Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1865(1): 105-116, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28939057

RESUMO

The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCFSkp2 and APCCdc20. Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the MllN and MllC subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia.


Assuntos
Quinases relacionadas a CDC2 e CDC28/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/fisiologia , Histona-Lisina N-Metiltransferase/genética , Leucemia/genética , Leucemia/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Embrião de Mamíferos , Regulação Leucêmica da Expressão Gênica , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Transdução de Sinais/genética
2.
J Cell Sci ; 127(Pt 5): 1128-37, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24413167

RESUMO

Contraction of the actomyosin ring (AMR) provides the centripetal force that drives cytokinesis. In budding yeast (Saccharomyces cerevisiae), assembly and contraction of the AMR is coordinated with membrane deposition and septum formation at the bud neck. A central player in this process is Iqg1, which promotes recruitment of actin to the myosin ring and links AMR assembly with that of septum-forming components. We observed early actin recruitment in response to inhibition of cyclin-dependent kinase 1 (Cdk1) activity, and we find that the Cdk1-dependent phosphorylation state of Iqg1 is a determining factor in the timing of bud neck localization of both Iqg1 and actin, with both proteins accumulating prematurely in cells expressing nonphosphorylatable Iqg1 mutants. We also identified the primary septum regulator Hof1 as a binding partner of Iqg1, providing a regulatory link between the septation and contractile pathways that cooperate to complete cytokinesis.


Assuntos
Actomiosina/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Citocinese , Saccharomyces cerevisiae/enzimologia , Proteínas Ativadoras de ras GTPase/metabolismo , Anáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
PLoS Genet ; 7(1): e1001282, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21298086

RESUMO

During cell division, the spindle checkpoint ensures accurate chromosome segregation by monitoring the kinetochore-microtubule interaction and delaying the onset of anaphase until each pair of sister chromosomes is properly attached to microtubules. The spindle checkpoint is deactivated as chromosomes start moving toward the spindles in anaphase, but the mechanisms by which this deactivation and adaptation to prolonged mitotic arrest occur remain obscure. Our results strongly suggest that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for the degradation of Bub1 in anaphase, and the phosphorylation is required for adaptation of the spindle checkpoint to prolonged mitotic arrest.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Segregação de Cromossomos , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Fuso Acromático/genética , Anáfase/genética , Anáfase/fisiologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Fase G1 , Genes cdc , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Fase S , Saccharomyces cerevisiae/citologia , Treonina/genética , Treonina/metabolismo
4.
Cell Cycle ; 9(23): 4711-9, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21099355

RESUMO

Entry into and precise progression through the cell cycle depends on the sequential expression and activation of cyclin dependent kinases (CDK). In accord, CDK dysregulation is a hallmark of many cancers. The function of Cdk2 is still an enigma as in vitro studies revealed that it is required for S phase-entry, whereas in vivo studies showed that Cdk2 is not an essential gene. Moreover, unlike other Cdks, or its cyclin E regulator, Cdk2-overexpressing tumors were reported only in one type of tumor. In this report we used budding yeast as a tool to explore Cdk2 function. We showed that hCdk2 promoted S phase in cells carrying a temperature-sensitive mutation in yCDK1, albeit, only when expressed at low or moderate levels. Overexpression of hCdk2 resulted in a defect in the G1 to S transition and a reduction in viability. The same phenotypes were observed in cells overexpressing its yeast functional homolog, Ime2, which is a meiosis-specific CDK-like kinase. A genetic interaction with the DNA damage checkpoint was demonstrated by showing an increased toxicity of hCdk2 and Ime2 in RAD53-deleted cells, and delayed Rad53 activation in response to MMS treatment in cells overexpressing hCdk2 or Ime2.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Quinase 2 Dependente de Ciclina/genética , Dano ao DNA , Fase G1 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Meiose , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Fase S , Proteínas de Saccharomyces cerevisiae/genética
5.
Proc Natl Acad Sci U S A ; 106(1): 232-7, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19116279

RESUMO

Orderly progression through meiosis requires strict regulation of DNA metabolic events, so that a single round of DNA replication is systematically followed by a recombination phase and 2 rounds of chromosome segregation. We report here the disruption of this sequence of events in Saccharomyces cerevisiae through meiosis-specific induction of the cyclin-dependent kinase (CDK) inhibitor Sic1 mutated at multiple phosphorylation sites. Accumulation of this stabilized version of Sic1 led to significant DNA rereplication in the absence of normal chromosome segregation. Deletion of DMC1 abolished DNA rereplication, but additional deletion of RAD17 restored the original phenotype. Therefore, activation of the meiotic recombination checkpoint, which arrests meiotic progression at pachytene, suppressed DNA rereplication resulting from Sic1 stabilization. In contrast to deletion of DMC1, deletion of NDT80, which encodes a transcription factor required for pachytene exit, did not inhibit DNA rereplication. Our results provide strong evidence that CDK activity is required to prevent inappropriate initiation of DNA synthesis before the meiotic divisions.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Replicação do DNA , Meiose , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/antagonistas & inibidores , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Segregação de Cromossomos , Proteínas Inibidoras de Quinase Dependente de Ciclina , Proteínas de Ligação a DNA/fisiologia , Mutação , Estágio Paquíteno , Fosforilação , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/fisiologia
6.
Genes Dev ; 22(3): 386-97, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18245450

RESUMO

S-phase cyclin-dependent kinase Cdc28-Clb5 (CDK-S) and Dbf4-dependent kinase Cdc7-Dbf4 (DDK) are highly conserved kinases well known for their roles in the initiation of DNA replication. CDK-S is also essential for initiation of meiotic recombination because it phosphorylates Ser30 of Mer2, a meiosis-specific double-strand break (DSB) protein. This work shows that the phosphorylation of Mer2 Ser30 by CDK-S primes Mer2 for subsequent phosphorylation by DDK on Ser29, creating a negatively charged "patch" necessary for DSB formation. CDK-S and DDK phosphorylation of Mer2 S30 and S29 can be bypassed by phosphomimetic amino acids, but break formation under these conditions is still dependent on DDK and CDK-S activity. Coordination between premeiotic S and DSB formation may be achieved by using CDK-S and DDK to initiate both processes. Many other proteins important for replication, recombination, repair, and chromosome segregation contain combination DDK/CDK sites, raising the possibility that this is a common regulatory mechanism.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/fisiologia , Ciclina B/fisiologia , Meiose/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Replicação do DNA/fisiologia , Fosforilação , Recombinação Genética/genética , Recombinação Genética/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Biol Chem ; 283(16): 10396-407, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18287090

RESUMO

The anaphase-promoting complex (APC) regulates the eukaryotic cell cycle by targeting specific proteins for proteasomal degradation. Its activity must be strictly controlled to ensure proper cell cycle progression. The co-activator proteins Cdc20 and Cdh1 are required for APC activity and are important regulatory targets. Recently, budding yeast Acm1 was identified as a Cdh1 binding partner and APC(Cdh1) inhibitor. Acm1 disappears in late mitosis when APC(Cdh1) becomes active and contains conserved degron-like sequences common to APC substrates, suggesting it could be both an inhibitor and substrate. Surprisingly, we found that Acm1 proteolysis is independent of APC. A major determinant of Acm1 stability is phosphorylation at consensus cyclin-dependent kinase sites. Acm1 is a substrate of Cdc28 cyclin-dependent kinase and Cdc14 phosphatase both in vivo and in vitro. Mutation of Cdc28 phosphorylation sites or conditional inactivation of Cdc28 destabilizes Acm1. In contrast, inactivation of Cdc14 prevents Acm1 dephosphorylation and proteolysis. Cdc28 stabilizes Acm1 in part by promoting binding of the 14-3-3 proteins Bmh1 and Bmh2. We conclude that the opposing actions of Cdc28 and Cdc14 are primary factors limiting Acm1 to the interval from G(1)/S to late mitosis and are capable of establishing APC-independent expression patterns similar to APC substrates.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/fisiologia , Regulação Fúngica da Expressão Gênica , Proteínas Tirosina Fosfatases/fisiologia , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Complexos Ubiquitina-Proteína Ligase , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Mitose , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Mol Cell ; 24(1): 127-37, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17018298

RESUMO

In the absence of functional telomeric cap protection, the ends of eukaryotic chromosomes are subject to DNA damage responses that lead to cell-cycle arrest and, eventually, genomic instability. However, the controlling activities responsible for the initiation of genome instability on unprotected telomeres remained unclear. Here we show that in budding yeast, unprotected telomeres undergo a tightly cell-cycle-regulated DNA degradation. Ablation of the function of essential capping proteins Cdc13p or Stn1p only caused telomere degradation in G2/M, but not in G1 of the cell cycle. Accordingly, G1-arrested cells with unprotected telomeres remained viable, while G2/M-arrested cells failed to recover. The data also show that completion of S phase and the activity of the S-Cdk1 kinase were required for telomere degradation. These results strongly suggest that after a loss of the telomere capping function, telomere-led genome instability is caused by tightly regulated cellular DNA repair attempts.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Dano ao DNA , DNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Telômero/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Instabilidade Genômica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/fisiologia
9.
Genetics ; 171(3): 901-11, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16079231

RESUMO

Smk1 is a meiosis-specific MAPK homolog in Saccharomyces cerevisiae that regulates the postmeiotic program of spore formation. Similar to other MAPKs, it is activated via phosphorylation of the T-X-Y motif in its regulatory loop, but the signals controlling Smk1 activation have not been defined. Here we show that Ama1, a meiosis-specific activator of the anaphase-promoting complex/cyclosome (APC/C), promotes Smk1 activation during meiosis. A weakened allele of CDC28 suppresses the sporulation defect of an ama1 null strain and increases the activation state of Smk1. The function of Ama1 in regulating Smk1 is independent of the FEAR network, which promotes exit from mitosis and exit from meiosis I through the Cdc14 phosphatase. The data indicate that Cdc28 and Ama1 function in a pathway to trigger Smk1-dependent steps in spore morphogenesis. We propose that this novel mechanism for controlling MAPK activation plays a role in coupling the completion of meiosis II to gamete formation.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Meiose/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas Cdc20 , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Proteínas Tirosina Fosfatases/fisiologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
10.
Eukaryot Cell ; 4(1): 55-62, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15643060

RESUMO

Cdc28p is the major cyclin-dependent kinase in Saccharomyces cerevisiae. Its activity is required for blocking the reinitiation of DNA replication during mitosis. Here, we show that under conditions where Cdc28p activity is improperly regulated--either through the loss of function of the Schizosaccharomyces pombe wee1 ortholog Swe1p or through the expression of a dominant CDC28 allele, CDC28AF--diploid yeast cells are able to complete several rounds of premeiotic DNA replication within a single meiotic cell cycle. Moreover, a percentage of mutant cells exhibit a "multispore" phenotype, possessing the ability to package more than four spores within a single ascus. These multispored asci contain both even and odd numbers of viable spores. In order for meiotic rereplication and multispore formation to occur, cells must initiate homologous recombination and maintain proper chromosome cohesion during meiosis I. Rad9p- or Rad17p-dependent checkpoint mechanisms are not required for multispore formation and neither are the B-type cyclin Clb6p and the cyclin-dependent kinase inhibitor Sic1p. Finally, we present evidence of a possible role for a Cdc55p-dependent protein phosphatase 2A in initiating meiotic replication.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Meiose , Saccharomyces cerevisiae/fisiologia , Alelos , Northern Blotting , Proteínas de Ciclo Celular/metabolismo , Separação Celular , Ciclina B/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina , DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Regulação Fúngica da Expressão Gênica , Genes Dominantes , Proteínas de Fluorescência Verde/metabolismo , Modelos Genéticos , Proteínas Nucleares , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Plasmídeos/metabolismo , Proteína Fosfatase 2 , Proteínas Tirosina Quinases/metabolismo , RNA/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
11.
Dev Cell ; 7(2): 263-74, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15296722

RESUMO

Duplication of the Saccharomyces cerevisiae spindle pole body (SPB) once per cell cycle is essential for bipolar spindle formation and accurate chromosome segregation during mitosis. We have investigated the role that the major yeast cyclin-dependent kinase Cdc28/Cdk1 plays in assembly of a core SPB component, Spc42, to better understand how SPB duplication is coordinated with cell cycle progression. Cdc28 is required for SPB duplication and Spc42 assembly, and we found that Cdc28 directly phosphorylates Spc42 to promote its assembly into the SPB. The Mps1 kinase, previously shown to regulate Spc42 phosphorylation and assembly, is also a Cdc28 substrate, and Cdc28 phosphorylation of Mps1 is needed to maintain wild-type levels of Mps1 in cells. Analysis of nonphosphorylatable mutants in SPC42 and MPS1 indicates that direct Spc42 phosphorylation and indirect regulation of Spc42 through Mps1 are two overlapping pathways by which Cdc28 regulates Spc42 assembly and SPB duplication during the cell cycle.


Assuntos
Proteína Quinase CDC2/fisiologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas do Citoesqueleto/fisiologia , Fosfoproteínas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Fuso Acromático , Alelos , Ciclo Celular , Centrossomo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Espectrometria de Massas , Mitose , Modelos Biológicos , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/química , Temperatura , Treonina/química
12.
J Cell Biochem ; 92(5): 1025-33, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15258924

RESUMO

Meiosis can be considered an elaboration of the cell division cycle in the sense that meiosis combines cell-cycle processes with programs specific to meiosis. Each phase of the cell division cycle is driven forward by cell-cycle kinases (Cdk) and coordinated with other phases of the cycle through checkpoint functions. Meiotic differentiation is also controlled by these two types of regulation; however, recent study in the budding yeast S. cerevisiae indicates that progression of meiosis is also controlled by a master regulator specific to meiosis, namely the Ime2p kinase. Below, I describe the overlapping roles of Ime2p and Cdk during meiosis in yeast and speculate on how these two kinases cooperate to drive the progression of meiosis.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/fisiologia , Meiose/fisiologia , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Replicação do DNA/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases , Processamento Pós-Transcricional do RNA
13.
Yeast ; 20(9): 813-26, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12845607

RESUMO

In Saccharomyces cerevisiae, a complex comprising more than 20 different polypeptides assembles in a ring at the neck between the mother cell and the bud. This complex functions to coordinate cell morphology with cell division. Relatively little is known about this control system, including the physical relationships between the components of the neck ring. This study addressed the assembly interactions of three components of the ring, specifically the protein kinases Elm1p and Hsl1p and the septin Cdc12p. Specific amino acid substitutions in each of these three proteins were identified that either cause or suppress a characteristic phenotype of abnormally elongated cells and delay in the G(2)-M transition. Each protein was fused to green fluorescent protein, and its ability to localize at the neck was monitored in vivo in cells of various genotypes. Localization of Hsl1p to the neck requires Elm1p function. Elm1p localized normally in the absence of Hsl1p, although a specific point mutation in Hsl1p clearly affected Elm1p localization. The cdc12-122 mutation prevented assembly of Elm1p or Hsl1p into the neck ring. Normal assembly of Cdc12p at the neck was dependent upon Elm1p and also, to a smaller extent, on Hsl1p. Ectopic localization of Cdc12p at the bud tip was observed frequently in elm1 mutants and also, to a lesser extent, in hsl1 mutants. Thus, Elm1p is a key factor in the assembly and/or maintenance of Hsl1p, as well as at least one septin, into the bud neck ring.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Microscopia de Fluorescência , Mutagênese , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases , Proteínas Recombinantes , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Science ; 300(5619): 647-50, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12714746

RESUMO

We generated mice lacking Cks2, one of two mammalian homologs of the yeast Cdk1-binding proteins, Suc1 and Cks1, and found them to be viable but sterile in both sexes. Sterility is due to failure of both male and female germ cells to progress past the first meiotic metaphase. The chromosomal events up through the end of prophase I are normal in both CKS2-/- males and females, suggesting that the phenotype is due directly to failure to enter anaphase and not a consequence of a checkpoint-mediated metaphase I arrest.


Assuntos
Anáfase , Quinases relacionadas a CDC2 e CDC28 , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Meiose , Metáfase , Oócitos/fisiologia , Espermatócitos/fisiologia , Animais , Apoptose , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular , Segregação de Cromossomos , Ciclina A/metabolismo , Ciclina B/metabolismo , Epididimo/citologia , Epididimo/fisiologia , Feminino , Marcação de Genes , Hibridização In Situ , Infertilidade Feminina/fisiopatologia , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Mutação , Ovário/citologia , Ovário/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética , Espermatogênese , Testículo/citologia , Testículo/fisiologia
15.
Curr Biol ; 13(2): 173-7, 2003 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-12546794

RESUMO

Protein kinases regulate a number of critical events in mitosis and meiosis. A study of the evolution of kinases involved in cell cycle control (CCC) might shed light on the evolution of the eukaryotic cell cycle. In particular, applying quantitative phylogenetic methods to key CCC kinases could provide information on the relative timing of gene duplication events. To investigate the evolution of CCC kinases, we constructed phylogenetic trees for the CDC28 family and performed statistical tests of the tree topology. This family includes the cyclin-dependent kinases (CDKs), which are key regulators of the eukaryotic cell cycle, as well as other CCC kinases. We found that CDKs and, in particular, the principal cell cycle regulator Cdc28p, branch off the phylogenetic tree at a late stage, after several other kinases involved in either mitosis or meiosis regulation. On the basis of this tree topology, it is proposed that, at early stages of evolution, the eukaryotic cell cycle was not controlled by CDKs and that only a subset of extant kinases, notably the DNA damage checkpoint kinase Chk1p, were in place. During subsequent evolution, a series of duplications of kinase genes occurred, gradually adding more kinases to the CCC system, the CDKs being among the last major additions.


Assuntos
Evolução Biológica , Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Animais , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Quinase 1 do Ponto de Checagem , Quinases Ciclina-Dependentes/genética , Duplicação Gênica , Humanos , Meiose/fisiologia , Mitose/fisiologia , Filogenia , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
16.
EMBO J ; 21(15): 4012-25, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12145202

RESUMO

The Saccharomyces cerevisiae morphogenesis checkpoint delays mitosis in response to insults that impair actin organization and/or bud formation. The delay is due to accumulation of the inhibitory kinase Swe1p, which phosphorylates the cyclin-dependent kinase Cdc28p. Having screened through a panel of yeast mutants with defects in cell morphogenesis, we report here that the polarity establishment protein Bem2p is required for the checkpoint response. Bem2p is a Rho-GTPase activating protein (GAP) previously shown to act on Rho1p, and we now show that it also acts on Cdc42p, the GTPase primarily responsible for establishment of cell polarity in yeast. Whereas the morphogenesis role of Bem2p required GAP activity, the checkpoint role of Bem2p did not. Instead, this function required an N-terminal Bem2p domain. Thus, this single protein has a GAP-dependent role in promoting cell polarity and a GAP-independent role in responding to defects in cell polarity by enacting the checkpoint. Surprisingly, Swe1p accumulation occurred normally in bem2 cells, but they were nevertheless unable to promote Cdc28p phosphorylation. Therefore, Bem2p defines a novel pathway in the morphogenesis checkpoint.


Assuntos
Proteínas Fúngicas/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Genes cdc , Proteínas Quinases Ativadas por Mitógeno , Proteínas Tirosina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular , Polaridade Celular , Proteínas Fúngicas/genética , Fase G2/genética , Genes Fúngicos , Sistema de Sinalização das MAP Quinases , Metáfase/genética , Dados de Sequência Molecular , Morfogênese/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Reprodução Assexuada , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tiazóis/farmacologia , Tiazolidinas , ras-GRF1
18.
J Biol Chem ; 276(45): 41725-32, 2001 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-11527976

RESUMO

Proteolysis of the yeast G(1) cyclins is triggered by their Cdc28-dependent phosphorylation. Phosphorylated Cln1 and Cln2 are ubiquitinated by the SCF-Grr1 complex and then degraded by the 26 S proteasome. In this study, we identified a cak1 allele in a genetic screen for mutants that stabilize the yeast G(1) cyclins. Further characterization showed that Cln2HA was hypophosphorylated, unable to bind Cdc28, and stabilized in cak1 mutants at the restrictive temperature. Hypophosphorylation of Cln2HA could thus explain its stabilization. To test this possibility, we expressed a Cak1-independent mutant of Cdc28 (Cdc28-43244) in cak1 mutants and found that Cln2HA phosphorylation was restored, but surprisingly, the phospho-Cln2HA was stabilized. When bound to Cdc28-43244, Cln2HA was recognized and polyubiquitinated by SCF-Grr1. The Cdc28-43244 mutant thus reveals an unexpected complexity in the degradation of polyubiquitinated Cln2HA by the proteasome.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte , Proteínas de Ciclo Celular , Quinases Ciclina-Dependentes , Ciclinas/metabolismo , Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Ciclina G , Proteínas F-Box , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
19.
Genetics ; 159(4): 1547-58, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11779796

RESUMO

In the budding yeast Saccharomyces cerevisiae initiation and progression through the mitotic cell cycle are determined by the sequential activity of the cyclin-dependent kinase Cdc28. The role of this kinase in entry and progression through the meiotic cycle is unclear, since all cdc28 temperature-sensitive alleles are leaky for meiosis. We used a "heat-inducible Degron system" to construct a diploid strain homozygous for a temperature-degradable cdc28-deg allele. We show that this allele is nonleaky, giving no asci at the nonpermissive temperature. We also show, using this allele, that Cdc28 is not required for premeiotic DNA replication and commitment to meiotic recombination. IME2 encodes a meiosis-specific hCDK2 homolog that is required for the correct timing of premeiotic DNA replication, nuclear divisions, and asci formation. Moreover, in ime2Delta diploids additional rounds of DNA replication and nuclear divisions are observed. We show that the delayed premeiotic DNA replication observed in ime2Delta diploids depends on a functional Cdc28. Ime2Delta cdc28-4 diploids arrest prior to initiation of premeiotic DNA replication and meiotic recombination. Ectopic overexpression of Clb1 at early meiotic times advances premeiotic DNA replication, meiotic recombination, and nuclear division, but the coupling between these events is lost. The role of Ime2 and Cdc28 in initiating the meiotic pathway is discussed.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular , DNA/biossíntese , Proteínas Fúngicas/fisiologia , Meiose , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Animais , Western Blotting , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Separação Celular , Diploide , Citometria de Fluxo , Proteínas Fúngicas/genética , Genótipo , Homozigoto , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Mitose , Modelos Genéticos , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Recombinação Genética , Temperatura , Fatores de Tempo
20.
Curr Biol ; 10(5): 231-40, 2000 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-10712901

RESUMO

BACKGROUND: Cdc28p, the major cyclin-dependent kinase in budding yeast, prevents re-replication within each cell cycle by preventing the reassembly of Cdc6p-dependent pre-replicative complexes (pre-RCs) once origins have fired. Cdc6p is a rapidly degraded protein that must be synthesised in each cell cycle and is present only during the G1 phase. RESULTS: We found that, at different times in the cell cycle, there are distinct modes of Cdc6p proteolysis. Before Start, Cdc6p proteolysis did not require either the anaphase-promoting complex (APC/C) or the SCF complex, which mediate the major cell cycle regulated ubiquitination pathways, nor did it require Cdc28p activity or any of the potential Cdc28p phosphorylation sites in Cdc6p. In fact, the activation of B cyclin (Clb)-Cdc28p kinase inactivated this pathway of Cdc6p degradation later in the cell cycle. Activation of the G1 cyclins (Clns) caused Cdc6p degradation to become extremely rapid. This degradation required the SCF(CDC4) and Cdc28p consensus sites in Cdc6p, but did not require Clb5 and Clb6. Later in the cell cycle, SCF(CDC4)-dependent Cdc6p proteolysis remained active but became less rapid. CONCLUSIONS: Levels of Cdc6p are regulated in several ways by the Cdc28p cyclin-dependent kinase. The Cln-dependent elimination of Cdc6p, which does not require the S-phase-promoting cyclins Clb5 and Clb6, suggests that the ability to assemble pre-RCs is lost before, not concomitant with, origin firing.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomycetales/fisiologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Ciclina B/metabolismo , Fase G1 , Immunoblotting , Modelos Biológicos , Peptídeo Sintases/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Ligases SKP Culina F-Box , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...