Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 15(5): e1006796, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31150387

RESUMO

The calcium calmodulin-dependent protein kinase II (CaMKII) is a dodecameric holoenzyme important for encoding memory. Its activation, triggered by binding of calcium-calmodulin, persists autonomously after calmodulin dissociation. One (receiver) kinase captures and subsequently phosphorylates the regulatory domain peptide of a donor kinase forming a chained dimer as the first stage of autonomous activation. Protein dynamics simulations examined the conformational changes triggered by dimer formation and phosphorylation, aimed to provide a molecular rationale for human mutations that result in learning disabilities. Ensembles generated from X-ray crystal structures were characterized by network centrality and community analysis. Mutual information related collective motions to local fragment dynamics encoded with a structural alphabet. Implicit solvent tCONCOORD conformational ensembles revealed the dynamic architecture of inactive kinase domains was co-opted in the activated dimer but the network hub shifted from the nucleotide binding cleft to the captured peptide. Explicit solvent molecular dynamics (MD) showed nucleotide and substrate binding determinants formed coupled nodes in long-range signal relays between regulatory peptides in the dimer. Strain in the extended captured peptide was balanced by reduced flexibility of the receiver kinase C-lobe core. The relays were organized around a hydrophobic patch between the captured peptide and a key binding helix. The human mutations aligned along the relays. Thus, these mutations could disrupt the allosteric network alternatively, or in addition, to altered binding affinities. Non-binding protein sectors distant from the binding sites mediated the allosteric signalling; providing possible targets for inhibitor design. Phosphorylation of the peptide modulated the dielectric of its binding pocket to strengthen the patch, non-binding sectors, domain interface and temporal correlations between parallel relays. These results provide the molecular details underlying the reported positive kinase cooperativity to enrich the discussion on how autonomous activation by phosphorylation leads to long-term behavioural effects.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/ultraestrutura , Animais , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Fosforilação/fisiologia , Ligação Proteica , Conformação Proteica , Transdução de Sinais
2.
J Comp Neurol ; 520(18): 4218-25, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22627922

RESUMO

Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) is a major component of postsynaptic densities (PSDs) involved in synaptic regulation. It has been previously shown that upon activity CaMKII from the spine reversibly aggregates at the cytoplasmic surfaces of PSDs, where it encounters various targets for phosphorylation. Targets for CaMKII are also present within the PSD, but there has been no reliable method to pinpoint whether, or where, CaMKII is located inside the PSD. Here we show that CaMKII can be mapped molecule-by-molecule within isolated PSDs using negative stain electron microscopy tomography. CaMKII molecules found in the core of the PSD may represent a pool distinct from the CaMKII residing at the cytoplasmic surface.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Microscopia Eletrônica de Transmissão , Neurônios/ultraestrutura , Densidade Pós-Sináptica/enzimologia , Densidade Pós-Sináptica/ultraestrutura , Animais , Animais Recém-Nascidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/ultraestrutura , Hipocampo/citologia , Processamento de Imagem Assistida por Computador , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
3.
Eur Biophys J ; 38(1): 83-98, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18769913

RESUMO

By combining biochemical experiments with computer modelling of biochemical reactions we elucidated some of the currently unresolved aspects of calcium-calmodulin-dependent protein kinase II (CaMKII) activation and autophosphorylation that might be relevant for its physiological function and provided a model that incorporates in detail the mechanism of CaMKII activation and autophosphorylation at T286 that is based on experimentally determined binding constants and phosphorylation rates. To this end, we developed a detailed state model of CaMKII activation and autophosphorylation based on the currently available literature, and constrained it with data from CaMKII autophosphorylation essays. Our model takes exact phosphorylation patterns of CaMKII holoenzymes into account, and is valid at physiologically relevant conditions where the concentrations of calcium and calmodulin are not saturating. Our results strongly suggest that even when bound to less than fully calcium-bound calmodulin, CaMKII is in the active state, and indicate that the autophosphorylation of T286 by an active non-phosphorylated CaMKII subunit is significantly faster than by an autophosphorylated CaMKII subunit. These results imply that CaMKII can be efficiently activated at significantly lower calcium concentrations than previously thought, which may explain how CaMKII gets activated at calcium concentrations existing at synapses in vivo. We also investigated the significance of CaMKII holoenzyme structure on CaMKII autophosphorylation and obtained estimates of previously unknown binding constants.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/ultraestrutura , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Ativação Enzimática , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...