Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928463

RESUMO

The prevalence of dilated cardiomyopathy (DCM) is increasing globally, highlighting the need for innovative therapeutic approaches to prevent its onset. In this study, we examined the energetic and epigenetic distinctions between dilated and non-dilated human myocardium-derived mesenchymal stem/stromal cells (hmMSCs) and assessed the effects of class I and II HDAC inhibitors (HDACi) on these cells and their cardiomyogenic differentiation. Cells were isolated from myocardium biopsies using explant outgrowth methods. Mitochondrial and histone deacetylase activities, ATP levels, cardiac transcription factors, and structural proteins were assessed using flow cytometry, PCR, chemiluminescence, Western blotting, and immunohistochemistry. The data suggest that the tested HDAC inhibitors improved acetylation and enhanced the energetic status of both types of cells, with significant effects observed in dilated myocardium-derived hmMSCs. Additionally, the HDAC inhibitors activated the cardiac transcription factors Nkx2-5, HOPX, GATA4, and Mef2C, and upregulated structural proteins such as cardiac troponin T and alpha cardiac actin at both the protein and gene levels. In conclusion, our findings suggest that HDACi may serve as potential modulators of the energetic status and cardiomyogenic differentiation of human heart hmMSCs. This avenue of exploration could broaden the search for novel therapeutic interventions for dilated cardiomyopathy, ultimately leading to improvements in heart function.


Assuntos
Cardiomiopatia Dilatada , Diferenciação Celular , Inibidores de Histona Desacetilases , Células-Tronco Mesenquimais , Humanos , Inibidores de Histona Desacetilases/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Diferenciação Celular/efeitos dos fármacos , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Histona Desacetilases/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteína Homeobox Nkx-2.5/genética , Acetilação/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células Cultivadas
2.
Stem Cell Res Ther ; 15(1): 184, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902843

RESUMO

BACKGROUND: Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) by traditional methods are a mix of atrial and ventricular CMs and many other non-cardiomyocyte cells. Retinoic acid (RA) plays an important role in regulation of the spatiotemporal development of the embryonic heart. METHODS: CMs were derived from hiPSC (hi-PCS-CM) using different concentrations of RA (Control without RA, LRA with 0.05µM and HRA with 0.1 µM) between day 3-6 of the differentiation process. Engineered heart tissues (EHTs) were generated by assembling hiPSC-CM at high cell density in a low collagen hydrogel. RESULTS: In the HRA group, hiPSC-CMs exhibited highest expression of contractile proteins MYH6, MYH7 and cTnT. The expression of TBX5, NKX2.5 and CORIN, which are marker genes for left ventricular CMs, was also the highest in the HRA group. In terms of EHT, the HRA group displayed the highest contraction force, the lowest beating frequency, and the highest sensitivity to hypoxia and isoprenaline, which means it was functionally more similar to the left ventricle. RNAsequencing revealed that the heightened contractility of EHT within the HRA group can be attributed to the promotion of augmented extracellular matrix strength by RA. CONCLUSION: By interfering with the differentiation process of hiPSC with a specific concentration of RA at a specific time, we were able to successfully induce CMs and EHTs with a phenotype similar to that of the left ventricle or right ventricle.


Assuntos
Diferenciação Celular , Ventrículos do Coração , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Tretinoína , Humanos , Tretinoína/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/genética , Engenharia Tecidual/métodos , Proteína Homeobox Nkx-2.5/metabolismo , Proteína Homeobox Nkx-2.5/genética , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética
3.
Sci Rep ; 14(1): 8938, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637629

RESUMO

Heart failure is a serious medical condition with a poor prognosis. Current treatments can only help manage the symptoms and slow the progression of heart failure. However, there is currently no cure to prevent and reverse cardiac remodeling. Transcription factors are in a central role in various cellular processes, and in the heart, GATA4 and NKX2-5 transcription factors mediate hypertrophic responses and remodeling. We have identified compounds that modulate the synergistic interaction of GATA4 and NKX2-5 and shown that the most promising compound (1, 3i-1000) is cardioprotective in vitro and in vivo. However, direct evidence of its binding site and mechanism of action has not been available. Due to the disordered nature of transcription factors, classical target engagement approaches cannot be utilized. Here, we synthesized a small-molecule ligand-binding pulldown probe of compound 1 to utilize affinity chromatography alongside CETSA, AlphaScreen, and molecular modeling to study ligand binding. These results provide the first evidence of direct physical binding of compound 1 selectively to GATA4. While developing drugs that target transcription factors presents challenges, advances in technologies and knowledge of intrinsically disordered proteins enable the identification of small molecules that can selectively target transcription factors.


Assuntos
Insuficiência Cardíaca , Fatores de Transcrição , Humanos , Proteína Homeobox Nkx-2.5/metabolismo , Ligantes , Fatores de Transcrição/metabolismo , Cromatografia de Afinidade , Fator de Transcrição GATA4/metabolismo , Proteínas de Homeodomínio/metabolismo
4.
JCI Insight ; 9(10)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652537

RESUMO

NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-ß and further enhanced by hypoxia. The effect of TGF-ß was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.


Assuntos
Proteína Homeobox Nkx-2.5 , Músculo Liso Vascular , Remodelação Vascular , Animais , Camundongos , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Remodelação Vascular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Masculino , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/etiologia , Feminino , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de Doenças , Proliferação de Células/genética , Pessoa de Meia-Idade , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia
5.
Stem Cell Res ; 77: 103342, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460234

RESUMO

The transcription factor HAND1 is a critical regulator of cardiac development which is expressed in sub-populations of cardiac progenitors and cardiomyocytes. The transcription factor NKX2-5, in contrast, is expressed more widely in cardiac cells. Here we report the generation of a dual reporter hESC line where the expression of these genes can be simultaneously measured, enabling lineage analysis as well as studies of HAND1 and NKX2-5 gene regulation and protein function. This tool will have wide utility particularly for research on developmental biology and disease modelling.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio , Células-Tronco Embrionárias Humanas , Fatores de Transcrição , Humanos , Proteína Homeobox Nkx-2.5/metabolismo , Proteína Homeobox Nkx-2.5/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Genes Reporter , Diferenciação Celular , Linhagem da Célula
6.
Biofactors ; 50(3): 509-522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38131134

RESUMO

Mesenchymal stem cells (MSCs) treatment has been widely explored as a therapy for myocardial infarction, peripheral ischemic vascular diseases, dilated cardiomyopathy, and pulmonary hypertension. Latest in vitro studies suggest that MSCs can differentiate into contractile cardiomyocytes. One of the best-characterized MSCs products are MSCs-derived extracellular vesicles (EVs). EVs are crucial paracrine effectors of MSCs. Based on previous works, paracrine effects of MSCs play a primary role in the regenerative ability. Hence, in the current paper, we focused our attention on an alternative approach, exploiting products derived from human dental pulp stem cells (hDPSCs) rather than MSCs themselves, which may denote a cost-effective and safer approach. The focus has been on EVs and the bioactive molecules they contain to evaluate their ability to influence the differentiation process toward cardiomyogenic lineage. The expression of GATA4, ACTC1, CX43, and Nkx2.5 was evaluated using Immunofluorescence, real time-PCR, and Western blotting analyses. Furthermore, the expression profiling analysis of the microRNA hsa-miR-200c-3p, targeting the GATA4 gene, was studied. The hsa-miR-200c-3p was found significantly down-regulated in both c-hDPSCs + EVs-hDPSCs and c-hDPSCs + EVs-HL-1 compared to untreated c-hDPSCs underlying a possible epigenetic mechanism behind the prevalent up-regulation of its targeted GATA4 gene. The aim of the present work was to develop an in vitro model of hDPSCs able to differentiate into cardiomyocytes in order to investigate the role of EVs derived from hDPSCs and derived from HL-1 cardiomyocyte cell line in modulating the differentiation process toward cardiomyogenic lineage.


Assuntos
Diferenciação Celular , Polpa Dentária , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Miócitos Cardíacos , Regeneração , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Regeneração/fisiologia , Regeneração/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteína Homeobox Nkx-2.5/genética , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA4/genética , Conexina 43/metabolismo , Conexina 43/genética , Células Cultivadas
7.
Stem Cell Res ; 74: 103262, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38100908

RESUMO

The transcription factor NKX2-5 is a highly conserved master regulator of heart development which is widely expressed in cardiac progenitors and cardiomyocytes. Fluorescent reporters of NKX2-5 that minimally perturb normal protein expression can enable the identification, quantification and isolation of NKX2-5-expressing cells in a normal physiological state. Here we report the generation of two new hESC lines with eGFP inserted upstream (5') or downstream (3') of NKX2-5, linked by a cleavable T2A peptide. These complementary reporters produce a robust fluorescent signal in cardiac cells and have wide utility particularly for research on developmental biology and disease modelling.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/metabolismo , Linhagem Celular , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo
8.
J Biol Chem ; 299(12): 105423, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926287

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death worldwide and are heavily influenced by genetic factors. Genome-wide association studies have mapped >90% of CVD-associated variants within the noncoding genome, which can alter the function of regulatory proteins, such as transcription factors (TFs). However, due to the overwhelming number of single-nucleotide polymorphisms (SNPs) (>500,000) in genome-wide association studies, prioritizing variants for in vitro analysis remains challenging. In this work, we implemented a computational approach that considers support vector machine (SVM)-based TF binding site classification and cardiac expression quantitative trait loci (eQTL) analysis to identify and prioritize potential CVD-causing SNPs. We identified 1535 CVD-associated SNPs within TF footprints and putative cardiac enhancers plus 14,218 variants in linkage disequilibrium with genotype-dependent gene expression in cardiac tissues. Using ChIP-seq data from two cardiac TFs (NKX2-5 and TBX5) in human-induced pluripotent stem cell-derived cardiomyocytes, we trained a large-scale gapped k-mer SVM model to identify CVD-associated SNPs that altered NKX2-5 and TBX5 binding. The model was tested by scoring human heart TF genomic footprints within putative enhancers and measuring in vitro binding through electrophoretic mobility shift assay. Five variants predicted to alter NKX2-5 (rs59310144, rs6715570, and rs61872084) and TBX5 (rs7612445 and rs7790964) binding were prioritized for in vitro validation based on the magnitude of the predicted change in binding and are in cardiac tissue eQTLs. All five variants altered NKX2-5 and TBX5 DNA binding. We present a bioinformatic approach that considers tissue-specific eQTL analysis and SVM-based TF binding site classification to prioritize CVD-associated variants for in vitro analysis.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Miócitos Cardíacos/metabolismo , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Stem Cell Reports ; 18(11): 2138-2153, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37863045

RESUMO

Congenital heart disease often arises from perturbations of transcription factors (TFs) that guide cardiac development. ISLET1 (ISL1) is a TF that influences early cardiac cell fate, as well as differentiation of other cell types including motor neuron progenitors (MNPs) and pancreatic islet cells. While lineage specificity of ISL1 function is likely achieved through combinatorial interactions, its essential cardiac interacting partners are unknown. By assaying ISL1 genomic occupancy in human induced pluripotent stem cell-derived cardiac progenitors (CPs) or MNPs and leveraging the deep learning approach BPNet, we identified motifs of other TFs that predicted ISL1 occupancy in each lineage, with NKX2.5 and GATA motifs being most closely associated to ISL1 in CPs. Experimentally, nearly two-thirds of ISL1-bound loci were co-occupied by NKX2.5 and/or GATA4. Removal of NKX2.5 from CPs led to widespread ISL1 redistribution, and overexpression of NKX2.5 in MNPs led to ISL1 occupancy of CP-specific loci. These results reveal how ISL1 guides lineage choices through a combinatorial code that dictates genomic occupancy and transcription.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Miócitos Cardíacos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
10.
Circulation ; 148(21): 1705-1722, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37772400

RESUMO

BACKGROUND: Conotruncal defects due to developmental abnormalities of the outflow tract (OFT) are an important cause of cyanotic congenital heart disease. Dysregulation of transcriptional programs tuned by NKX2-5 (NK2 homeobox 5), GATA6 (GATA binding protein 6), and TBX1 (T-box transcription factor 1) have been implicated in abnormal OFT morphogenesis. However, there remains no consensus on how these transcriptional programs function in a unified gene regulatory network within the OFT. METHODS: We generated mice harboring a 226-nucleotide deletion of a highly conserved cardiac enhancer containing 2 GATA-binding sites located ≈9.4 kb upstream of the transcription start site of Nkx2-5 (Nkx2-5∆enh) using CRISPR-Cas9 gene editing and assessed phenotypes. Cardiac defects in Nkx2-5∆enh/∆enh mice were structurally characterized using histology and scanning electron microscopy, and physiologically assessed using electrocardiography, echocardiography, and optical mapping. Transcriptome analyses were performed using RNA sequencing and single-cell RNA sequencing data sets. Endogenous GATA6 interaction with and activity on the NKX2-5 enhancer was studied using chromatin immunoprecipitation sequencing and transposase-accessible chromatin sequencing in human induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Nkx2-5∆enh/∆enh mice recapitulated cyanotic conotruncal defects seen in patients with NKX2-5, GATA6, and TBX1 mutations. Nkx2-5∆enh/∆enh mice also exhibited defects in right Purkinje fiber network formation, resulting in right bundle-branch block. Enhancer deletion reduced embryonic Nkx2-5 expression selectively in the right ventricle and OFT of mutant hearts, indicating that enhancer activity is localized to the anterior second heart field. Transcriptional profiling of the mutant OFT revealed downregulation of important genes involved in OFT rotation and septation, such as Tbx1, Pitx2, and Sema3c. Endogenous GATA6 interacted with the highly conserved enhancer in human induced pluripotent stem cell-derived cardiomyocytes and in wild-type mouse hearts. We found critical dose dependency of cardiac enhancer accessibility on GATA6 gene dosage in human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: Our results using human and mouse models reveal an essential gene regulatory network of the OFT that requires an anterior second heart field enhancer to link GATA6 with NKX2-5-dependent rotation and septation gene programs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição , Humanos , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Redes Reguladoras de Genes , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Camundongos Transgênicos , Células-Tronco Pluripotentes Induzidas/metabolismo , Coração , Miócitos Cardíacos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
11.
Elife ; 122023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37184369

RESUMO

Maintenance of cardiomyocyte identity is vital for normal heart development and function. However, our understanding of cardiomyocyte plasticity remains incomplete. Here, we show that sustained expression of the zebrafish transcription factor Nr2f1a prevents the progressive acquisition of ventricular cardiomyocyte (VC) and pacemaker cardiomyocyte (PC) identities within distinct regions of the atrium. Transcriptomic analysis of flow-sorted atrial cardiomyocytes (ACs) from nr2f1a mutant zebrafish embryos showed increased VC marker gene expression and altered expression of core PC regulatory genes, including decreased expression of nkx2.5, a critical repressor of PC differentiation. At the arterial (outflow) pole of the atrium in nr2f1a mutants, cardiomyocytes resolve to VC identity within the expanded atrioventricular canal. However, at the venous (inflow) pole of the atrium, there is a progressive wave of AC transdifferentiation into PCs across the atrium toward the arterial pole. Restoring Nkx2.5 is sufficient to repress PC marker identity in nr2f1a mutant atria and analysis of chromatin accessibility identified an Nr2f1a-dependent nkx2.5 enhancer expressed in the atrial myocardium directly adjacent to PCs. CRISPR/Cas9-mediated deletion of the putative nkx2.5 enhancer leads to a loss of Nkx2.5-expressing ACs and expansion of a PC reporter, supporting that Nr2f1a limits PC differentiation within venous ACs via maintaining nkx2.5 expression. The Nr2f-dependent maintenance of AC identity within discrete atrial compartments may provide insights into the molecular etiology of concurrent structural congenital heart defects and associated arrhythmias.


Assuntos
Fibrilação Atrial , Peixe-Zebra , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteínas de Homeodomínio/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Nat Commun ; 13(1): 2970, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624100

RESUMO

The cardiac developmental network has been associated with myocardial regenerative potential. However, the embryonic signals triggered following injury have yet to be fully elucidated. Nkx2.5 is a key causative transcription factor associated with human congenital heart disease and one of the earliest markers of cardiac progenitors, thus it serves as a promising candidate. Here, we show that cardiac-specific RNA-sequencing studies reveal a disrupted embryonic transcriptional profile in the adult Nkx2.5 loss-of-function myocardium. nkx2.5-/- fish exhibit an impaired ability to recover following ventricular apex amputation with diminished dedifferentiation and proliferation. Complex network analyses illuminate that Nkx2.5 is required to provoke proteolytic pathways necessary for sarcomere disassembly and to mount a proliferative response for cardiomyocyte renewal. Moreover, Nkx2.5 targets embedded in these distinct gene regulatory modules coordinate appropriate, multi-faceted injury responses. Altogether, our findings support a previously unrecognized, Nkx2.5-dependent regenerative circuit that invokes myocardial cell cycle re-entry, proteolysis, and mitochondrial metabolism to ensure effective regeneration in the teleost heart.


Assuntos
Miocárdio , Miócitos Cardíacos , Animais , Ventrículos do Coração/metabolismo , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo
13.
Commun Biol ; 5(1): 399, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488063

RESUMO

Heart organoids have the potential to generate primary heart-like anatomical structures and hold great promise as in vitro models for cardiac disease. However, their properties have not yet been fully studied, which hinders their wide spread application. Here we report the development of differentiation systems for ventricular and atrial heart organoids, enabling the study of heart diseases with chamber defects. We show that our systems generate chamber-specific organoids comprising of the major cardiac cell types, and we use single cell RNA sequencing together with sample multiplexing to characterize the cells we generate. To that end, we developed a machine learning label transfer approach leveraging cell type, chamber, and laterality annotations available for primary human fetal heart cells. We then used this model to analyze organoid cells from an isogeneic line carrying an Ebstein's anomaly associated genetic variant in NKX2-5, and we successfully recapitulated the disease's atrialized ventricular defects. In summary, we have established a workflow integrating heart organoids and computational analysis to model heart development in normal and disease states.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Coração , Ventrículos do Coração , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Organogênese/genética , Organoides/metabolismo
14.
Nat Commun ; 13(1): 441, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064145

RESUMO

Genome-wide association studies (GWAS) for atrial fibrillation (AF) have uncovered numerous disease-associated variants. Their underlying molecular mechanisms, especially consequences for mRNA and protein expression remain largely elusive. Thus, refined multi-omics approaches are needed for deciphering the underlying molecular networks. Here, we integrate genomics, transcriptomics, and proteomics of human atrial tissue in a cross-sectional study to identify widespread effects of genetic variants on both transcript (cis-eQTL) and protein (cis-pQTL) abundance. We further establish a novel targeted trans-QTL approach based on polygenic risk scores to determine candidates for AF core genes. Using this approach, we identify two trans-eQTLs and five trans-pQTLs for AF GWAS hits, and elucidate the role of the transcription factor NKX2-5 as a link between the GWAS SNP rs9481842 and AF. Altogether, we present an integrative multi-omics method to uncover trans-acting networks in small datasets and provide a rich resource of atrial tissue-specific regulatory variants for transcript and protein levels for cardiovascular disease gene prioritization.


Assuntos
Fibrilação Atrial/genética , Genômica , Especificidade de Órgãos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
15.
J Biol Chem ; 298(1): 101449, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838591

RESUMO

The G-quadruplex (G4) resolvase RNA helicase associated with AU-rich element (RHAU) possesses the ability to unwind G4 structures in both DNA and RNA molecules. Previously, we revealed that RHAU plays a critical role in embryonic heart development and postnatal heart function through modulating mRNA translation and stability. However, whether RHAU functions to resolve DNA G4 in the regulation of cardiac physiology is still elusive. Here, we identified a phenotype of noncompaction cardiomyopathy in cardiomyocyte-specific Rhau deletion mice, including such symptoms as spongiform cardiomyopathy, heart dilation, and death at young ages. We also observed reduced cardiomyocyte proliferation and advanced sarcomere maturation in Rhau mutant mice. Further studies demonstrated that RHAU regulates the expression levels of several genes associated with ventricular trabeculation and compaction, including the Nkx2-5 and Hey2 that encode cardiac transcription factors of NKX2-5 and Hey2, and the myosin heavy chain 7 (Myh7) whose protein product is MYH7. While RHAU modulates Nkx2-5 mRNA and Hey2 mRNA at the post-transcriptional level, we uncovered that RHAU facilitates the transcription of Myh7 through unwinding of the G4 structures in its promoter. These findings demonstrated that RHAU regulates ventricular chamber development through both transcriptional and post-transcriptional mechanisms. These results contribute to a knowledge base that will help to understand the pathogenesis of diseases such as noncompaction cardiomyopathy.


Assuntos
RNA Helicases DEAD-box , Quadruplex G , Miócitos Cardíacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Ventrículos do Coração , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Comput Math Methods Med ; 2021: 6959557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912471

RESUMO

The therapeutic efficacy of radiofrequency ablation (RFA) against liver cancer is often limited by proliferation and metastasis of residual tumor cells. These phenomena are closely associated with the Warburg effect, wherein ErbB2 is activated. While RFA inhibits the Warburg effect of residual tumor cells at the early stage, the specific mechanisms remain unclear. We explored the regulatory relationship between the long noncoding RNA ENST00000570843.1 (lncENST) and ErbB2 using lentiviral transfection of lncENST and ErbB2 overexpression/interference vectors in in vitro and in vivo models of hepatocellular carcinoma in the presence of sublethal heat at 50°C. ErbB2-mediated Warburg effect was suppressed by lncENST, as manifested by reduced glucose uptake and lactic acid production in SMMC-7721 cells. lncENST also increased tumor apoptosis and inhibited tumor progression in nude Balb/c mice for up to 28 days after RFA. Additionally, we predicted through bioinformatic analysis that the promoter of ErbB2 binds to the transcription factor Nkx2-5, resulting in a negative regulatory effect. This speculation was confirmed by chromatin immunoprecipitation of the Nkx2-5 protein and ErbB2, indicating that ErbB2 transcription was curbed by Nkx2-5. We propose that lncENST downplays the Warburg effect in residual tumor cells by downregulating ErbB2 via Nkx2-5 activation. This study is aimed at providing molecular targets that can prevent residual tumor cell proliferation after RFA, with clinical significance in hepatocellular carcinoma treatment.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteína Homeobox Nkx-2.5/metabolismo , RNA Longo não Codificante/genética , Receptor ErbB-2/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Neoplasias Hepáticas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ablação por Radiofrequência , Receptor ErbB-2/genética , Efeito Warburg em Oncologia
17.
Cell Rep ; 37(10): 110095, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879277

RESUMO

Changes in DNA methylation are associated with normal cardiogenesis, whereas altered methylation patterns can occur in congenital heart disease. Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA demethylation. Here, we characterize stage-specific methylation dynamics and the function of TETs during human cardiomyocyte differentiation. Human embryonic stem cells (hESCs) in which all three TET genes are inactivated fail to generate cardiomyocytes (CMs), with altered mesoderm patterning and defective cardiac progenitor specification. Genome-wide methylation analysis shows TET knockout causes promoter hypermethylation of genes encoding WNT inhibitors, leading to hyperactivated WNT signaling and defects in cardiac mesoderm patterning. TET activity is also needed to maintain hypomethylated status and expression of NKX2-5 for subsequent cardiac progenitor specification. Finally, loss of TETs causes a set of cardiac structural genes to fail to be demethylated at the cardiac progenitor stage. Our data demonstrate key roles for TET proteins in controlling methylation dynamics at sequential steps during human cardiac development.


Assuntos
Diferenciação Celular , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Epigênese Genética , Células-Tronco Embrionárias Humanas/enzimologia , Oxigenases de Função Mista/metabolismo , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxigenases de Função Mista/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Troponina I/genética , Troponina I/metabolismo , Via de Sinalização Wnt/genética
18.
Toxicol Appl Pharmacol ; 433: 115781, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34737147

RESUMO

The cardiac embryonic stem cell test (ESTc) is an in vitro embryotoxicity screen which uses cardiomyocyte formation as the main differentiation route. Studies are ongoing into whether an improved specification of the biological domain can broaden the applicability of the test, e.g. to discriminate between structurally similar chemicals by measuring expression of dedicated gene transcript biomarkers. We explored this with two chemical classes: morpholines (tridemorph; fenpropimorph) and piperidines (fenpropidin; spiroxamine). These compounds cause embryotoxicity in rat such as cleft palate. This malformation can be linked to interference with retinoic acid balance, neural crest (NC) cell migration, or cholesterol biosynthesis. Also neural differentiation within the ESTc was explored in relation to these compounds. Gene transcript expression of related biomarkers were measured at low and high concentrations on differentiation day 4 (DD4) and DD10. All compounds showed stimulating effects on the cholesterol biosynthesis related marker Msmo1 after 24 h exposure and tridemorph showed inhibition of Cyp26a1 which codes for one of the enzymes that metabolises retinoic acid. A longer exposure duration enhanced expression levels for differentiation markers for cardiomyocytes (Nkx2-5; Myh6) and neural cells (Tubb3) on DD10. This readout gave additional mechanistic insight which enabled previously unavailable in vitro discrimination between the compounds, showing the practical utility of specifying the biological domain of the ESTc.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Morfolinas/toxicidade , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Piperidinas/toxicidade , Testes de Toxicidade , Animais , Células Cultivadas , Redes Reguladoras de Genes , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Camundongos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Medição de Risco , Compostos de Espiro/toxicidade , Fatores de Tempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
19.
Biochem Biophys Res Commun ; 577: 12-16, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34487959

RESUMO

The Notch pathway is an ancient intercellular signaling system with crucial roles in numerous cell-fate decision processes across species. While the canonical pathway is activated by ligand-induced cleavage and nuclear localization of membrane-bound Notch, Notch can also exert its activity in a ligand/transcription-independent fashion, which is conserved in Drosophila, Xenopus, and mammals. However, the noncanonical role remains poorly understood in in vivo processes. Here we show that increased levels of the Notch intracellular domain (NICD) in the early mesoderm inhibit heart development, potentially through impaired induction of the second heart field (SHF), independently of the transcriptional effector RBP-J. Similarly, inhibiting Notch cleavage, shown to increase noncanonical Notch activity, suppressed SHF induction in embryonic stem cell (ESC)-derived mesodermal cells. In contrast, NICD overexpression in late cardiac progenitor cells lacking RBP-J resulted in an increase in heart size. Our study suggests that noncanonical Notch signaling has stage-specific roles during cardiac development.


Assuntos
Coração/embriologia , Miocárdio/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Células Cultivadas , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Miocárdio/citologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Mol Med Rep ; 24(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34184085

RESUMO

Studies have shown that histone H3 at lysine 9 (H3K9me2) is an important epigenetic modifier of embryonic development, cell reprogramming and cell differentiation, but its specific role in cardiomyocyte formation remains to be elucidated. The present study established a model of 5­Azacytidine­induced differentiation of rat bone mesenchymal stem cells (MSCs) into cardiomyocytes and, on this basis, investigated the dimethylation of H3K9me2 and its effect on cardiomyocyte formation by knockdown of H3K9me2 methylase, euchromatic histone­lysine N­methyltransferase 2 (G9a) and H3K9me2 lysine demethylase 3A (KDM3A). The results demonstrated that, in comparison with the normal induction process, the knockdown of G9a could significantly reduce the H3K9me2 level of the MSCs in the induced model. Reverse transcription­quantitative (RT­q) PCR demonstrated that the expression of cardiac troponin T(cTnT) was significantly increased. In addition, flow cytometry demonstrated that the proportion of cTnT­positive cells was significantly increased on day 21. With the knockdown of KDM3A, the opposite occurred. In order to explore the specific way of H3K9me2 regulating cardiomyocyte formation, western blotting and RT­qPCR were used to detect the expression of key transcription factors including GATA binding protein 4 (GATA­4), NK2 Homeobox 5 (Nkx2.5) and myocyte enhancer factor 2c (MEF2c) during cardiomyocyte formation. The decrease of H3K9me2 increased the expression of transcription factors GATA­4, Nkx2.5 and MEF2c in the early stage of myocardial development while the increase of H3K9me2 inhibited the expression of those transcription factors. Accordingly, it was concluded that H3K9me2 is a negative regulator of cardiomyocyte formation and can participate in cardiomyocyte formation by activating or inhibiting key transcription factors of cardiomyocytes, which will lay the foundation for the optimized induction efficiency of cardiomyocytes in in vitro and clinical applications.


Assuntos
Diferenciação Celular/genética , Histonas/genética , Histonas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Azacitidina/farmacologia , Azepinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Fator de Transcrição GATA4/metabolismo , Técnicas de Silenciamento de Genes , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína Homeobox Nkx-2.5/metabolismo , Fatores de Transcrição MEF2/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos Cardíacos/citologia , Cultura Primária de Células , Quinazolinas/farmacologia , Ratos Wistar , Fatores de Transcrição/genética , Troponina T/genética , Troponina T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...