Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hematol ; 94(2): 240-248, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30478858

RESUMO

The bone morphogenetic protein (BMP)-SMAD signaling pathway is a key transcriptional regulator of hepcidin in response to tissue iron stores, serum iron, erythropoietic drive and inflammation to increase the iron supply when needed for erythropoiesis, but to prevent the toxicity of iron excess. Recently, BMP2 was reported to play a non-redundant role in hepcidin regulation in addition to BMP6. Here, we used a newly validated BMP2 ELISA assay and mice with a global or endothelial conditional knockout (CKO) of Bmp2 or Bmp6 to examine how BMP2 is regulated and functionally contributes to hepcidin regulation by its major stimuli. Erythropoietin (EPO) did not influence BMP2 expression in control mice, and still suppressed hepcidin in Bmp2 CKO mice. Lipopolysaccharide (LPS) reduced BMP2 expression in control mice, but still induced hepcidin in Bmp2 CKO mice. Chronic dietary iron loading that increased liver iron induced BMP2 expression, whereas acute oral iron gavage that increased serum iron without influencing liver iron did not impact BMP2. However, hepcidin was still induced by both iron loading methods in Bmp2 CKO mice, although the degree of hepcidin induction was blunted relative to control mice. Conversely, acute oral iron gavage failed to induce hepcidin in Bmp6 -/- or CKO mice. Thus, BMP2 has at least a partially redundant role in hepcidin regulation by serum iron, tissue iron, inflammation and erythropoietic drive. In contrast, BMP6 is absolutely required for hepcidin regulation by serum iron.


Assuntos
Proteína Morfogenética Óssea 2/fisiologia , Proteína Morfogenética Óssea 6/fisiologia , Hepcidinas/metabolismo , Animais , Proteína Morfogenética Óssea 2/deficiência , Proteína Morfogenética Óssea 6/deficiência , Eritropoetina/farmacologia , Hepcidinas/efeitos dos fármacos , Inflamação , Ferro/sangue , Ferro/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout
2.
Blood ; 130(21): 2339-2343, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29021231

RESUMO

Lack of either bone morphogenetic protein 6 (BMP6) or the BMP coreceptor hemojuvelin (HJV) in mice leads to a similar phenotype with hepcidin insufficiency, hepatic iron loading, and extrahepatic iron accumulation in males. This is consistent with the current views that HJV is a coreceptor for BMP6 in hepatocytes. To determine whether BMP6 and HJV may also signal to hepcidin independently of each other, we intercrossed Hjv-/- and Bmp6-/- mice and compared the phenotype of animals of the F2 progeny. Loss of Bmp6 further repressed Smad signaling and hepcidin expression in the liver of Hjv-/- mice of both sexes, and led to iron accumulation in the pancreas and the heart of females. These data suggest that, in Hjv-/- females, Bmp6 can provide a signal adequate to maintain hepcidin to a level sufficient to avoid extrahepatic iron loading. We also examined the impact of Bmp6 and/or Hjv deletion on the regulation of hepcidin by inflammation. Our data show that lack of 1 or both molecules does not prevent induction of hepcidin by lipopolysaccharide (LPS). However, BMP/Smad signaling in unchallenged animals is determinant for the level of hepcidin reached after stimulation, which is consistent with a synergy between interleukin 6/STAT3 and BMP/SMAD signaling in regulating hepcidin during inflammation.


Assuntos
Proteína Morfogenética Óssea 6/deficiência , Deleção de Genes , Hepcidinas/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/deficiência , Animais , Proteína Morfogenética Óssea 6/metabolismo , Feminino , Proteínas Ligadas por GPI , Proteína da Hemocromatose , Masculino , Proteínas de Membrana/metabolismo , Camundongos Knockout , Fenótipo , Transdução de Sinais/efeitos dos fármacos
4.
Blood ; 129(4): 405-414, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-27864295

RESUMO

Bone morphogenetic protein 6 (BMP6) signaling in hepatocytes is a central transcriptional regulator of the iron hormone hepcidin that controls systemic iron balance. How iron levels are sensed to regulate hepcidin production is not known, but local induction of liver BMP6 expression by iron is proposed to have a critical role. To identify the cellular source of BMP6 responsible for hepcidin and iron homeostasis regulation, we generated mice with tissue-specific ablation of Bmp6 in different liver cell populations and evaluated their iron phenotype. Efficiency and specificity of Cre-mediated recombination was assessed by using Cre-reporter mice, polymerase chain reaction of genomic DNA, and quantitation of Bmp6 messenger RNA expression from isolated liver cell populations. Localization of the BMP co-receptor hemojuvelin was visualized by immunofluorescence microscopy. Analysis of the Bmp6 conditional knockout mice revealed that liver endothelial cells (ECs) expressed Bmp6, whereas resident liver macrophages (Kupffer cells) and hepatocytes did not. Loss of Bmp6 in ECs recapitulated the hemochromatosis phenotype of global Bmp6 knockout mice, whereas hepatocyte and macrophage Bmp6 conditional knockout mice exhibited no iron phenotype. Hemojuvelin was localized on the hepatocyte sinusoidal membrane immediately adjacent to Bmp6-producing sinusoidal ECs. Together, these data demonstrate that ECs are the predominant source of BMP6 in the liver and support a model in which EC BMP6 has paracrine actions on hepatocyte hemojuvelin to regulate hepcidin transcription and maintain systemic iron homeostasis.


Assuntos
Proteína Morfogenética Óssea 6/genética , Células Endoteliais/metabolismo , Hemocromatose/genética , Hepcidinas/genética , Ferro/metabolismo , Proteínas de Membrana/genética , RNA Mensageiro/genética , Animais , Proteína Morfogenética Óssea 6/deficiência , Células Endoteliais/patologia , Feminino , Proteínas Ligadas por GPI , Regulação da Expressão Gênica , Proteína da Hemocromatose , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepcidinas/metabolismo , Homeostase/genética , Imunofenotipagem , Integrases/genética , Integrases/metabolismo , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Comunicação Parácrina , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcrição Gênica
5.
Gut ; 64(6): 973-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25011936

RESUMO

OBJECTIVE: Bone morphogenetic protein 6 (BMP6) has been identified as crucial regulator of iron homeostasis. However, its further role in liver pathology including non-alcoholic fatty liver disease (NAFLD) and its advanced form non-alcoholic steatohepatitis (NASH) is elusive. The aim of this study was to investigate the expression and function of BMP6 in chronic liver disease. DESIGN: BMP6 was analysed in hepatic samples from murine models of chronic liver injury and patients with chronic liver diseases. Furthermore, a tissue microarray comprising 110 human liver tissues with different degree of steatosis and inflammation was assessed. BMP6-deficient (BMP6(-/-)) and wild-type mice were compared in two dietary NASH-models, that is, methionine choline-deficient (MCD) and high-fat (HF) diets. RESULTS: BMP6 was solely upregulated in NAFLD but not in other murine liver injury models or diseased human livers. In NAFLD, BMP6 expression correlated with hepatic steatosis but not with inflammation or hepatocellular damage. Also, in vitro cellular lipid accumulation in primary human hepatocytes induced increased BMP6 expression. MCD and HF diets caused more hepatic inflammation and fibrosis in BMP6(-/-) compared with wild-type mice. However, only in the MCD and not in the HF diet model BMP6(-/-) mice developed marked hepatic iron overload, suggesting that further mechanisms are responsible for protective BMP6 effect. In vitro analysis revealed that recombinant BMP6 inhibited the activation of hepatic stellate cells (HSCs) and reduced proinflammatory and profibrogenic gene expression in already activated HSCs. CONCLUSIONS: Steatosis-induced upregulation of BMP6 in NAFLD is hepatoprotective. Induction of BMP6-signalling may be a promising antifibrogenic strategy.


Assuntos
Proteína Morfogenética Óssea 6/metabolismo , Fibrose/metabolismo , Fibrose/prevenção & controle , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Substâncias Protetoras/metabolismo , Animais , Proteína Morfogenética Óssea 6/deficiência , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Fibrose/etiologia , Células Estreladas do Fígado/metabolismo , Hepatite B Crônica/metabolismo , Hepatite C Crônica/metabolismo , Humanos , Ferro/análise , Fígado/química , Cirrose Hepática Alcoólica/metabolismo , Proteínas de Membrana , Camundongos , Triglicerídeos/análise
6.
Blood ; 124(3): 441-4, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24904115

RESUMO

Iron is an essential element required for development and survival of all living organisms. In fetuses, maternofetal iron transfer across the placenta is essential for growth and development. In neonates, efficient intestinal iron absorption is required to scavenge as much iron as possible from the low-iron-content milk. During these periods, efficient iron mobilization is ensured by the downregulation of the iron regulatory hormone hepcidin by as-yet uncharacterized molecular mechanisms. Here we demonstrate that the recently described hepcidin repressor-the serine protease matriptase-2 (encoded by Tmprss6)-is responsible for this repression throughout development, with its deficiency leading to increased hepcidin levels triggering iron deficiency and anemia starting in utero. This result might have implications for a better understanding of iron homeostasis during early development in iron-refractory iron deficiency anemia patients, who present with microcytic anemia caused by hyperhepcidinemia, and of questions about the role of matriptase-2 in human neonates.


Assuntos
Hepcidinas/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Anemia Ferropriva/etiologia , Animais , Proteína Morfogenética Óssea 6/deficiência , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Regulação para Baixo , Feminino , Feto/metabolismo , Proteínas Ligadas por GPI , Proteína da Hemocromatose , Homeostase , Humanos , Deficiências de Ferro , Fígado/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Gravidez , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Transdução de Sinais
7.
Hepatology ; 59(2): 683-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23907767

RESUMO

UNLABELLED: Gender-related disparities in the regulation of iron metabolism may contribute to the differences exhibited by men and women in the progression of chronic liver diseases associated with reduced hepcidin expression, e.g., chronic hepatitis C, alcoholic liver disease, or hereditary hemochromatosis. However, their mechanisms remain poorly understood. In this study we took advantage of the major differences in hepcidin expression and tissue iron loading observed between Bmp6-deficient male and female mice to investigate the mechanisms underlying this sexual dimorphism. We found that testosterone robustly represses hepcidin transcription by enhancing Egfr signaling in the liver and that selective epidermal growth factor receptor (Egfr) inhibition by gefitinib (Iressa) in males markedly increases hepcidin expression. In males, where the suppressive effects of testosterone and Bmp6-deficiency on hepcidin expression are combined, hepcidin is more strongly repressed than in females and iron accumulates massively not only in the liver but also in the pancreas, heart, and kidneys. CONCLUSION: Testosterone-induced repression of hepcidin expression becomes functionally important during homeostatic stress from disorders that result in iron loading and/or reduced capacity for hepcidin synthesis. These findings suggest that novel therapeutic strategies targeting the testosterone/EGF/EGFR axis may be useful for inducing hepcidin expression in patients with iron overload and/or chronic liver diseases.


Assuntos
Receptores ErbB/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Fatores Sexuais , Transdução de Sinais/fisiologia , Testosterona/metabolismo , Animais , Proteína Morfogenética Óssea 6/deficiência , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Feminino , Homeostase/fisiologia , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Miocárdio/metabolismo , Pâncreas/metabolismo , Proteínas Smad/metabolismo
8.
Blood ; 120(2): 431-9, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22611157

RESUMO

Anemia is very common in patients suffering from infections or chronic inflammation and can add substantially to the morbidity of the underlying disease. It is mediated by excessive production of the iron-regulatory peptide hepcidin, but the signaling pathway responsible for hepcidin up-regulation in the inflammatory context is still not understood completely. In the present study, we show that activin B has an unexpected but crucial role in the induction of hepcidin by inflammation. There is a dramatic induction of Inhbb mRNA, encoding the activin ß(B)-subunit, in the livers of mice challenged with lipopolysaccharide, slightly preceding an increase in Smad1/5/8 phosphorylation and Hamp mRNA. Activin B also induces Smad1/5/8 phosphorylation in human hepatoma-derived cells and, synergistically with IL-6 and STAT-3 signaling, up-regulates hepcidin expression markedly, an observation confirmed in mouse primary hepatocytes. Pretreatment with a bone morphogenic protein type I receptor inhibitor showed that the effect of activin B on hepcidin expression is entirely attributable to its effect on bone morphogenetic protein signaling, most likely via activin receptor-like kinase 3. Activin B is therefore a novel and specific target for the treatment of anemia of inflammation.


Assuntos
Ativinas/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Inflamação/metabolismo , Proteínas Smad/metabolismo , Ativinas/genética , Animais , Proteína Morfogenética Óssea 6/deficiência , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepcidinas , Humanos , Inflamação/etiologia , Interleucina-6/deficiência , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Regulação para Cima/efeitos dos fármacos
10.
Am J Pathol ; 178(3): 1069-79, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21356359

RESUMO

Bone morphogenetic protein-6 (BMP-6) suppresses inflammatory genes in renal proximal tubular cells and regulates iron metabolism by inducing hepcidin. In diabetic patients, an increase of myofibroblast progenitor cells (MFPCs), also known as fibrocytes, was found to be associated with decreased BMP-6 expression. We hypothesized that loss of endogenous BMP-6 would aggravate renal injury and fibrosis. Wild type (WT) and BMP-6 null mice underwent unilateral ureteral obstruction. In WT mice, ureteral obstruction down-regulated BMP-6. Obstructed kidneys of BMP-6 null mice showed more casts (1.5-fold), epithelial necrosis (1.4-fold), and brush border loss (1.3-fold). This was associated with more inflammation (1.8-fold more CD45(+) cells) and more pronounced overexpression of profibrotic genes for αSMA (2.0-fold), collagen I (6.8-fold), fibronectin (4.3-fold), CTGF (1.8-fold), and PAI-1 (3.8-fold), despite similar BMP-7 expression. Also, 1.3-fold more MFPCs were obtained from BMP-6 null than from WT mononuclear cell cultures, but in vivo only very few MFPCs were observed in obstructed kidneys, irrespective of BMP-6 genotype. The obstructed kidneys of BMP-6 null mice showed 2.2-fold more iron deposition, in association with 3.3-fold higher expression of the oxidative stress marker HO-1. Thus, ureteral obstruction leads to down-regulation of BMP-6 expression, and BMP-6 deficiency aggravates tubulointerstitial damage and fibrosis independent of BMP-7. This process appears to involve loss of both direct anti-inflammatory and antifibrotic action and indirect suppressive effects on renal iron deposition, oxidative stress, and MFPCs.


Assuntos
Proteína Morfogenética Óssea 6/deficiência , Rim/metabolismo , Rim/patologia , Actinas/metabolismo , Animais , Peso Corporal , Proteína Morfogenética Óssea 6/metabolismo , Caderinas/genética , Caderinas/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Matriz Extracelular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Ferro/metabolismo , Túbulos Renais/enzimologia , Túbulos Renais/patologia , Camundongos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Células-Tronco/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
11.
Nat Genet ; 41(4): 478-81, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19252488

RESUMO

Expression of hepcidin, a key regulator of intestinal iron absorption, can be induced in vitro by several bone morphogenetic proteins (BMPs), including BMP2, BMP4 and BMP9 (refs. 1,2). However, in contrast to BMP6, expression of other BMPs is not regulated at the mRNA level by iron in vivo, and their relevance to iron homeostasis is unclear. We show here that targeted disruption of Bmp6 in mice causes a rapid and massive accumulation of iron in the liver, the acinar cells of the exocrine pancreas, the heart and the renal convoluted tubules. Despite their severe iron overload, the livers of Bmp6-deficient mice have low levels of phosphorylated Smad1, Smad5 and Smad8, and these Smads are not significantly translocated to the nucleus. In addition, hepcidin synthesis is markedly reduced. This indicates that Bmp6 is critical for iron homeostasis and that it is functionally nonredundant with other members of the Bmp subfamily. Notably, Bmp6-deficient mice retain their capacity to induce hepcidin in response to inflammation. The iron burden in Bmp6 mutant mice is significantly greater than that in mice deficient in the gene associated with classical hemochromatosis (Hfe), suggesting that mutations in BMP6 might cause iron overload in humans with severe juvenile hemochromatosis for which the genetic basis has not yet been characterized.


Assuntos
Proteína Morfogenética Óssea 6/deficiência , Sobrecarga de Ferro/genética , Animais , Proteína Morfogenética Óssea 6/genética , Regulação da Expressão Gênica , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Fígado/patologia , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...