Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.767
Filtrar
1.
Cells ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38920697

RESUMO

Resveratrol is a polyphenol known to have metabolic as well as circadian effects. However, there is little information regarding the metabolic and circadian effect of resveratrol on muscle cells. We sought to investigate the metabolic impact of resveratrol throughout the circadian cycle to clarify the associated signaling pathways. C2C12 myotubes were incubated with resveratrol in the presence of increasing concentrations of glucose, and metabolic and clock proteins were measured for 24 h. Resveratrol led to SIRT1, AMPK and PP2A activation. Myotubes treated with increasing glucose concentrations showed higher activation of the mTOR signaling pathway. However, resveratrol did not activate the mTOR signaling pathway, except for P70S6K and S6. In accordance with the reduced mTOR activity, resveratrol led to advanced circadian rhythms and reduced levels of pBMAL1 and CRY1. Resveratrol increased myogenin expression and advanced its rhythms. In conclusion, resveratrol activates the SIRT1-AMPK-PP2A axis, advances circadian rhythms and induces muscle development.


Assuntos
Proteínas Quinases Ativadas por AMP , Ritmo Circadiano , Fibras Musculares Esqueléticas , Proteína Fosfatase 2 , Resveratrol , Transdução de Sinais , Sirtuína 1 , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Animais , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Glucose/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
2.
Nat Commun ; 15(1): 5111, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877002

RESUMO

Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) is a determinant of cardiac myofilament function. Although cMyBP-C phosphorylation by various protein kinases has been extensively studied, the influence of protein phosphatases on cMyBP-C's multiple phosphorylation sites has remained largely obscure. Here we provide a detailed biochemical characterization of cMyBP-C dephosphorylation by protein phosphatases 1 and 2 A (PP1 and PP2A), and develop an integrated kinetic model for cMyBP-C phosphorylation using data for both PP1, PP2A and various protein kinases known to phosphorylate cMyBP-C. We find strong site-specificity and a hierarchical mechanism for both phosphatases, proceeding in the opposite direction of sequential phosphorylation by potein kinase A. The model is consistent with published data from human patients and predicts complex non-linear cMyBP-C phosphorylation patterns that are validated experimentally. Our results suggest non-redundant roles for PP1 and PP2A under both physiological and heart failure conditions, and emphasize the importance of phosphatases for cMyBP-C regulation.


Assuntos
Proteínas de Transporte , Miocárdio , Proteína Fosfatase 1 , Proteína Fosfatase 2 , Fosforilação , Humanos , Proteína Fosfatase 1/metabolismo , Proteínas de Transporte/metabolismo , Animais , Proteína Fosfatase 2/metabolismo , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Cinética
3.
Eur J Dermatol ; 34(2): 193-197, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38907550

RESUMO

Previous studies reveal that psoriatic arthritis (PsA) and ankylosing spondylitis (AS) share susceptibility genes, such as HLA-B27, demonstrating a degree of genetic overlap between these diseases. Recent studies have identified a number of novel AS and PsA genetic susceptibility loci, but data on these loci in Chinese PsA patients are limited. To identify candidate genes that confer susceptibility to PsA in Chinese patients with PsA, psoriasis vulgaris (PsV), and healthy controls. Sixteen susceptibility loci, reported in a genome-wide association study of AS, and nine susceptibility loci, reported in candidate gene studies of PsA, were examined. Single-nucleotide polymorphisms (SNPs) were genotyped in 503 patients with PsA, 496 patients with PsV, and 979 healthy controls using the SNPscanTM multiplex SNP genotyping platform. PLINK software and logistic regression analysis were used to estimate the statistical significance of associations. PPP2R3C (rs8006884) was shown to significantly associate with PsA+PsV (p = 1.92×10-3, OR = 1.28) and was suggested to associate with PsV (p = 0.03, OR = 1.19). A suggestive association was also observed between IL-23R (rs12141575) and PsA as well as with axial PsA based on subtype analysis, KIF3A (rs2897442) and PsV, and ERN1 (rs196941) or IFIH1 (rs984971) and axial PsA. Our results suggest that PPP2R3C confers susceptibility to PsA and PsV, and that this gene may be related to the pathogenesis of psoriatic lesions and arthritis. Moreover, our results indicate a possible association between IL-23R, ERN1, or IFIH1 and subtypes of PsA, and between KIF3A and PsV.


Assuntos
Artrite Psoriásica , Povo Asiático , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Espondilite Anquilosante , Humanos , Artrite Psoriásica/genética , Espondilite Anquilosante/genética , Masculino , Feminino , Povo Asiático/genética , Adulto , Pessoa de Meia-Idade , Estudos de Casos e Controles , China , Receptores de Interleucina/genética , Proteína Fosfatase 2/genética , Genótipo , Estudo de Associação Genômica Ampla , Psoríase/genética , População do Leste Asiático
4.
Open Biol ; 14(6): 240065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896085

RESUMO

The transition from oocyte to embryo requires translation of maternally provided transcripts that in Drosophila is activated by Pan Gu kinase to release a rapid succession of 13 mitotic cycles. Mitotic entry is promoted by several protein kinases that include Greatwall/Mastl, whose Endosulfine substrates antagonize Protein Phosphatase 2A (PP2A), facilitating mitotic Cyclin-dependent kinase 1/Cyclin B kinase activity. Here we show that hyperactive greatwallScant can not only be suppressed by mutants in its Endos substrate but also by mutants in Pan Gu kinase subunits. Conversely, mutants in me31B or trailer hitch, which encode a complex that represses hundreds of maternal mRNAs, enhance greatwallScant . Me31B and Trailer Hitch proteins, known substrates of Pan Gu kinase, copurify with Endos. This echoes findings that budding yeast Dhh1, orthologue of Me31B, associates with Igo1/2, orthologues of Endos and substrates of the Rim15, orthologue of Greatwall. endos-derived mutant embryos show reduced Me31B and elevated transcripts for the mitotic activators Cyclin B, Polo and Twine/Cdc25. Together, our findings demonstrate a previously unappreciated conservation of the Greatwall-Endosulfine pathway in regulating translational repressors and its interactions with the Pan Gu kinase pathway to regulate translation and/or stability of maternal mRNAs upon egg activation.


Assuntos
Proteínas de Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Oócitos , Proteína Fosfatase 2 , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Oócitos/metabolismo , Oócitos/citologia , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Biossíntese de Proteínas , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Mutação , Feminino , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Embrião não Mamífero/metabolismo , Estabilidade de RNA , RNA Mensageiro Estocado/metabolismo , RNA Mensageiro Estocado/genética , RNA Helicases DEAD-box
5.
Eur J Cell Biol ; 103(2): 151421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776620

RESUMO

The Microphthalmia-associated Transcription Factor (MITF) governs numerous cellular and developmental processes. In mice, it promotes specification and differentiation of the retinal pigmented epithelium (RPE), and in humans, some mutations in MITF induce congenital eye malformations. Herein, we explore the function and regulation of Mitf in Drosophila eye development and uncover two roles. We find that knockdown of Mitf results in retinal displacement (RDis), a phenotype associated with abnormal eye formation. Mitf functions in the peripodial epithelium (PE), a retinal support tissue akin to the RPE, to suppress RDis, via the Hippo pathway effector Yorkie (Yki). Yki physically interacts with Mitf and can modify its transcriptional activity in vitro. Severe loss of Mitf, instead, results in the de-repression of retinogenesis in the PE, precluding its development. This activity of Mitf requires the protein phosphatase 2 A holoenzyme STRIPAK-PP2A, but not Yki; Mitf transcriptional activity is potentiated by STRIPAK-PP2A in vitro and in vivo. Knockdown of STRIPAK-PP2A results in cytoplasmic retention of Mitf in vivo and in its decreased stability in vitro, highlighting two potential mechanisms for the control of Mitf function by STRIPAK-PP2A. Thus, Mitf functions in a context-dependent manner as a key determinant of form and fate in the Drosophila eye progenitor epithelium.


Assuntos
Proteínas de Drosophila , Fator de Transcrição Associado à Microftalmia , Proteínas de Sinalização YAP , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Transativadores/metabolismo , Transativadores/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Olho/metabolismo , Olho/crescimento & desenvolvimento , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Epitélio/metabolismo , Diferenciação Celular , Proteínas de Homeodomínio
6.
Sci Adv ; 10(22): eadn2208, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820156

RESUMO

PR65 is the HEAT repeat scaffold subunit of the heterotrimeric protein phosphatase 2A (PP2A) and an archetypal tandem repeat protein. Its conformational mechanics plays a crucial role in PP2A function by opening/closing substrate binding/catalysis interface. Using in silico saturation mutagenesis, we identified PR65 "hinge" residues whose substitutions could alter its conformational adaptability and thereby PP2A function, and selected six mutations that were verified to be expressed and soluble. Molecular simulations and nanoaperture optical tweezers revealed consistent results on the specific effects of the mutations on the structure and dynamics of PR65. Two mutants observed in simulations to stabilize extended/open conformations exhibited higher corner frequencies and lower translational scattering in experiments, indicating a shift toward extended conformations, whereas another displayed the opposite features, confirmed by both simulations and experiments. The study highlights the power of single-molecule nanoaperture-based tweezers integrated with in silico approaches for exploring the effect of mutations on protein structure and dynamics.


Assuntos
Simulação de Dinâmica Molecular , Pinças Ópticas , Mutação Puntual , Conformação Proteica , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Humanos
7.
Stem Cell Res ; 77: 103441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759410

RESUMO

Spinocerebellar ataxia type 12 (SCA12) is caused by a CAG expansion mutation in PPP2R2B, a gene encoding brain-specific regulatory units of protein phosphatase 2A (PP2A); while normal alleles carry 4 to 31 triplets, the disease alleles carry 43 to 78 triplets. Here, by CRISPR/Cas9n genome editing, we have generated a human heterozygous SCA12 iPSC line with 73 triplets for the mutant allele. The heterozygous SCA12 iPSCs have normal karyotype, express pluripotency markers and are able to differentiate into the three germ layers.


Assuntos
Edição de Genes , Heterozigoto , Células-Tronco Pluripotentes Induzidas , Mutação , Ataxias Espinocerebelares , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Edição de Genes/métodos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Linhagem Celular , Sistemas CRISPR-Cas/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas do Tecido Nervoso
8.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747291

RESUMO

Idiopathic systemic capillary leak syndrome (ISCLS) is a rare, recurrent condition with dramatically increased blood vessel permeability and, therefore, induction of systemic edema, which may lead to organ damage and death. In this issue of the JCI, Ablooglu et al. showed that ISCLS vessels were hypersensitive to agents known to increase vascular permeability, using human biopsies, cell culture, and mouse models. Several endothelium-specific proteins that regulate endothelial junctions were dysregulated and thereby compromised the vascular barrier. These findings suggest that endothelium-intrinsic dysregulation underlies hyperpermeability and implicate the cytoplasmic serine/threonine protein phosphatase 2A (PP2A) as a potential drug target for the treatment of ISCLS.


Assuntos
Síndrome de Vazamento Capilar , Permeabilidade Capilar , Proteína Fosfatase 2 , Humanos , Animais , Camundongos , Síndrome de Vazamento Capilar/patologia , Síndrome de Vazamento Capilar/metabolismo , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia
9.
Cell Rep ; 43(5): 114155, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678563

RESUMO

Cell cycle control relies on a delicate balance of phosphorylation with CDK1 and phosphatases like PP1 and PP2A-B55. Yet, identifying the primary substrate responsible for cell cycle oscillations remains a challenge. We uncover the pivotal role of phospho-regulation in the anaphase-promoting complex/cyclosome (APC/C), particularly through the Apc1-loop300 domain (Apc1-300L), orchestrated by CDK1 and PP2A-B55. Premature activation of PP2A-B55 during mitosis, induced by Greatwall kinase depletion, leads to Apc1-300L dephosphorylation, stalling APC/C activity and delaying Cyclin B degradation. This effect can be counteracted using the B55-specific inhibitor pEnsa or by removing Apc1-300L. We also show Cdc20's dynamic APC/C interaction across cell cycle stages, but dephosphorylation of Apc1-300L specifically inhibits further Cdc20 recruitment. Our study underscores APC/C's central role in cell cycle oscillation, identifying it as a primary substrate regulated by the CDK-PP2A partnership.


Assuntos
Proteína Quinase CDC2 , Ciclo Celular , Proteína Fosfatase 2 , Animais , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas Cdc20/metabolismo , Mitose , Fosforilação , Proteína Fosfatase 2/metabolismo , Células Sf9 , Xenopus
10.
EMBO Rep ; 25(5): 2220-2238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600345

RESUMO

Perturbation of protein phosphorylation represents an attractive approach to cancer treatment. Besides kinase inhibitors, protein phosphatase inhibitors have been shown to have anti-cancer activity. A prime example is the small molecule LB-100, an inhibitor of protein phosphatases 2A/5 (PP2A/PP5), enzymes that affect cellular physiology. LB-100 has proven effective in pre-clinical models in combination with immunotherapy, but the molecular underpinnings of this synergy remain understood poorly. We report here a sensitivity of the mRNA splicing machinery to phosphorylation changes in response to LB-100 in colorectal adenocarcinoma. We observe enrichment for differentially phosphorylated sites within cancer-critical splicing nodes of U2 snRNP, SRSF and hnRNP proteins. Altered phosphorylation endows LB-100-treated colorectal adenocarcinoma cells with differential splicing patterns. In PP2A-inhibited cells, over 1000 events of exon skipping and intron retention affect regulators of genomic integrity. Finally, we show that LB-100-evoked alternative splicing leads to neoantigens that are presented by MHC class 1 at the cell surface. Our findings provide a potential explanation for the pre-clinical and clinical observations that LB-100 sensitizes cancer cells to immune checkpoint blockade.


Assuntos
Neoplasias do Colo , Splicing de RNA , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Splicing de RNA/efeitos dos fármacos , Fosforilação , Linhagem Celular Tumoral , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Alternativo , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Proteína Fosfatase 2/metabolismo , Inibidores Enzimáticos/farmacologia
12.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667270

RESUMO

The Sit4 protein phosphatase plays a key role in orchestrating various cellular processes essential for maintaining cell viability during aging. We have previously shown that SIT4 deletion promotes vacuolar acidification, mitochondrial derepression, and oxidative stress resistance, increasing yeast chronological lifespan. In this study, we performed a proteomic analysis of isolated vacuoles and yeast genetic interaction analysis to unravel how Sit4 influences vacuolar and mitochondrial function. By employing high-resolution mass spectrometry, we show that sit4Δ vacuolar membranes were enriched in Vps27 and Hse1, two proteins that are part of the endosomal sorting complex required for transport-0. In addition, SIT4 exhibited a negative genetic interaction with VPS27, as sit4∆vps27∆ double mutants had a shortened lifespan compared to sit4∆ and vps27∆ single mutants. Our results also show that Vps27 did not increase sit4∆ lifespan by improving protein trafficking or vacuolar sorting pathways. However, Vps27 was critical for iron homeostasis and mitochondrial function in sit4∆ cells, as sit4∆vps27∆ double mutants exhibited high iron levels and impaired mitochondrial respiration. These findings show, for the first time, cross-talk between Sit4 and Vps27, providing new insights into the mechanisms governing chronological lifespan.


Assuntos
Mitocôndrias , Proteína Fosfatase 2 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacúolos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Vacúolos/metabolismo , Ferro/metabolismo , Transporte Proteico , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação/genética
13.
Nature ; 629(8010): 219-227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570683

RESUMO

The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript1, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states. The structure of the pre-termination complex reveals a previously unresolved, scorpion-tail-shaped INTS10-INTS13-INTS14-INTS15 module that may use its 'sting' to open the DSIF DNA clamp and facilitate termination. The structure of the post-termination complex shows that the previously unresolved subunit INTS3 and associated sensor of single-stranded DNA complex (SOSS) factors prevent Pol II rebinding to Integrator after termination. The structure of the free Integrator-PP2A complex in an inactive closed conformation2 reveals that INTS6 blocks the PP2A phosphatase active site. These results lead to a model for how Integrator terminates Pol II transcription in three steps that involve major rearrangements.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Proteína Fosfatase 2 , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/química , Proteína Fosfatase 2/ultraestrutura , Terminação da Transcrição Genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Ligação Proteica , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química
14.
J Biol Chem ; 300(5): 107268, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582449

RESUMO

Dysregulation of phosphorylation-dependent signaling is a hallmark of tumorigenesis. Protein phosphatase 2 (PP2A) is an essential regulator of cell growth. One scaffold subunit (A) binds to a catalytic subunit (C) to form a core AC heterodimer, which together with one of many regulatory (B) subunits forms the active trimeric enzyme. The combinatorial number of distinct PP2A complexes is large, which results in diverse substrate specificity and subcellular localization. The detailed mechanism of PP2A assembly and regulation remains elusive and reports about an important role of methylation of the carboxy terminus of PP2A C are conflicting. A better understanding of the molecular underpinnings of PP2A assembly and regulation is critical to dissecting PP2A function in physiology and disease. Here, we combined biochemical reconstitution, mass spectrometry, X-ray crystallography, and functional assays to characterize the assembly of trimeric PP2A. In vitro studies demonstrated that methylation of the carboxy-terminus of PP2A C was dispensable for PP2A assembly in vitro. To corroborate these findings, we determined the X-ray crystal structure of the unmethylated PP2A Aα-B56ε-Cα trimer complex to 3.1 Å resolution. The experimental structure superimposed well with an Alphafold2Multimer prediction of the PP2A trimer. We then predicted models of all canonical PP2A complexes providing a framework for structural analysis of PP2A. In conclusion, methylation was dispensable for trimeric PP2A assembly and integrative structural biology studies of PP2A offered predictive models for all canonical PP2A complexes.


Assuntos
Proteína Fosfatase 2 , Humanos , Domínio Catalítico , Cristalografia por Raios X , Metilação , Multimerização Proteica , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/química
15.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592373

RESUMO

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Assuntos
Adenocarcinoma , Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA , Neoplasias Esofágicas , Oxaliplatina , Proteína Smad3 , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Proteína Smad3/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Reparo do DNA/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Transdução de Sinais/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organoides/efeitos dos fármacos
16.
J Biol Chem ; 300(5): 107277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588804

RESUMO

Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase, and its dysfunction is involved in the onset of cancer and neurodegenerative disorders. PP2A functions as a trimeric holoenzyme whose composition is regulated by the methyl-esterification (methylation) of the PP2A catalytic subunit (PP2Ac). Protein phosphatase methylesterase-1 (PME-1) is the sole PP2Ac methylesterase, and the higher PME-1 expression is observed in various cancer and neurodegenerative diseases. Apart from serving as a methylesterase, PME-1 acts as a PP2A inhibitory protein, binding directly to PP2Ac and suppressing its activity. The intricate function of PME-1 hinders drug development by targeting the PME-1/PP2Ac axis. This study applied the NanoBiT system, a bioluminescence-based protein interaction assay, to elucidate the molecular mechanism that modulates unknown PME-1/PP2Ac protein-protein interaction (PPI). Compound screening identified that the CHK1 inhibitors inhibited PME-1/PP2Ac association without affecting PP2Ac methylation levels. CHK1 directly phosphorylates PP2Ac to promote PME-1 association. Phospho-mass spectrometry identified multiple phospho-sites on PP2Ac, including the Thr219, that affect PME-1 interaction. An anti-phospho-Thr219 PP2Ac antibody was generated and showed that CHK1 regulates the phosphorylation levels of this site in cells. On the contrary, in vitro phosphatase assay showed that CHK1 is the substrate of PP2A, and PME-1 hindered PP2A-mediated dephosphorylation of CHK1. Our data provides novel insights into the molecular mechanisms governing the PME-1/PP2Ac PPI and the triad relationship between PP2A, PME-1, and CHK1.


Assuntos
Hidrolases de Éster Carboxílico , Quinase 1 do Ponto de Checagem , Proteína Fosfatase 2 , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Humanos , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Fosforilação , Luciferases/metabolismo , Luciferases/genética , Ligação Proteica , Células HEK293
17.
Anim Reprod Sci ; 265: 107457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677100

RESUMO

The anterior pituitary plays a critical role in the endocrine system, contains gonadotrophs, which regulate reproductive efficiency by secreting follicle-stimulating hormone (FSH) and luteinizing hormone (LH). PPP2R2A is a serine-threonine phosphatase that regulates reproductive functions in both females and males, its function in pituitary cells remain unclear. Hu sheep is a highly prolific breed, which makes it suitable for studying reproductive mechanisms. In this study, the relative abundances of PPP2R2A mRNA expression were higher in the pituitary of high-prolificacy (HF) Hu sheep compared to those of low-prolificacy (LF) Hu sheep. Additionally, we demonstrated that PPP2R2A promotes pituitary cell proliferation and gonadotropin secretion using the EdU assay and ELISA, respectively. Moreover, it inhibits pituitary cell apoptosis using flow cytometry. Furthermore, PPP2R2A may affect pituitary cell function by regulating the AKT/mTOR signaling pathway. In summary, our findings suggest that PPP2R2A may play a role in regulating pituitary function and influencing the secretion of gonadotropins.


Assuntos
Proliferação de Células , Hipófise , Proteína Fosfatase 2 , Animais , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Ovinos/fisiologia , Hipófise/metabolismo , Hipófise/citologia , Feminino , Proliferação de Células/fisiologia , Gonadotropinas/metabolismo , Masculino , Regulação da Expressão Gênica/fisiologia
18.
Ecotoxicol Environ Saf ; 277: 116365, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657452

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1ß, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Epigênese Genética , Hipocampo , Chumbo , Manganês , Transtornos da Memória , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Epigênese Genética/efeitos dos fármacos , Manganês/toxicidade , Chumbo/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína Fosfatase 2/metabolismo , Aprendizagem/efeitos dos fármacos
19.
Cell Commun Signal ; 22(1): 217, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570831

RESUMO

As a major source of cellular serine and threonine phosphatase activity, protein phosphatase-2A (PP2A) modulates signaling pathways in health and disease. PP2A complexes consist of catalytic, scaffolding, and B-type subunits. Seventeen PP2A B-type subunits direct PP2A complexes to selected substrates. It is ill-defined how PP2A B-type subunits determine the growth and drug responsiveness of tumor cells. Pancreatic ductal adenocarcinoma (PDAC) is a disease with poor prognosis. We analyzed the responses of murine and human mesenchymal and epithelial PDAC cells to the specific PP2A inhibitor phendione. We assessed protein levels by immunoblot and proteomics and cell fate by flow cytometry, confocal microscopy, and genetic manipulation. We show that murine mesenchymal PDAC cells express significantly higher levels of the PP2A B-type subunit PR130 than epithelial PDAC cells. This overexpression of PR130 is associated with a dependency of such metastasis-prone cells on the catalytic activity of PP2A. Phendione induces apoptosis and an accumulation of cytotoxic protein aggregates in murine mesenchymal and human PDAC cells. These processes occur independently of the frequently mutated tumor suppressor p53. Proteomic analyses reveal that phendione upregulates the chaperone HSP70 in mesenchymal PDAC cells. Inhibition of HSP70 promotes phendione-induced apoptosis and phendione promotes a proteasomal degradation of PR130. Genetic elimination of PR130 sensitizes murine and human PDAC cells to phendione-induced apoptosis and protein aggregate formation. These data suggest that the PP2A-PR130 complex dephosphorylates and thereby prevents the aggregation of proteins in tumor cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Proteína Fosfatase 2/genética , Agregados Proteicos , Proteômica , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo
20.
Dig Dis Sci ; 69(6): 2083-2095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637456

RESUMO

PURPOSE: Colorectal cancer (CRC) is a very common malignancy of the digestive system. Despite a variety of treatments including surgery, chemotherapeutic and targeted drugs, the prognosis for patients with CRC is still unsatisfactory and the mortality remains high. Protein phosphorylation plays an essential role in tumorigenesis and progression and is also crucial for protein to act with proper functions. Ferroptosis is found widely involved in various diseases especially tumors as a newly identified programmed cell death. METHODS: In our study, we aimed at PPP2CA as a prospective target which may play a crucial role in CRC progression. In one hand, knockdown of PPP2CA significantly enhanced the malignant phenotype in HCT116. In the other hand, knockdown of PPP2CA significantly enhanced Erastin-induced ferroptosis as well. RESULTS: Specifically, knockdown of PPP2CA in HCT116 significantly increased the relative level of malondialdehyde (MDA), reactive oxygen species (ROS) and Fe2+, and decreased GSH/GSSG ratio after the treatment of certain concentration of Erastin. Besides, we found that the inhibition of PPP2CA further led to the suppression of SCD1 expression in CRC cells in a AMPK-dependent way. CONCLUSION: Ultimately, we conclude that PPP2CA may regulate Erastin-induced ferroptosis through AMPK/SCD1 signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Colorretais , Ferroptose , Proteína Fosfatase 2 , Humanos , Ferroptose/efeitos dos fármacos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Células HCT116 , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Transdução de Sinais , Piperazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...