by HC diet in dairy goats resulting in a decrease of proinflammatory cytokines and iE-DAP plasma concentration and the mRNA expression of NOD1 and other inflammation-related genes. The protein levels of NOD1, NF-κB p65 and NF-κB pp65 were decreased by the SB supplementation. The expression of histone deacetylase 3 (HDAC3) was also inhibited by the SB supplementation. Meanwhile, the chromatin compaction ratios and DNA methylation levels of NOD1 and receptor-interacting protein 2 (RIP2) of BHC group were upregulated. CONCLUSION: Collectively, the SB supplementation mitigated the inflammatory response in the mammary glands of dairy goats during HC-induced subacute ruminal acidosis (SARA) by inhibiting the activation of the NOD1/NF-κB signaling pathway through the decrease of the iE-DAP concentration in the rumen fluid and plasma and HDAC3 expression. DNA methylation and chromatin remodeling also contributed to the anti-inflammatory effect of SB. © 2020 Society of Chemical Industry.


Assuntos
Ácido Butírico/administração & dosagem , Ácido Diaminopimélico/análogos & derivados , Doenças das Cabras/tratamento farmacológico , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/imunologia , Acidose/tratamento farmacológico , Acidose/imunologia , Acidose/veterinária , Ração Animal/efeitos adversos , Ração Animal/análise , Animais , Ácido Diaminopimélico/efeitos adversos , Ácido Diaminopimélico/análise , Dieta/efeitos adversos , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Doenças das Cabras/imunologia , Cabras/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia
9.
J Sci Food Agric ; 101(3): 997-1008, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32761828

RESUMO

BACKGROUND: Effects of supplementation of dried alkaline (referred to as MVP1) and aqueous (referred to as PBD1) extracts of Kappaphycus alvarezii, were evaluated in broiler (Vencobb 400) chickens (1-35 days post-hatch). In experiment I, each of the seven diets (basal diet with three levels (0.5, 1.5 or 5.0 g kg-1 diet) of MVP1 or PBD1 and a negative control was fed to 12 pen replicates containing five birds in each. In experiment II, each of three diets [a negative control, and PBD1 at two levels (1.0 or 1.5 g kg-1 diet)] was fed to 16 pen replicates of five chicks in each. RESULTS: Concentrations of total phenolics, phycobillins and free radical scavenging activity were higher (P < 0.01) whereas carrageenan was lower in PBD1 than in MVP1. In the experiment I, PBD1 at 1.5 g kg-1 diet improved (P < 0.05) body weight (BW) (7.11% higher). In the experiment II, both the treatments improved (P < 0.01) BW (9.18% and 8.47%, respectively) compared to the control. The group fed with PBD1@ 1.0 g kg-1 had higher (P < 0.05) haemagglutination inhibition titre, expression of intestinal claudin 2, TLR2A, NOD1, avian beta defensin 4, interleukin 2 and interleukin 6 genes than control. Treatments did not influence feed efficiency or levels of most of the antioxidant enzymes. Villus width and crypt depth were significantly higher in the group fed with 1.5 g kg-1 of PBD1. CONCLUSION: Supplementing dried aqueous extract of K. alvarezii at 1 g kg-1 diet may be an effective strategy to increase growth and immunity in broiler chickens. © 2020 Society of Chemical Industry.


Assuntos
Galinhas/imunologia , Suplementos Nutricionais/análise , Intestinos/crescimento & desenvolvimento , Extratos Vegetais/administração & dosagem , Rodófitas/química , Ração Animal/análise , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Imunidade/efeitos dos fármacos , Interleucina-2/genética , Interleucina-2/imunologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/imunologia , beta-Defensinas/genética , beta-Defensinas/imunologia
10.
Circulation ; 142(23): 2240-2258, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33070627

RESUMO

BACKGROUND: Cardiac hypertrophy is a key biological response to injurious stresses such as pressure overload and, when excessive, can lead to heart failure. Innate immune activation by danger signals, through intracellular pattern recognition receptors such as nucleotide-binding oligomerization domain 1 (Nod1) and its adaptor receptor-interacting protein 2 (RIP2), might play a major role in cardiac remodeling and progression to heart failure. We hypothesize that Nod1/RIP2 are major contributors to cardiac hypertrophy, but may not be sufficient to fully express the phenotype alone. METHODS: To elucidate the contribution of Nod1/RIP2 signaling to cardiac hypertrophy, we randomized Nod1-/-, RIP2-/-, or wild-type mice to transverse aortic constriction or sham operations. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. RESULTS: Nod1 and RIP2 proteins were upregulated in the heart after transverse aortic constriction, and this was paralleled by increased expression of mitochondrial proteins, including mitochondrial antiviral signaling protein (MAVS). Nod1-/- and RIP2-/- mice subjected to transverse aortic constriction exhibited better survival, improved cardiac function, and decreased cardiac hypertrophy. Downstream signal transduction pathways that regulate inflammation and fibrosis, including NF (nuclear factor) κB and MAPK (mitogen-activated protein kinase)-GATA4/p300, were reduced in both Nod1-/- and RIP2-/- mice after transverse aortic constriction compared with wild-type mice. Coimmunoprecipitation of extracted cardiac proteins and confocal immunofluorescence microscopy showed that Nod1/RIP2 interaction was robust and that this complex also included MAVS as an essential component. Suppression of MAVS expression attenuated the complex formation, NF κB signaling, and myocyte hypertrophy. Interrogation of mitochondrial function compared in the presence or ablation of MAVS revealed that MAVS serves to suppress mitochondrial energy output and mediate fission/fusion related dynamic changes. The latter is possibly linked to mitophagy during cardiomyocytes stress, which may provide an intriguing link between innate immune activation and mitochondrial energy balance under stress or injury conditions. CONCLUSIONS: We have identified that innate immune Nod1/RIP2 signaling is a major contributor to cardiac remodeling after stress. This process is critically joined by and regulated through the mitochondrial danger signal adapter MAVS. This novel complex coordinates remodeling, inflammatory response, and mitochondrial energy metabolism in stressed cardiomyocytes. Thus, Nod1/RIP2/MAVS signaling complex may represent an attractive new therapeutic approach toward heart failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Cardiomegalia/imunologia , Metabolismo Energético/fisiologia , Imunidade Inata/fisiologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais/fisiologia
11.
J Cancer Res Clin Oncol ; 145(6): 1405-1416, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30903318

RESUMO

PURPOSE: NOD1 and NOD2 (nucleotide-binding oligomerization domain)-receptors are intracellular receptors and belong to the family of pattern recognition receptors being present in both human and murine renal tubular cells. Besides, NOD1 has been proved to promote apoptosis, upon its overexpression. Hence, we aimed to investigate NOD1 and NOD2 expression in human clear cell renal cell carcinoma (ccRCC). METHODS: Tumor and corresponding adjacent healthy tissues from 41 patients with histopathological diagnosis of ccRCC as well as primary isolated renal tubular epithelial cells (TECs) and tumor tissue from a murine xenograft model using CAKI-1 ccRCC cells were analyzed. RESULTS: NOD1 and NOD2 mRNA was constitutively expressed in both tumor and adjacent healthy renal tissue, with NOD1 being significantly lower and in contrast NOD2 significantly higher expressed in tumor tissue compared to healthy tissues. Immunohistochemically, NOD1 was located not only in the cytoplasm, but also in the nucleus in ccRCC tissue whereas NOD2 was solely localized in the cytoplasm in both human ccRCC as well as in the healthy tubular system. Focusing on the vasculature, NOD2 displayed broader expression than NOD1. In primary TECs as well as CAKI-1 cells NOD1 and NOD2 was constitutively expressed and increasable upon LPS stimulation. In the mouse xenograft model, human NOD1 mRNA was significantly higher expressed compared to NOD2. In contrast hereto, we observed a shift towards lower mouse NOD1 compared to NOD2 mRNA expression. CONCLUSION: In view of reduced apoptosis-associated NOD1 expression in ccRCC tissue opposed to higher expression of NOD2 in tumor vasculature, inducibility of NOD expression in TECs as well as the detected shift of NOD1 and NOD2 expression in the mouse xenograft model, modulation of NOD receptors might, therefore, provide a molecular therapeutic approach in ccRCC.


Assuntos
Carcinoma de Células Renais/imunologia , Neoplasias Renais/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Xenoenxertos , Humanos , Imunidade Inata , Imuno-Histoquímica , Rim/irrigação sanguínea , Rim/imunologia , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Neoplasias Renais/patologia , Túbulos Renais/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Adaptadora de Sinalização NOD1/biossíntese , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Adaptadora de Sinalização NOD2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Endocrinology ; 160(5): 1021-1030, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807635

RESUMO

Insulin resistance is driven, in part, by activation of the innate immune system. We have discussed the evidence linking nucleotide-binding oligomerization domain (NOD)1, an intracellular pattern recognition receptor, to the onset and progression of obesity-induced insulin resistance. On a molecular level, crosstalk between downstream NOD1 effectors and the insulin receptor pathway inhibits insulin signaling, potentially through reduced insulin receptor substrate action. In vivo studies have demonstrated that NOD1 activation induces peripheral, hepatic, and whole-body insulin resistance. Also, NOD1-deficient models are protected from high-fat diet (HFD)-induced insulin resistance. Moreover, hematopoietic NOD1 deficiency prevented HFD-induced changes in proinflammatory macrophage polarization status, thus protecting against the development of metabolic inflammation and insulin resistance. Serum from HFD-fed mice activated NOD1 signaling ex vivo; however, the molecular identity of the activating factors remains unclear. Many have proposed that an HFD changes the gut permeability, resulting in increased translocation of bacterial fragments and increased circulating NOD1 ligands. In contrast, others have suggested that NOD1 ligands are endogenous and potentially lipid-derived metabolites produced during states of nutrient overload. Nevertheless, that NOD1 contributes to the development of insulin resistance, and that NOD1-based therapy might provide benefit, is an exciting advancement in metabolic research.


Assuntos
Imunidade Inata/imunologia , Resistência à Insulina/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Obesidade/imunologia , Animais , Dieta Hiperlipídica , Imunidade Inata/genética , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Modelos Imunológicos , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
13.
J Allergy Clin Immunol ; 143(1): 305-315, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29857009

RESUMO

BACKGROUND: Both obesity and high dietary fat intake activate the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome. OBJECTIVE: We aimed to examine NLRP3 inflammasome activity in the airways of obese asthmatic patients after macronutrient overload and in immune cells challenged by inflammasome triggers. METHODS: Study 1 was a cross-sectional observational study of nonobese (n = 51) and obese (n = 76) asthmatic adults. Study 2 was a randomized, crossover, acute feeding study in 23 asthmatic adults (n = 12 nonobese and n = 11 obese subjects). Subjects consumed 3 isocaloric meals on 3 separate occasions (ie, saturated fatty acid, n-6 polyunsaturated fatty acid, and carbohydrate) and were assessed at 0 and 4 hours. For Studies 1 and 2, airway inflammation was measured based on sputum differential cell counts, IL-1ß protein levels (ELISA), and sputum cell gene expression (Nanostring nCounter). In Study 3 peripheral blood neutrophils and monocytes were isolated by using Ficoll density gradient and magnetic bead separation and incubated with or without palmitic acid, LPS, or TNF-α for 24 hours, and IL-1ß release was measured (ELISA). RESULTS: In Study 1 NLRP3 and nucleotide oligomerization domain 1 (NOD1) gene expression was upregulated, and sputum IL-1ß protein levels were greater in obese versus nonobese asthmatic patients. In Study 2 the saturated fatty acid meal led to increases in sputum neutrophil percentages and sputum cell gene expression of Toll-like receptor 4 (TLR4) and NLRP3 at 4 hours in nonobese asthmatic patients. In Study 3 neutrophils and monocytes released IL-1ß when challenged with a combination of palmitic acid and LPS or TNF-α. CONCLUSION: The NLRP3 inflammasome is a potential therapeutic target in asthmatic patients. Behavioral interventions that reduce fatty acid exposure, such as weight loss and dietary saturated fat restriction, warrant further exploration.


Assuntos
Asma , Ácidos Graxos/administração & dosagem , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Obesidade , Adulto , Idoso , Asma/dietoterapia , Asma/imunologia , Asma/patologia , Linhagem Celular , Estudos Transversais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-1beta/imunologia , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Proteína Adaptadora de Sinalização NOD1/imunologia , Obesidade/dietoterapia , Obesidade/imunologia , Obesidade/patologia , Escarro/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
14.
Fish Shellfish Immunol ; 79: 153-162, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29723664

RESUMO

NOD1 (Nucleotide-binding oligomerization domain-containing protein 1) is one of the most prominent intracellular Nod-like receptors (NLRs), responsible for detecting different microbial components and products arising from tissue injury. Here, we have identified and cloned NOD1 transcript in the Asian seabass, Lates calcarifer (AsNOD1), which consists of 3749 nucleotides and encodes for a predicted putative protein of 900 AA. The AsNOD1 possesses the typical structure of NLR family, consisting of N-terminal CARD domain, centrally located NACHT domain and C-terminal LRRs. The AsNOD1 showed ubiquitous tissue expression in 11 different tissues of healthy animals tested with high levels of expression in hindgut and gill. From the ontogenetic expression profile of AsNOD1, it is quite evident that this gene might follow a maternally-transferred trend in euryhaline teleosts, as it is highly abundant in embryonic developmental stages. The constitutive immunomodulation of AsNOD1 in terms of expression level was clearly evident in the different tissues of Asian seabass-injected either with Vibrio alginolyticus or poly I:C. However, injection with Staphylococcus aureus did not elicit similar immunomodulation except for the up-regulation noticed at few time-points in some tissues. SISK-cell line induced with different ligands such as poly I:C, LPS and PGN also showed up-regulation of AsNOD1 in certain time-points in vitro. Based on the results obtained in the present study, it can be inferred that the AsNOD1 might play an immunoregulatory role upon exposure to different bacterial as well as viral PAMPs and also might be an important component of innate immune element during embryonic and larval development in the euryhaline teleost Asian seabass.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/imunologia , Perciformes/genética , Perciformes/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Lipopolissacarídeos/farmacologia , Proteína Adaptadora de Sinalização NOD1/química , Peptidoglicano/farmacologia , Filogenia , Poli I-C/farmacologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Vibrioses/imunologia , Vibrio alginolyticus/fisiologia
15.
Sci Immunol ; 3(23)2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728425

RESUMO

γδ T cells are major providers of proinflammatory cytokines. They are preprogrammed in the mouse thymus into distinct subsets producing either interleukin-17 (IL-17) or interferon-γ (IFN-γ), which segregate with CD27 expression. In the periphery, CD27- γδ (γδ27-) T cells can be induced under inflammatory conditions to coexpress IL-17 and IFN-γ; the molecular basis of this functional plasticity remains to be determined. On the basis of differential microRNA (miRNA) expression analysis and modulation in γδ T cell subsets, we identified miR-146a as a thymically imprinted post-transcriptional brake to limit IFN-γ expression in γδ27- T cells in vitro and in vivo. On the basis of biochemical purification of Argonaute 2-bound miR-146a targets, we identified Nod1 to be a relevant mRNA target that regulates γδ T cell plasticity. In line with this, Nod1-deficient mice lacked multifunctional IL-17+ IFN-γ+ γδ27- cells and were more susceptible to Listeria monocytogenes infection. Our studies establish the miR-146a/NOD1 axis as a key determinant of γδ T cell effector functions and plasticity.


Assuntos
MicroRNAs/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Proteínas de Ligação a DNA/genética , Listeria monocytogenes , Listeriose/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Proteína Adaptadora de Sinalização NOD1/genética
16.
World J Gastroenterol ; 24(16): 1725-1733, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29713127

RESUMO

Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular innate immune sensor for small molecules derived from bacterial cell components. NOD1 activation by its ligands leads to robust production of pro-inflammatory cytokines and chemokines by innate immune cells, thereby mediating mucosal host defense systems against microbes. Chronic gastric infection due to Helicobacter pylori (H. pylori) causes various upper gastrointestinal diseases, including atrophic gastritis, peptic ulcers, and gastric cancer. It is now generally accepted that detection of H. pylori by NOD1 expressed in gastric epithelial cells plays an indispensable role in mucosal host defense systems against this organism. Recent studies have revealed the molecular mechanism by which NOD1 activation caused by H. pylori infection is involved in the development of chronic gastritis and gastric cancer. In this review, we have discussed and summarized how sensing of H. pylori by NOD1 mediates the prevention of chronic gastritis and gastric cancer.


Assuntos
Mucosa Gástrica/microbiologia , Gastrite/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Proteína Adaptadora de Sinalização NOD1/metabolismo , Neoplasias Gástricas/microbiologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Doença Crônica , Citocinas/metabolismo , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Gastrite/imunologia , Gastrite/metabolismo , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Helicobacter pylori/imunologia , Helicobacter pylori/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Imunidade nas Mucosas , Proteína Adaptadora de Sinalização NOD1/imunologia , Transdução de Sinais , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo
17.
Front Immunol ; 9: 726, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692779

RESUMO

RIP2 is an adaptor protein which is essential for the activation of NF-κB and NOD1- and NOD2-dependent signaling. Although NOD-RIP2 axis conservatively existed in the teleost, the function of RIP2 was only reported in zebrafish, goldfish, and rainbow trout in vitro. Very little is known about the role and mechanisms of piscine NOD-RIP2 axis in vivo. Our previous study showed the protective role of zebrafish NOD1 in larval survival through CD44a-mediated activation of PI3K-Akt signaling. In this study, we examined whether RIP2 was required for larval survival with or without pathogen infection, and determined the signaling pathways modulated by RIP2. Based on our previous report and the present study, our data demonstrated that NOD1-RIP2 axis was important for larval survival in the early ontogenesis. Similar to NOD1, RIP2 deficiency significantly affected immune system processes. The significantly enriched pathways were mainly involved in immune system, such as "Antigen processing and presentation" and "NOD-like receptor signaling pathway" and so on. Furthermore, both transcriptome analysis and qRT-PCR revealed that RIP2 was a critical regulator for expression of NLRs (NOD-like receptors) and those genes involved in MHC antigen presentation. Different from NOD1, the present study showed that NOD1, but not RIP2 deficiency significantly impaired protein levels of MAPK pathways. Although RIP2 deficiency also significantly impaired the expression of CD44a, the downstream signaling of CD44a-Lck-PI3K-Akt pathway remained unchanged. Collectively, our works highlight the similarity and discrepancy of NOD1 and RIP2 in the regulation of immune signaling pathways in the zebrafish early ontogenesis, and confirm the crucial role of RIP2 in NLRs signaling and MHC antigen presentation, but not for MAPK and PI3K/Akt pathways.


Assuntos
Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Proteínas de Peixe-Zebra/imunologia , Animais , Apresentação de Antígeno , Edwardsiella , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Antígenos de Histocompatibilidade/imunologia , Larva , Proteínas Quinases Ativadas por Mitógeno/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Transdução de Sinais , Peixe-Zebra
18.
J Immunol ; 200(9): 3170-3179, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29592964

RESUMO

Functional maturation of liver sinusoidal endothelial cells (LSECs) induced by a NOD1 ligand (diaminopimelic acid [DAP]) during viral infection has not been well defined. Thus, we investigated the role of DAP-stimulated LSEC maturation during hepatitis B virus (HBV) infection and its potential mechanism in a hydrodynamic injection (HI) mouse model. Primary LSECs were isolated from wild-type C57BL/6 mice and stimulated with DAP in vitro and in vivo and assessed for the expression of surface markers as well as for their ability to promote T cell responses via flow cytometry. The effects of LSEC maturation on HBV replication and expression and the role of LSECs in the regulation of other immune cells were also investigated. Pretreatment of LSECs with DAP induced T cell activation in vitro. HI-administered DAP induced LSEC maturation and subsequently enhanced T cell responses, which was accompanied by an increased production of intrahepatic cytokines, chemokines, and T cell markers in the liver. The HI of DAP significantly reduced the HBsAg and HBV DNA levels in the mice. Importantly, the DAP-induced anti-HBV effect was impaired in the LSEC-depleted mice, which indicated that LSEC activation and T cell recruitment into the liver were essential for the antiviral function mediated by DAP application. Taken together, the results showed that the Ag-presenting ability of LSECs was enhanced by DAP application, which resulted in enhanced T cell responses and inhibited HBV replication in a mouse model.


Assuntos
Apresentação de Antígeno/imunologia , Células Endoteliais/imunologia , Vírus da Hepatite B/fisiologia , Fígado/imunologia , Proteína Adaptadora de Sinalização NOD1/agonistas , Replicação Viral/fisiologia , Animais , Capilares/imunologia , Ácido Diaminopimélico/farmacologia , Hepatite B/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Adaptadora de Sinalização NOD1/imunologia , Linfócitos T/imunologia , Replicação Viral/efeitos dos fármacos
19.
PLoS Pathog ; 13(12): e1006725, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29211798

RESUMO

Leptospirosis is a widespread zoonosis, potentially severe in humans, caused by spirochetal bacteria, Leptospira interrogans (L. interrogans). Host defense mechanisms involved in leptospirosis are poorly understood. Recognition of lipopolysaccharide (LPS) and lipoproteins by Toll-Like Receptors (TLR)4 and TLR2 is crucial for clearance of leptospires in mice, yet the role of Nucleotide Oligomerization Domain (NOD)-like receptors (NOD)1 and NOD2, recognizing peptidoglycan (PG) fragments has not previously been examined. Here, we show that pathogenic leptospires escape from NOD1 and NOD2 recognition both in vitro and in vivo, in mice. We found that leptospiral PG is resistant to digestion by certain hydrolases and that a conserved outer membrane lipoprotein of unknown function, LipL21, specific for pathogenic leptospires, is tightly bound to the PG. Leptospiral PG prepared from a mutant not expressing LipL21 (lipl21-) was more readily digested than the parental or complemented strains. Muropeptides released from the PG of the lipl21- mutant, or prepared using a procedure to eliminate the LipL21 protein from the PG of the parental strain, were recognized in vitro by the human NOD1 (hNOD1) and NOD2 (hNOD2) receptors, suggesting that LipL21 protects PG from degradation into muropeptides. LipL21 expressed in E. coli also resulted in impaired PG digestion and NOD signaling. We found that murine NOD1 (mNOD1) did not recognize PG of L. interrogans. This result was confirmed by mass spectrometry showing that leptospiral PG was primarily composed of MurTriDAP, the natural agonist of hNOD1, and contained only trace amounts of the tetra muropeptide, the mNOD1 agonist. Finally, in transgenic mice expressing human NOD1 and deficient for the murine NOD1, we showed enhanced clearance of a lipl21- mutant compared to the complemented strain, or to what was observed in NOD1KO mice, suggesting that LipL21 facilitates escape from immune surveillance in humans. These novel mechanisms allowing L. interrogans to escape recognition by the NOD receptors may be important in circumventing innate host responses.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Evasão da Resposta Imune , Leptospira interrogans/imunologia , Leptospira interrogans/patogenicidade , Lipoproteínas/metabolismo , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Peptidoglicano/metabolismo , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Feminino , Humanos , Evasão da Resposta Imune/genética , Imunidade Inata , Leptospira/imunologia , Leptospira interrogans/genética , Leptospirose/genética , Leptospirose/imunologia , Leptospirose/microbiologia , Lipoproteínas/genética , Lipoproteínas/imunologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteína Adaptadora de Sinalização NOD1/deficiência , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Adaptadora de Sinalização NOD2/genética , Peptidoglicano/química , Peptidoglicano/imunologia , Ligação Proteica , Transdução de Sinais , Especificidade da Espécie , Virulência/genética , Virulência/imunologia
20.
Environ Health Prev Med ; 22(1): 70, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29165176

RESUMO

Innate immune factors exert widespread effects on cytokine secretion, cell survival, autophagy, and apoptosis. Nucleotide-binding and oligomerization domain-like receptors (NLRs) are members of the innate immune system in the cytosol that sense pathogens, endogenous danger molecules such as uric acid, and pollutants. Nucleotide-binding oligomerization domain-containing protein 1 and 2 (NOD1 and NOD2) are components of NLR family, and ligands of these factors are γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) and muramyl dipeptide (MDP), respectively. Upon recognition of ligands, NOD1 and NOD2 induce the production of inflammatory cytokines and transcription factors including interleukin-6 (IL-6) and nuclear factor-κB (NF-κB). We examined the function of NOD1 and NOD2 in innate immunity, with a focus on their differing roles in disease pathogenesis between Japanese and Caucasian populations. Susceptibility to several immune-related diseases, including Crohn's disease, colorectal and breast cancers, and graft-versus-host-disease (GVHD) showed a correlation with genetic variants of NOD2 in Caucasian, but not in Japanese, populations. This difference may be primarily due to the fact that three major NOD2 SNPs (R702W, G908R, L1007insC) prevalent in Caucasians are rare or absent in Japanese populations. Because NLR has diverse effects on immune function, it is possible that many as yet uncharacterized immune-related diseases will also show different susceptibilities between races due to the different ratio of genetic variants in innate immune genes.


Assuntos
Carcinogênese/genética , Carcinogênese/imunologia , Inflamação/genética , Inflamação/imunologia , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2 , Artrite , Doença de Crohn/genética , Doença de Crohn/imunologia , Citocinas , Etnicidade , Doença Enxerto-Hospedeiro , Humanos , Japão , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/imunologia , Sarcoidose , Sinovite , Uveíte , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...