Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 204(2): 807-819, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27558135

RESUMO

The CKS1B gene located on chromosome 1q21 is frequently amplified in breast, lung, and liver cancers. CKS1B codes for a conserved regulatory subunit of cyclin-CDK complexes that function at multiple stages of cell cycle progression. We used a high throughput screening protocol to mimic cancer-related overexpression in a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential only when CKS1 is overexpressed, a synthetic dosage lethal (SDL) interaction. Mutations in multiple genes affecting mitotic entry and mitotic exit are highly enriched in the set of SDL interactions. The interactions between Cks1 and the mitotic entry checkpoint genes require the inhibitory activity of Swe1 on the yeast cyclin-dependent kinase (CDK), Cdc28. In addition, the SDL interactions of overexpressed CKS1 with mutations in the mitotic exit network are suppressed by modulating expression of the CDK inhibitor Sic1. Mutation of the polo-like kinase Cdc5, which functions in both the mitotic entry and mitotic exit pathways, is lethal in combination with overexpressed CKS1 Therefore we investigated the effect of targeting the human Cdc5 ortholog, PLK1, in breast cancers with various expression levels of human CKS1B Growth inhibition by PLK1 knockdown correlates with increased CKS1B expression in published tumor cell data sets, and this correlation was confirmed using shRNAs against PLK1 in tumor cell lines. In addition, we overexpressed CKS1B in multiple cell lines and found increased sensitivity to PLK1 knockdown and PLK1 drug inhibition. Finally, combined inhibition of WEE1 and PLK1 results in less apoptosis than predicted based on an additive model of the individual inhibitors, showing an epistatic interaction and confirming a prediction of the yeast data. Thus, identification of a yeast SDL interaction uncovers conserved genetic interactions that can affect human cancer cell viability.


Assuntos
Quinases relacionadas a CDC2 e CDC28/genética , Proteínas de Ciclo Celular/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Quinases relacionadas a CDC2 e CDC28/biossíntese , Proteína Quinase CDC28 de Saccharomyces cerevisiae/biossíntese , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/biossíntese , Linhagem Celular Tumoral , Sequência Conservada/genética , Regulação Fúngica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Mitose/genética , Neoplasias/metabolismo , Proteínas Nucleares/biossíntese , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Tirosina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Mutações Sintéticas Letais/genética , Quinase 1 Polo-Like
2.
Eukaryot Cell ; 2(1): 143-9, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12582131

RESUMO

Nutrient-limited Saccharomyces cerevisiae cells rapidly resume proliferative growth when transferred into glucose medium. This is preceded by a rapid increase in CLN3, BCK2, and CDC28 mRNAs encoding cell cycle regulatory proteins that promote progress through Start. We have tested the ability of mutations in known glucose signaling pathways to block glucose induction of CLN3, BCK2, and CDC28. We find that loss of the Snf3 and Rgt2 glucose sensors does not block glucose induction, nor does deletion of HXK2, encoding the hexokinase isoenzyme involved in glucose repression signaling. Rapamycin blockade of the Tor nutrient sensing pathway does not block the glucose response. Addition of 2-deoxy glucose to the medium will not substitute for glucose. These results indicate that glucose metabolism generates the signal required for induction of CLN3, BCK2, and CDC28. In support of this conclusion, we find that addition of iodoacetate, an inhibitor of the glyceraldehyde-3-phosphate dehydrogenase step in yeast glycolysis, strongly downregulates the levels CLN3, BCK2, and CDC28 mRNAs. Furthermore, mutations in PFK1 and PFK2, which encode phosphofructokinase isoforms, inhibit glucose induction of CLN3, BCK2, and CDC28. These results indicate a link between the rate of glycolysis and the expression of genes that are critical for passage through G(1).


Assuntos
Proteínas de Ciclo Celular/biossíntese , Ciclo Celular/genética , Metabolismo Energético/genética , Regulação Fúngica da Expressão Gênica/genética , Glucose/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/biossíntese , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Ciclinas/biossíntese , Ciclinas/genética , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , Glicólise/genética , Peptídeos e Proteínas de Sinalização Intracelular , Mutação/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-2/genética , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Regulação para Cima/genética
3.
J Biol Chem ; 273(15): 8556-9, 1998 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-9535827

RESUMO

The small G-protein Cdc42 functions in many eukaryotic signal transduction pathways. In the budding yeast Saccharomyces cerevisiae, cells with defective Cdc42 fail to induce mating-specific genes in response to mating factor and to adopt the proper morphology for conjugation. Here we show that the failure of mating factor-induced transcription is largely the indirect result of arrest at a specific cell cycle position and/or the accumulation of high levels of the Cln1/2-Cdc28 kinase, a known repressor of mating factor signal transduction. Cdc42-defective cells with restored transcriptional induction have a partially restored mating ability but are still defective in the morphological response to mating factor. These results show that Cdc42 is not required for transduction of the mating factor signal per se but that it is essential for proper mating factor-induced morphogenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Proteína Quinase CDC28 de Saccharomyces cerevisiae/biossíntese , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Cruzamentos Genéticos , Ciclinas/biossíntese , Proteínas Fúngicas/biossíntese , GTP Fosfo-Hidrolases/metabolismo , Genótipo , Fator de Acasalamento , Morfogênese , Peptídeos/farmacologia , Feromônios/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP
4.
Mol Cell Biol ; 16(11): 6385-97, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8887667

RESUMO

In eukaryotes, mitosis requires the activation of cdc2 kinase via association with cyclin B and dephosphorylation of the threonine 14 and tyrosine 15 residues. It is known that in the budding yeast Saccharomyces cerevisiae, a homologous kinase, Cdc28, mediates the progression through M phase, but it is not clear what specific mitotic function its activation by the dephosphorylation of an equivalent tyrosine (Tyr-19) serves. We report here that cells expressing cdc28-E19 (in which Tyr-19 is replaced by glutamic acid) perform Start-related functions, complete DNA synthesis, and exhibit high levels of Clb2-associated kinase activity but are unable to form bipolar spindles. The failure of these cells to form mitotic spindles is due to their inability to segregate duplicated spindle pole bodies (SPBs), a phenotype strikingly similar to that exhibited by a previously reported mutant defective in both kinesin-like motor proteins Cin8 and Kip1. We also find that the overexpression of SWE1, the budding-yeast homolog of wee1, also leads to a failure to segregate SPBs. These results imply that dephosphorylation of Tyr-19 is required for the segregation of SPBs. The requirement of Tyr-19 dephosphorylation for spindle assembly is also observed under conditions in which spindle formation is independent of mitosis, suggesting that the involvement of Cdc28/Clb kinase in SPB separation is direct. On the basis of these results, we propose that one of the roles of Tyr-19 dephosphorylation is to promote SPB separation.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclina B , Fosfotirosina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Fuso Acromático/fisiologia , Sequência de Aminoácidos , Proteína Quinase CDC28 de Saccharomyces cerevisiae/biossíntese , Proteína Quinase CDC28 de Saccharomyces cerevisiae/química , Proteínas de Ciclo Celular , Ciclinas/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Microscopia Eletrônica , Mutagênese Sítio-Dirigida , Mutação Puntual , Reação em Cadeia da Polimerase , Protamina Quinase/metabolismo , Proteínas Tirosina Quinases/biossíntese , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fuso Acromático/ultraestrutura , Transcrição Gênica
5.
Mol Biol Cell ; 6(12): 1641-58, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8590795

RESUMO

The Swi6 transcription factor, required for G1/S-specific gene expression in Saccharomyces cerevisiae, is highly phosphorylated in vivo. Within the limits of resolution of the peptide analysis, the synchrony, and the time intervals tested, serine 160 appears to be the only site of phosphorylation in Swi6 that varies during the cell cycle. Serine 160 resides within a Cdc28 consensus phosphorylation site and its phosphorylation occurs at about the time of maximal transcription of Swi6- and Cdc28-dependent genes containing SCB or MCB elements. However, phosphorylation at this site is not Cdc28-dependent, nor does it control G1/S-specific transcription. The role of the cell cycle-regulated phosphorylation is to control the subcellular localization of Swi6. Phosphorylation of serine 160 persists from late G1 until late M phase, and Swi6 is predominantly cytoplasmic during this time. Aspartate substitution for serine 160 inhibits nuclear localization throughout the cycle. Swi6 enters the nucleus late in M phase and throughout G1, when serine 160 is hypophosphorylated. Alanine substitution at position 160 allows nuclear entry of Swi6 throughout the cell cycle. GFP fusions with the N-terminal one-third of Swi6 display the same cell cycle-regulated localization as Swi6.


Assuntos
Ciclo Celular/fisiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteína Quinase CDC28 de Saccharomyces cerevisiae/biossíntese , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/biossíntese , Genes Fúngicos , Genótipo , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas/isolamento & purificação , Fosfoproteínas/metabolismo , Fosforilação , Mutação Puntual , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/biossíntese , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...