Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 60(9): 648-662, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33620209

RESUMO

Almost all eukaryotic proteins receive diverse post-translational modifications (PTMs) that modulate protein activity. Many histone PTMs are well characterized, heavily influence gene regulation, and are often predictors of distinct transcriptional programs. Although our understanding of the histone PTM network has matured, much is yet to be understood about the roles of transcription factor (TF) PTMs, which might well represent a similarly complex and dynamic network of functional regulation. Members of the bromodomain and extra-terminal domain (BET) family of proteins recognize acetyllysine residues and relay the signals encoded by these modifications. Here, we have investigated the acetylation dependence of several functionally relevant BET-TF interactions in vitro using surface plasmon resonance, nuclear magnetic resonance, and X-ray crystallography. We show that motifs known to be acetylated in TFs E2F1 and MyoD1 can interact with all bromodomains of BRD2, BRD3, and BRD4. The interactions are dependent on diacetylation of the motifs and show a preference for the first BET bromodomain. Structural mapping of the interactions confirms a conserved mode of binding for the two TFs to the acetyllysine binding pocket of the BET bromodomains, mimicking that of other already established functionally important histone- and TF-BET interactions. We also examined a motif from the TF RelA that is known to be acetylated but were unable to observe any interaction, regardless of the acetylation state of the sequence. Our findings overall advance our understanding of BET-TF interactions and suggest a physical link between the important diacetylated motifs found in E2F1 and MyoD1 and the BET-family proteins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fator de Transcrição E2F1/metabolismo , Proteína MyoD/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Proteínas de Ciclo Celular/química , Cristalografia por Raios X , Fator de Transcrição E2F1/química , Histonas/química , Humanos , Lisina/química , Modelos Moleculares , Proteína MyoD/química , Conformação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/química
2.
Genes Dev ; 33(11-12): 626-640, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30975722

RESUMO

Rhabdomyosarcoma (RMS) is an aggressive pediatric cancer composed of myoblast-like cells. Recently, we discovered a unique muscle progenitor marked by the expression of the Twist2 transcription factor. Genomic analyses of 258 RMS patient tumors uncovered prevalent copy number amplification events and increased expression of TWIST2 in fusion-negative RMS. Knockdown of TWIST2 in RMS cells results in up-regulation of MYOGENIN and a decrease in proliferation, implicating TWIST2 as an oncogene in RMS. Through an inducible Twist2 expression system, we identified Twist2 as a reversible inhibitor of myogenic differentiation with the remarkable ability to promote myotube dedifferentiation in vitro. Integrated analysis of genome-wide ChIP-seq and RNA-seq data revealed the first dynamic chromatin and transcriptional landscape of Twist2 binding during myogenic differentiation. During differentiation, Twist2 competes with MyoD at shared DNA motifs to direct global gene transcription and repression of the myogenic program. Additionally, Twist2 shapes the epigenetic landscape to drive chromatin opening at oncogenic loci and chromatin closing at myogenic loci. These epigenetic changes redirect MyoD binding from myogenic genes toward oncogenic, metabolic, and growth genes. Our study reveals the dynamic interplay between two opposing transcriptional regulators that control the fate of RMS and provides insight into the molecular etiology of this aggressive form of cancer.


Assuntos
Carcinogênese , Desenvolvimento Muscular , Proteína MyoD/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Células Cultivadas , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Transição Epitelial-Mesenquimal , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Sequências Hélice-Alça-Hélice , Humanos , Proteína MyoD/química , Mioblastos/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/química , Proteína 1 Relacionada a Twist/química
3.
Biomed Mater ; 13(5): 055009, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29967311

RESUMO

Volumetric muscle loss is debilitating and involves extensive rehabilitation. One approach to accelerate healing, rehabilitation, and muscle function is to repair damaged skeletal muscle using regenerative medicine strategies. In sports medicine and orthopedics, a common clinical approach is to treat minor to severe musculoskeletal injuries with platelet-rich plasma (PRP) injections. While these types of treatments have become commonplace, there are limited data demonstrating their effectiveness. The goal of this study was to determine the effect of PRP on myoblast gene expression and protein production when incorporated into a polymer fiber. To test this, we generated extracellular matrix mimicking scaffolds using aligned polydioxanone (PDO) fibers containing lyophilized PRP (SmartPReP® 2, Harvest Technologies Corporation, Plymouth, MA). Scaffolds with PRP caused a dose-dependent increase in myogenin and myosin heavy chain but did not affect myogenic differentiation factor-1 (MyoD). Integrin α7ß1D decreased and α5ß1A did not change in response to PRP scaffolds. ERK inhibition decreased myogenin and increased Myod on the PDO-PRP scaffolds. Taken together, these data suggest that alignment and PRP produce a substrate-dependent, ERK-dependent, and dose-dependent effect on myogenic differentiation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Miogenina/química , Plasma Rico em Plaquetas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Matriz Extracelular , Perfilação da Expressão Gênica , Humanos , Integrina alfa5beta1/química , Integrinas/química , Camundongos , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno , Proteína MyoD/química , Mioblastos/citologia , Cadeias Pesadas de Miosina/química , Polidioxanona/química , Polímeros/química , Medicina Regenerativa/métodos , Alicerces Teciduais
4.
Sci Rep ; 7(1): 12599, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974698

RESUMO

The SIX1 gene belongs to the family of six homeodomain transcription factors (TFs), that regulates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and mediate skeletal muscle growth and regeneration. Previous studies have demonstrated that SIX1 is positively correlated with body measurement traits (BMTs). However, the transcriptional regulation of SIX1 remains unclear. In the present study, we determined that bovine SIX1 was highly expressed in the longissimus thoracis. To elucidate the molecular mechanisms involved in bovine SIX1 regulation, 2-kb of the 5' regulatory region were obtained. Sequence analysis identified neither a consensus TATA box nor a CCAAT box in the 5' flanking region of bovine SIX1. However, a CpG island was predicted in the region -235 to +658 relative to the transcriptional start site (TSS). An electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay in combination with serial deletion constructs of the 5' flanking region, site-directed mutation and siRNA interference demonstrated that MyoD, PAX7 and CREB binding occur in region -689/-40 and play important roles in bovine SIX1 transcription. In addition, MyoG drives SIX1 transcription indirectly via the MEF3 motif. Taken together these interactions suggest a key functional role for SIX1 in mediating skeletal muscle growth in cattle.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/crescimento & desenvolvimento , Miogenina/genética , Regiões Promotoras Genéticas/genética , Motivos de Aminoácidos/genética , Animais , Bovinos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas de Homeodomínio/química , Sistema de Sinalização das MAP Quinases/genética , Músculo Esquelético/metabolismo , Proteína MyoD/química , Proteína MyoD/genética , Miogenina/química , Fator de Transcrição PAX7/química , Fator de Transcrição PAX7/genética , TATA Box/genética
5.
J Biol Chem ; 292(31): 12885-12894, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28607151

RESUMO

Satellite cells are skeletal muscle stem cells that provide myonuclei for postnatal muscle growth, maintenance, and repair/regeneration in adults. Normally, satellite cells are mitotically quiescent, but they are activated in response to muscle injury, in which case they proliferate extensively and exhibit up-regulated expression of the transcription factor MyoD, a master regulator of myogenesis. MyoD forms a heterodimer with E proteins through their basic helix-loop-helix domain, binds to E boxes in the genome and thereby activates transcription at muscle-specific promoters. The central role of MyoD in muscle differentiation has increased interest in finding potential MyoD regulators. Here we identified transducin-like enhancer of split (TLE3), one of the Groucho/TLE family members, as a regulator of MyoD function during myogenesis. TLE3 was expressed in activated and proliferative satellite cells in which increased TLE3 levels suppressed myogenic differentiation, and, conversely, reduced TLE3 levels promoted myogenesis with a concomitant increase in proliferation. We found that, via its glutamine- and serine/proline-rich domains, TLE3 interferes with MyoD function by disrupting the association between the basic helix-loop-helix domain of MyoD and E proteins. Our findings indicate that TLE3 participates in skeletal muscle homeostasis by dampening satellite cell differentiation via repression of MyoD transcriptional activity.


Assuntos
Proteínas Correpressoras/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Proteína MyoD/antagonistas & inibidores , Mioblastos/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Fator 3 Ativador da Transcrição/química , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Proteínas Correpressoras/antagonistas & inibidores , Proteínas Correpressoras/química , Proteínas Correpressoras/genética , Deleção de Genes , Sequências Hélice-Alça-Hélice , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia , Proteína MyoD/química , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/citologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células Satélites de Músculo Esquelético/citologia
6.
Biotechnol Appl Biochem ; 64(5): 647-656, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27354201

RESUMO

Regeneration of adult skeletal muscle following injury occurs through the activation of satellite cells that proliferates, differentiates, and fuses with injured myofibers. Myocyte enhancer factor 2 (MEF2) proteins are reported to have the potential contributions to adult muscle regeneration. To further understand Mef2c gene, the promoter of pig Mef2c gene was analyzed in this paper. Quantitative real-time PCR (qRT-PCR) revealed the expression pattern of Mef2c gene in muscle of eight tissues. The Mef2c promoter had the higher transcriptional activity in differentiated C2C12 cells than that in proliferating C2C12 cells, which was accompanied by the upregulation of mRNA expression of Mef2c gene. Function deletion and mutation analyses showed that MyoD and MEF2 binding sites within the Mef2c promoter were responsible for the regulation of Mef2c transcription. MEF2C could upregulate the transcriptional activities of Mef2c promoter constructs, which contained a 3'-end nucleotide sequence with p300 binding site. The electrophoretic mobility shift assays and chromatin immunoprecipitation assays determined the MyoD binding site in Mef2c promoter. These results advanced our knowledge of the promoter of the pig Mef2c gene, and the study of Mef2c promoter regulator elements helped to elucidate the regulation mechanisms of Mef2c in muscle differentiation or muscle repair and regeneration.


Assuntos
Diferenciação Celular/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Músculo Esquelético/fisiologia , Regiões Promotoras Genéticas/genética , Animais , Sítios de Ligação/genética , Linhagem Celular , Fatores de Transcrição MEF2/química , Camundongos , Proteína MyoD/química , Proteína MyoD/genética , Proteína MyoD/metabolismo , Regeneração/genética , Suínos , Transcrição Gênica/genética
7.
Biochem Biophys Res Commun ; 481(1-2): 97-103, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27823936

RESUMO

MyoD is a master regulator of myogenesis with a potent ability to redirect the cell fate of even terminally differentiated cells. Hence, enhancing the activity of MyoD is an important step to maximising its potential utility for in vitro disease modelling and cell replacement therapies. We have previously shown that the reprogramming activity of several neurogenic bHLH proteins can be substantially enhanced by inhibiting their multi-site phosphorylation by proline-directed kinases. Here we have used Xenopus embryos as an in vivo developmental and reprogramming system to investigate the multi-site phospho-regulation of MyoD during muscle differentiation. We show that, in addition to modification of a previously well-characterised site, Serine 200, MyoD is phosphorylated on multiple additional serine/threonine sites during primary myogenesis. Through mutational analysis, we derive an optimally active phospho-mutant form of MyoD that has a dramatically enhanced ability to drive myogenic reprogramming in vivo. Mechanistically, this is achieved through increased protein stability and enhanced chromatin association. Therefore, multi-site phospho-regulation of class II bHLH proteins is conserved across cell lineages and germ layers, and manipulation of phosphorylation of these key regulators may have further potential for enhancing mammalian cell reprogramming.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Proteína MyoD/química , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Proteína MyoD/genética , Fosforilação , Ligação Proteica
8.
Int J Mol Sci ; 16(11): 26186-201, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26540045

RESUMO

The fusion of myoblasts is an important step during skeletal muscle differentiation. A recent study in mice found that a transmembrane protein called Myomaker, which is specifically expressed in muscle, is critical for myoblast fusion. However, the cellular mechanism of its roles and the regulatory mechanism of its expression remain unclear. Chicken not only plays an important role in meat production but is also an ideal model organism for muscle development research. Here, we report that Myomaker is also essential for chicken myoblast fusion. Forced expression of Myomaker in chicken primary myoblasts promotes myoblast fusion, whereas knockdown of Myomaker by siRNA inhibits myoblast fusion. MYOD and MYOG, which belong to the family of myogenic regulatory factors, can bind to a conserved E-box located proximal to the Myomaker transcription start site and induce Myomaker transcription. Additionally, miR-140-3p can inhibit Myomaker expression and myoblast fusion, at least in part, by binding to the 3' UTR of Myomaker in vitro. These findings confirm the essential roles of Myomaker in avian myoblast fusion and show that MYOD, MYOG and miR-140-3p can regulate Myomaker expression.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Proteína MyoD/metabolismo , Mioblastos/metabolismo , Miogenina/metabolismo , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , Fusão Celular , Galinhas , DNA Complementar/química , DNA Complementar/genética , Elementos E-Box , Dados de Sequência Molecular , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Proteína MyoD/química , Proteína MyoD/genética , Miogenina/química , Miogenina/genética , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética
9.
Cell Rep ; 10(12): 1937-46, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25801030

RESUMO

MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a "shared" E-box sequence (CAGCTG) and a "private" sequence (CAGGTG or CAGATG, respectively). To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.


Assuntos
Diferenciação Celular/genética , Elementos E-Box/genética , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Camundongos , Proteína MyoD/química , Proteína MyoD/genética
10.
ACS Synth Biol ; 4(6): 689-99, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25494287

RESUMO

Genetic reprogramming holds great potential for disease modeling, drug screening, and regenerative medicine. Genetic reprogramming of mammalian cells is typically achieved by forced expression of natural transcription factors that control master gene networks and cell lineage specification. However, in many instances, the natural transcription factors do not induce a sufficiently robust response to completely reprogram cell phenotype. In this study, we demonstrate that protein engineering of the master transcription factor MyoD can enhance the conversion of human dermal fibroblasts and adult stem cells to a skeletal myocyte phenotype. Fusion of potent transcriptional activation domains to MyoD led to increased myogenic gene expression, myofiber formation, cell fusion, and global reprogramming of the myogenic gene network. This work supports a general strategy for synthetically enhancing the direct conversion between cell types that can be applied in both synthetic biology and regenerative medicine.


Assuntos
Proteína MyoD/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Sequência de Aminoácidos , Linhagem da Célula , Transdiferenciação Celular , Reprogramação Celular , Derme/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Dados de Sequência Molecular , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteína MyoD/química , Proteína MyoD/genética , Engenharia de Proteínas , Estrutura Terciária de Proteína
11.
Chem Biol ; 21(10): 1265-1270, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25242288

RESUMO

Myogenic microRNAs (myomiRs) that are specifically expressed in cardiac and skeletal muscle are highly relevant to myogenic development and diseases. Discovery and elucidation of unknown myomiRs-involved regulatory pathways in muscle cells are important, but challenging due to the lack of proper molecular tools. We report here a miR-221/222-myoD-myomiRs regulatory pathway revealed by using a small-molecule probe that selectively inhibits myomiRs including miR-1, miR-133a, and miR-206. The small-molecule inhibitor screened from luciferase assay systems was found to inhibit myomiRs and differentiation of C2C12 cells. Using the small molecule as a probe, we found that the transcriptional factor myoD, which is upstream of myomiRs, was further regulated by miR-221/222. This miR-221/222-myoD-myomiRs regulatory pathway was confirmed by over-expressing or knockdown miR-221/222 in muscle cells, which respectively led to the inhibition or enhancement of myoD protein expression and subsequent downregulation or upregulation of myomiR expression.


Assuntos
MicroRNAs/metabolismo , Proteína MyoD/metabolismo , Regiões 3' não Traduzidas , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , MicroRNAs/antagonistas & inibidores , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteína MyoD/química , Miocárdio/metabolismo , Oligorribonucleotídeos Antissenso/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Transfecção
12.
Cell Rep ; 8(6): 1639-1648, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25242327

RESUMO

Skeletal muscle comprises a heterogeneous population of fibers with important physiological differences. Fast fibers are glycolytic and fatigue rapidly. Slow fibers utilize oxidative metabolism and are fatigue resistant. Muscle diseases such as sarcopenia and atrophy selectively affect fast fibers, but the molecular mechanisms regulating fiber type-specific gene expression remain incompletely understood. Here, we show that the transcription factor NFATc1 controls fiber type composition and is required for fast-to-slow fiber type switching in response to exercise in vivo. Moreover, MyoD is a crucial transcriptional effector of the fast fiber phenotype, and we show that NFATc1 inhibits MyoD-dependent fast fiber gene promoters by physically interacting with the N-terminal activation domain of MyoD and blocking recruitment of the essential transcriptional coactivator p300. These studies establish a molecular mechanism for fiber type switching through direct inhibition of MyoD to control the opposing roles of MyoD and NFATc1 in fast versus slow fiber phenotypes.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Proteína MyoD/metabolismo , Fatores de Transcrição NFATC/metabolismo , Animais , Feminino , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutagênese , Proteína MyoD/química , Fatores de Transcrição NFATC/química , Fatores de Transcrição NFATC/genética , Fenótipo , Condicionamento Físico Animal , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Ativação Transcricional , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo
13.
Cell Signal ; 26(10): 2240-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25025573

RESUMO

Skeletal muscle atrophy results from the net loss of muscular proteins and organelles and is caused by pathologic conditions such as nerve injury, immobilization, cancer, and other metabolic diseases. Recently, ubiquitination-mediated degradation of skeletal-muscle-specific transcription factors was shown to be involved in muscle atrophy, although the mechanisms have yet to be defined. Here we report that ret finger protein (RFP), also known as TRIM27, works as an E3 ligase in Pax7-induced degradation of MyoD. Muscle injury induced by sciatic nerve transection up-regulated RFP and RFP physically interacted with both Pax7 and MyoD. RFP and Pax7 synergistically reduced the protein amounts of MyoD but not the mRNA. RFP-induced reduction of MyoD protein was blocked by proteasome inhibitors. The Pax7-induced reduction MyoD was attenuated by RFP siRNA and by MG132, a proteasome inhibitor. RFPΔR, an RFP construct that lacks the RING domain, failed to reduce MyoD amounts. RFP ubiquitinated MyoD, but RFPΔR failed to do so. Forced expression of RFP, but not RFPΔR, enhanced Pax7-induced ubiquitination of MyoD, whereas RFP siRNA blocked the ubiquitination. Sciatic nerve injury-induced muscle atrophy as well the reduction in MyoD was attenuated in RFP knockout mice. Taken together, our results show that RFP works as a novel E3 ligase in the Pax7-mediated degradation of MyoD in response to skeletal muscle atrophy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Atrofia Muscular/patologia , Proteína MyoD/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX7/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Leupeptinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Proteína MyoD/química , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fator de Transcrição PAX7/química , Inibidores de Proteases/farmacologia , Ligação Proteica , Proteólise/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Regeneração , Ubiquitina-Proteína Ligases , Ubiquitinação/efeitos dos fármacos
14.
PLoS One ; 9(3): e92873, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651579

RESUMO

The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution.


Assuntos
Família Multigênica , Fatores de Regulação Miogênica/genética , Seleção Genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Variação Genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteína MyoD/química , Proteína MyoD/genética , Fator Regulador Miogênico 5/química , Fator Regulador Miogênico 5/genética , Fatores de Regulação Miogênica/química , Miogenina/química , Miogenina/genética , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Vertebrados/classificação
15.
J Biomol Struct Dyn ; 32(2): 226-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23527594

RESUMO

The basic helix-loop-helix (bHLH) transcription factor TWIST1 is essential to embryonic development, and hijacking of its function contributes to the development of numerous cancer types. It forms either a homodimer or a heterodimeric complex with an E2A or HAND partner. These functionally distinct complexes display sometimes antagonistic functions during development, so that alterations in the balance between them lead to pronounced morphological alterations, as observed in mice and in Saethre-Chotzen syndrome patients. We, here, describe the structures of TWIST1 bHLH-DNA complexes produced in silico through molecular dynamics simulations. We highlight the determinant role of the interhelical loops in maintaining the TWIST1-DNA complex structures and provide a structural explanation for the loss of function associated with several TWIST1 mutations/insertions observed in Saethre-Chotzen syndrome patients. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:27.


Assuntos
Sequências Hélice-Alça-Hélice , Proteínas Nucleares/química , Proteína 1 Relacionada a Twist/química , Acrocefalossindactilia/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/ultraestrutura , Cristalografia por Raios X , DNA/química , Humanos , Camundongos , Simulação de Dinâmica Molecular , Mutação , Proteína MyoD/química , Proteína MyoD/ultraestrutura , Proteínas Nucleares/genética , Ligação Proteica/genética , Multimerização Proteica , Alinhamento de Sequência , Fator 3 de Transcrição/química , Fator 3 de Transcrição/ultraestrutura , Proteína 1 Relacionada a Twist/genética
16.
J Pept Sci ; 19(11): 676-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24123584

RESUMO

Id proteins, inhibitors of DNA binding proteins, have highly conserved dimerization motif known as the helix-loop-helix (HLH) domain that acts as a negative regulator of basic HLH (bHLH) transcription factors. In signaling pathways, Id proteins play an important role in cellular development, proliferation, and differentiation. The mechanism of Id proteins is to antagonize bHLH proteins, thereby preventing them from binding to DNA and inhibiting transcription of cellular differentiation-associated genes in cancer. Recently, we reported an inhibitor of Id1, peptide 3C, which showed good affinity to Id1 protein and exhibited inhibitory effects in cancer cells. In this study, Ala (A)-substituted analogs of peptide 3C were synthesized by SPPS, purified by RP-HPLC, and characterized by MALDI-TOF MS. Binding of each peptide to Id1 or Id1-HLH (the HLH domain of Id1) was monitored by surface plasmon resonance (SPR)-based biosensor. Biological effect of each peptide in MCF-7 breast cancer cells was analyzed by MTT cell viability assay. The secondary structure of substituted analogs of peptide 3C was investigated by circular dichroism (CD) spectroscopy. SPR results revealed that A-substituted analogs of peptide 3C showed weaker binding to Id1 than that of peptide 3C, indicating that the six amino acid residues in the N-terminal of peptide 3C were all essential for binding to Id1 and the importance of amino acid residue was I(2) > Q(6) > Y(1) > G(4) > L(5) > E(3). In addition, substitution of E(3) in peptide 3C with D, Q, and R did not improve the binding potency of peptide 3C. MTT assay demonstrated that neither A-substituted nor position 3-substituted analogs of peptide 3C showed increased antiproliferative effect in MCF-7 cancer cells. CD results indicated that peptide 3C exhibited the highest content of α-helical structure (39.37%), suggesting that the α-helical structure may contribute to its binding potency for Id1 and Id1-HLH. SAR results provided important information for the development of peptidic inhibitors of Id1 as anticancer agents and demonstrated peptide 3C as a promising lead for further modifications.


Assuntos
Antineoplásicos/farmacologia , Proteína 1 Inibidora de Diferenciação/antagonistas & inibidores , Proteína MyoD/química , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Fragmentos de Peptídeos/síntese química , Ligação Proteica , Estrutura Secundária de Proteína , Técnicas de Síntese em Fase Sólida , Relação Estrutura-Atividade
17.
Int J Nanomedicine ; 8: 2943-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23966782

RESUMO

BACKGROUND: [Corrected] Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 [MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. METHODS: In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. RESULTS: The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.


Assuntos
Lipossomos/uso terapêutico , Distrofias Musculares/tratamento farmacológico , Proteína MyoD/uso terapêutico , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Acetato de Glatiramer , Lipossomos/química , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Proteína MyoD/química , Proteína MyoD/farmacologia , Nandrolona/farmacologia , Nanopartículas/química , Tamanho da Partícula , Peptídeos/química , Peptídeos/farmacologia
18.
Cardiovasc Res ; 100(1): 105-13, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23794713

RESUMO

AIMS: Fibroblasts can be directly reprogrammed to cardiomyocyte-like cells by introducing defined genes. However, the reprogramming efficiency remains low, delaying the clinical application of this strategy to regenerative cardiology. We previously showed that fusion of the MyoD transactivation domain to the pluripotency transcription factor Oct4 facilitated the transcriptional activity of Oct4, resulting in highly efficient production of induced pluripotent stem cells. We examined whether the same approach can be applied to cardiac transcription factors to facilitate cardiac reprogramming. METHODS AND RESULTS: We fused the MyoD domain to Mef2c, Gata4, Hand2, and Tbx5 and transduced these genes in various combinations into mouse non-cardiac fibroblasts. Transduction of the chimeric Mef2c with the wild-types of the other three genes produced much larger beating clusters of cardiomyocyte-like cells faster than the combination of the four wild-type genes, with an efficiency of 3.5%, >15-fold greater than the wild-type genes. CONCLUSION: Fusion of a powerful transactivation domain to heterologous factors can increase the efficiency of direct reprogramming of fibroblasts to cardiomyocytes.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Proteína MyoD/fisiologia , Miócitos Cardíacos/citologia , Ativação Transcricional , Animais , Imunofluorescência , Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição MEF2/fisiologia , Camundongos , Proteína MyoD/química , Fator 3 de Transcrição de Octâmero/fisiologia , Estrutura Terciária de Proteína
19.
PLoS One ; 7(10): e48591, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23119064

RESUMO

Inhibitors of DNA binding and differentiation (ID) proteins, a dominant-negative group of helix-loop-helix (HLH) transcription regulators, are well-characterized key players in cellular fate determination during development in mammals as well as Drosophila. Although not oncogenes themselves, their upregulation by various oncogenic proteins (such as Ras, Myc) and their inhibitory effects on cell cycle proteins (such as pRb) hint at their possible roles in tumorigenesis. Furthermore, their potency as inhibitors of cellular differentiation, through their heterodimerization with subsequent inactivation of the ubiquitous E proteins, suggest possible novel roles in engineering induced pluripotent stem cells (iPSCs). We present the high-resolution 2.1Å crystal structure of ID2 (HLH domain), coupled with novel biochemical insights in the presence of a divalent ion, possibly calcium (Ca2+), in the loop of ID proteins, which appear to be crucial for the structure and activity of ID proteins. These new insights will pave the way for new rational drug designs, in addition to current synthetic peptide options, against this potent player in tumorigenesis as well as more efficient ways for stem cells reprogramming.


Assuntos
Cátions Bivalentes/química , Proteína 2 Inibidora de Diferenciação/química , Proteínas Inibidoras de Diferenciação/química , Proteínas de Neoplasias/química , Multimerização Proteica , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Sítios de Ligação/genética , Cálcio/química , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteína MyoD/química , Proteína MyoD/genética , Proteína MyoD/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fator 3 de Transcrição/química , Fator 3 de Transcrição/genética , Fator 3 de Transcrição/metabolismo
20.
Transcription ; 3(5): 215-20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22771996

RESUMO

The transcription factor MyoD is a master regulator of skeletal muscle differentiation. The finding that G9a, an enzyme principally involved in histone H3 lysine 9 di-methylation (H3K9me2), methylates MyoD, identifies previously unappreciated mechanisms by which chromatin modifiers regulate the transcriptional activity of non-histone substrates to control cellular differentiation programs.


Assuntos
Desenvolvimento Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Proteína MyoD/fisiologia , Animais , Epigenômica , Humanos , Metilação , Proteína MyoD/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...