Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000142

RESUMO

Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1 , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Neoplasias/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/enzimologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/enzimologia , Animais , Transdução de Sinais
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000313

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and metabolism has expanded, and PTP1B is recognised as a therapeutic target in several human disorders, including diabetes, obesity, cardiovascular diseases and hematopoietic malignancies. The function of PTP1B in the immune system was largely overlooked until it was discovered that PTP1B negatively regulates the Janus kinase-a signal transducer and activator of the transcription (JAK/STAT) signalling pathway, which plays a significant role in modulating immune responses. PTP1B is now known to determine the magnitude of many signalling pathways that drive immune cell activation and function. As such, PTP1B inhibitors are being developed and tested in the context of inflammation and autoimmune diseases. Here, we provide an up-to-date summary of the molecular role of PTP1B in regulating immune cell function and how targeting its expression and/or activity has the potential to change the outcomes of immune-mediated and inflammatory disorders.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1 , Transdução de Sinais , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Animais , Inflamação/metabolismo , Inflamação/imunologia , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733774

RESUMO

Olanzapine (OLA) is a highly obesogenic second-generation antipsychotic (SGA). Recently we demonstrated that, contrarily to OLA oral treatment, intraperitoneal (i.p.) administration resulted in weight loss and absence of hepatic steatosis in wild-type (WT) and protein tyrosine phosphatase 1B (PTP1B)-deficient (KO) male mice. This protection relied on two central-peripheral axes connecting hypothalamic AMPK with brown/inguinal white adipose tissue (BAT/iWAT) uncoupling protein-1 (UCP-1) and hypothalamic JNK with hepatic fatty acid synthase (FAS). Herein, we addressed OLA i.p. treatment effects in WT and PTP1B-KO female mice. Contrarily to our previous results in WT females receiving OLA orally, the i.p. treatment did not induce weight gain or hyperphagia. Molecularly, in females OLA failed to diminish hypothalamic phospho-AMPK or elevate BAT UCP-1 and energy expenditure (EE) despite the preservation of iWAT browning. Conversely, OLA i.p. treatment in ovariectomized mice reduced hypothalamic phospho-AMPK, increased BAT/iWAT UCP-1 and EE, and induced weight loss as occurred in males. Pretreatment of hypothalamic neurons with 17ß-estradiol (E2) abolished OLA effects on AMPK. Moreover, neither hypothalamic JNK activation nor hepatic FAS upregulation were found in WT and PTP1B-KO females receiving OLA via i.p. Importantly, this axis was reestablished upon ovariectomy. In this line, E2 prevented OLA-induced phospho-JNK in hypothalamic neurons. These results support the role of estrogens in sex-related dimorphism in OLA treatment. This study evidenced the benefit of OLA i.p. administration in preventing its obesogenic effects in female mice that could offer clinical value.


Assuntos
Tecido Adiposo Marrom , Estrogênios , Hipotálamo , Fígado , Camundongos Knockout , Olanzapina , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Desacopladora 1 , Animais , Feminino , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Estrogênios/metabolismo , Estrogênios/farmacologia , Olanzapina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Metabolismo Energético/efeitos dos fármacos , Injeções Intraperitoneais , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Estradiol/farmacologia , Ovariectomia
4.
Circ Res ; 134(10): e93-e111, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563147

RESUMO

BACKGROUND: Endothelial activation promotes the release of procoagulant extracellular vesicles and inflammatory mediators from specialized storage granules. Endothelial membrane exocytosis is controlled by phosphorylation. We hypothesized that the absence of PTP1B (protein tyrosine phosphatase 1B) in endothelial cells promotes venous thromboinflammation by triggering endothelial membrane fusion and exocytosis. METHODS: Mice with inducible endothelial deletion of PTP1B (End.PTP1B-KO) underwent inferior vena cava ligation to induce stenosis and venous thrombosis. Primary endothelial cells from transgenic mice and human umbilical vein endothelial cells were used for mechanistic studies. RESULTS: Vascular ultrasound and histology showed significantly larger venous thrombi containing higher numbers of Ly6G (lymphocyte antigen 6 family member G)-positive neutrophils in mice with endothelial PTP1B deletion, and intravital microscopy confirmed the more pronounced neutrophil recruitment following inferior vena cava ligation. RT2 PCR profiler array and immunocytochemistry analysis revealed increased endothelial activation and adhesion molecule expression in primary End.PTP1B-KO endothelial cells, including CD62P (P-selectin) and VWF (von Willebrand factor). Pretreatment with the NF-κB (nuclear factor kappa B) kinase inhibitor BAY11-7082, antibodies neutralizing CD162 (P-selectin glycoprotein ligand-1) or VWF, or arginylglycylaspartic acid integrin-blocking peptides abolished the neutrophil adhesion to End.PTP1B-KO endothelial cells in vitro. Circulating levels of annexin V+ procoagulant endothelial CD62E+ (E-selectin) and neutrophil (Ly6G+) extracellular vesicles were also elevated in End.PTP1B-KO mice after inferior vena cava ligation. Higher plasma MPO (myeloperoxidase) and Cit-H3 (citrullinated histone-3) levels and neutrophil elastase activity indicated neutrophil activation and extracellular trap formation. Infusion of End.PTP1B-KO extracellular vesicles into C57BL/6J wild-type mice most prominently enhanced the recruitment of endogenous neutrophils, and this response was blunted in VWF-deficient mice or by VWF-blocking antibodies. Reduced PTP1B binding and tyrosine dephosphorylation of SNAP23 (synaptosome-associated protein 23) resulting in increased VWF exocytosis and neutrophil adhesion were identified as mechanisms, all of which could be restored by NF-κB kinase inhibition using BAY11-7082. CONCLUSIONS: Our findings show that endothelial PTP1B deletion promotes venous thromboinflammation by enhancing SNAP23 phosphorylation, endothelial VWF exocytosis, and neutrophil recruitment.


Assuntos
Exocitose , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Trombose Venosa , Fator de von Willebrand , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/deficiência , Humanos , Camundongos , Fator de von Willebrand/metabolismo , Fator de von Willebrand/genética , Trombose Venosa/metabolismo , Trombose Venosa/genética , Trombose Venosa/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/genética , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Veia Cava Inferior/metabolismo , Veia Cava Inferior/patologia , Masculino , Infiltração de Neutrófilos , NF-kappa B/metabolismo
5.
J Leukoc Biol ; 116(1): 118-131, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38417030

RESUMO

Neutrophils are rapidly recruited to sites of infection and are critical for pathogen clearance. Therapeutic use of primary neutrophils has been limited, as they have a short lifespan and are not amenable to genetic manipulation. Human induced pluripotent stem cells (iPSCs) can provide a robust source of neutrophils for infusion and are genetically tractable. However, current work has indicated that dampened intracellular signaling limits iPSC-derived neutrophil (iNeutrophil) cellular activation and antimicrobial response. Here, we show that protein tyrosine phosphatase 1B (PTP1B) inhibits intracellular signaling and dampens iNeutrophil effector function. Deletion of the PTP1B phosphatase increased PI3K and ERK signaling and was associated with increased F-actin polymerization, cell migration, and phagocytosis. In contrast, other effector functions like NETosis and reactive oxygen species production were reduced. PTP1B-deficient neutrophils were more responsive to Aspergillus fumigatus and displayed rapid recruitment and control of hyphal growth. Accordingly, depletion of PTP1B increased production of inflammatory factors including the neutrophil chemokine interleukin-8. Taken together, these findings suggest that PTP1B limits iNeutrophil motility and antimicrobial function.


Assuntos
Movimento Celular , Células-Tronco Pluripotentes Induzidas , Neutrófilos , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Neutrófilos/metabolismo , Neutrófilos/imunologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Aspergillus fumigatus , Fagocitose , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Actinas/metabolismo
6.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119590, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730132

RESUMO

Glomerular podocytes are instrumental for the barrier function of the kidney, and podocyte injury contributes to proteinuria and the deterioration of renal function. Protein tyrosine phosphatase 1B (PTP1B) is an established metabolic regulator, and the inactivation of this phosphatase mitigates podocyte injury. However, there is a paucity of data regarding the substrates that mediate PTP1B actions in podocytes. This study aims to uncover novel substrates of PTP1B in podocytes and validate a leading candidate. To this end, using substrate-trapping and mass spectroscopy, we identified putative substrates of this phosphatase and investigated the actin cross-linking cytoskeletal protein alpha-actinin4. PTP1B and alpha-actinin4 co-localized in murine and human glomeruli and transiently transfected E11 podocyte cells. Additionally, podocyte PTP1B deficiency in vivo and culture was associated with elevated tyrosine phosphorylation of alpha-actinin4. Conversely, reconstitution of the knockdown cells with PTP1B attenuated alpha-actinin4 tyrosine phosphorylation. We demonstrated co-association between alpha-actinin4 and the PTP1B substrate-trapping mutant, which was enhanced upon insulin stimulation and disrupted by vanadate, consistent with an enzyme-substrate interaction. Moreover, we identified alpha-actinin4 tandem tyrosine residues 486/487 as mediators of its interaction with PTP1B. Furthermore, knockdown studies in E11 cells suggest that PTP1B and alpha-actinin4 are modulators of podocyte motility. These observations indicate that PTP1B and alpha-actinin4 are likely interacting partners in a signaling node that modulates podocyte function. Targeting PTP1B and plausibly this one of its substrates may represent a new therapeutic approach for podocyte injury that warrants additional investigation.


Assuntos
Podócitos , Humanos , Animais , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Células Epiteliais , Monoéster Fosfórico Hidrolases , Tirosina
7.
Front Immunol ; 14: 1232047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936713

RESUMO

Background: Protein tyrosine phosphatase non-receptor type 1 (PTPN1), a member of the protein tyrosine phosphatase superfamily, has been identified as an oncogene and therapeutic target in various cancers. However, its precise role in determining the prognosis of human cancer and immunological responses remains elusive. This study investigated the relationship between PTPN1 expression and clinical outcomes, immune infiltration, and drug sensitivity in human cancers, which will improve understanding regarding its prognostic value and immunological role in pan-cancer. Methods: The PTPN1 expression profile was obtained from The Cancer Genome Atlas and Cancer Cell Line Encyclopedia databases. Kaplan-Meier, univariate Cox regression, and time-dependent receiver operating characteristic curve analyses were utilized to clarify the relationship between PTPN1 expression and the prognosis of pan-cancer patients. The relationships between PTPN1 expression and the presence of tumor-infiltrated immune cells were analyzed using Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data and Tumor Immune Estimation Resource. The cell counting kit-8 (CCK-8) assay was performed to examine the effects of PTPN1 level on the sensitivity of breast cancer cells to paclitaxel. Immunohistochemistry and immunoblotting were used to investigate the relationship between PTPN1 expression, immune cell infiltration, and immune checkpoint gene expression in human breast cancer tissues and a mouse xenograft model. Results: The pan-cancer analysis revealed that PTPN1 was frequently up-regulated in various cancers. High PTPN1 expression was associated with poor prognosis in most cancers. Furthermore, PTPN1 expression correlated highly with the presence of tumor-infiltrating immune cells and the expression of immune checkpoint pathway marker genes in different cancers. Furthermore, PTPN1 significantly predicted the prognosis for patients undergoing immunotherapy. The results of the CCK-8 viability assay revealed that PTPN1 knockdown increased the sensitivity of MDA-MB-231 and MCF-7 cells to paclitaxel. Finally, our results demonstrated that PTPN1 was associated with immune infiltration and immune checkpoint gene expression in breast cancer. Conclusion: PTPN1 was overexpressed in multiple cancer types and correlated with the clinical outcome and tumor immunity, suggesting it could be a valuable potential prognostic and immunological biomarker for pan-cancer.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Prognóstico , Oncogenes , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteínas Tirosina Fosfatases , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
8.
Mol Cell Biol ; 43(12): 631-649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38014992

RESUMO

PTP1B plays a key role in developing different types of cancer. However, the molecular mechanism underlying this effect is unclear. To identify molecular targets of PTP1B that mediate its role in tumorigenesis, we undertook a SILAC-based phosphoproteomic approach, which allowed us to identify Cdk3 as a novel PTP1B substrate. Substrate trapping experiments and docking studies revealed stable interactions between the PTP1B catalytic domain and Cdk3. In addition, we observed that PTP1B dephosphorylates Cdk3 at tyrosine residue 15 in vitro and interacts with it in human glioblastoma cells. Next, we found that pharmacological inhibition of PTP1B or its depletion with siRNA leads to cell cycle arrest with diminished activity of Cdk3, hypophosphorylation of Rb, and the downregulation of E2F target genes Cdk1, Cyclin A, and Cyclin E1. Finally, we observed that the expression of a constitutively active Cdk3 mutant bypasses the requirement of PTP1B for cell cycle progression and expression of E2F target genes. These data delineate a novel signaling pathway from PTP1B to Cdk3 required for efficient cell cycle progression in an Rb-E2F dependent manner in human GB cells.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Divisão Celular , Transdução de Sinais , Pontos de Checagem do Ciclo Celular , Ciclo Celular/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo
9.
J Mol Neurosci ; 73(11-12): 932-945, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882913

RESUMO

Alzheimer's disease (AD) is a prevalently neurodegenerative disease characterized by neuronal damage which is associated with amyloid-ß (Aß) accumulation. Hederagenin is a triterpenoid saponin, exerting anti-apoptotic, anti-oxidative, anti-inflammatory, anti-tumoral, and neuroprotective activities. However, its role in AD progression is still obscure. The aim of this study was to explore the influences of hederagenin on Aß-caused neuronal injury in vitro. Neuronal cells were treated with Aß25-35 (Aß) to establish a cellular model of AD. Cell viability was assessed using cell counting kit-8 (CCK-8). Oxidative stress was evaluated by detecting reactive oxygen species (ROS) generation and superoxide dismutase (SOD) activity. Apoptosis was investigated using TUNEL staining and caspase-3 activity assays. Protein tyrosine phosphatase nonreceptor type 1 (PTPN1) was screened by bioinformatics analysis. Protein levels of PTPN1 and protein kinase B (Akt) were measured by western blotting. Hederagenin (2.5, 5, and 10 µM) alone did not affect viability of neuronal cells, but relieved Aß-induced viability reduction. Hederagenin mitigated Aß-induced increase in ROS accumulation and decrease in SOD activity. Hederagenin attenuated Aß-induced increase in apoptotic rate and caspase-3 activity. PTPN1 was screened as a target of hederagenin against AD by bioinformatics analysis. Hederagenin treatment resisted Aß-induced decrease in PTPN1 mRNA and protein levels in neuronal cells. PTPN1 silencing attenuated the suppressive functions of hederagenin in Aß-stimulated oxidative stress and apoptosis. Hederagenin mitigated Aß-induced Akt signaling inactivation by upregulating PTPN1 expression. In conclusion, hederagenin attenuates oxidative stress and apoptosis in neuronal cells stimulated with Aß by promoting PTPN1/Akt signaling activation.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Monoéster Fosfórico Hidrolases , Caspase 3/metabolismo , Estresse Oxidativo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Apoptose , Superóxido Dismutase-1/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/uso terapêutico
10.
J Endocrinol ; 259(1)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37466473

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common causes of infertility in women. Approximately half of the diagnosed individuals also experience the metabolic syndrome. Central and peripheral resistance to the hormones insulin and leptin have been reported to contribute to both metabolic and reproductive dysregulation. In PCOS and preclinical PCOS animal models, circulating insulin and leptin levels are often increased in parallel with the development of hormone resistance; however, it remains uncertain whether these changes contribute to the PCOS state. In this study, we tested whether central actions of protein tyrosine phosphatase 1B (PTP1B) and suppressor of cytokine signaling 3 (SOCS3), negative regulators of insulin and leptin signaling pathways, respectively, play a role in the development of PCOS-like phenotype. A peripubertal dihydrotestosterone (DHT) excess PCOS-like mouse model was used, which exhibits both metabolic and reproductive dysfunction. Mice with knockout of the genes encoding PTP1B and SOCS3 from forebrain neurons were generated, and metabolic and reproductive functions were compared between knockout and control groups. DHT treatment induced mild insulin resistance but not leptin resistance, so the role of SOCS3 could not be tested. As expected, DHT excess abolished estrous cycles and corpora lutea presence and caused increased visceral adiposity and fasting glucose levels. Knockout mice did not show any rescue of reproductive dysfunction but did have reduced adiposity compared to the control DHT mice. These data suggest that negative regulation of central insulin signaling by PTP1B is not responsible for peripubertal DHT excess-induced reproductive impairments but may mediate its increased adiposity effects.


Assuntos
Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Insulina , Camundongos Knockout , Neurônios/metabolismo , Obesidade/complicações , Síndrome do Ovário Policístico/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
11.
Nat Commun ; 14(1): 4524, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500611

RESUMO

The inhibition of protein tyrosine phosphatases 1B (PTP1B) and N2 (PTPN2) has emerged as an exciting approach for bolstering T cell anti-tumor immunity. ABBV-CLS-484 is a PTP1B/PTPN2 inhibitor in clinical trials for solid tumors. Here we have explored the therapeutic potential of a related small-molecule-inhibitor, Compound-182. We demonstrate that Compound-182 is a highly potent and selective active site competitive inhibitor of PTP1B and PTPN2 that enhances T cell recruitment and activation and represses the growth of tumors in mice, without promoting overt immune-related toxicities. The enhanced anti-tumor immunity in immunogenic tumors can be ascribed to the inhibition of PTP1B/PTPN2 in T cells, whereas in cold tumors, Compound-182 elicited direct effects on both tumor cells and T cells. Importantly, treatment with Compound-182 rendered otherwise resistant tumors sensitive to α-PD-1 therapy. Our findings establish the potential for small molecule inhibitors of PTP1B and PTPN2 to enhance anti-tumor immunity and combat cancer.


Assuntos
Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Camundongos , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Monoéster Fosfórico Hidrolases , Neoplasias/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Linfócitos T/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
12.
J Biol Chem ; 299(5): 104731, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080392

RESUMO

The identification of substrates for protein tyrosine phosphatases (PTPs) is critical for a complete understanding of how these enzymes function. In a recent study in the JBC, Bonham et al. developed a modified method combining substrate-trapping mutations with proximity-labeling MS to identify the protein substrates and interactors of PTP1B. This method revealed interaction networks in breast cancer cell models and discovered novel targets of PTP1B that regulate HER2 signaling pathways. This strategy represents a versatile new tool for identifying the functional interactions between PTPs and their substrates.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas/metabolismo , Mutação , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Especificidade por Substrato
13.
J Healthc Eng ; 2023: 1533794, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741874

RESUMO

Recently, PTP1B was identified as a novel immune checkpoint whose removal can unleash T cell responses. However, research on the influence of PTP1B as an immune regulator on liver cancer is limited. This study aimed to investigate the immunological correlation and function of PTP1B in liver cancer. The expression profiles and corresponding clinical information of liver cancer patients were obtained from the TCGA and ICGC databases. GSE146115 and GSE98638 retrieved from the GEO database were used for the single-cell RNA-seq analysis. The mRNA expression of PTP1B (PTPN1) was increased in patients with most malignancies (all p < 0.05), including liver cancer (p < 0.001). Furthermore, up-regulated PTPN1 was connected to advanced tumor stage (p < 0.05) and worse prognosis (p < 0.01) in liver cancer. Through Cox regression analysis, PTPN1 was considered as an independent prognosis factor of overall survival (p < 0.05) and acted as a high-risk factor (hazard ratio > 1). Gene function and pathway analysis suggested PTPN1 was involved in T cell-related immune responses. Moreover, a close relationship was also found between PTPN1 expression and immune checkpoints as well as immune cells, especially with T cell-related checkpoints (all p < 0.001) and T cells (all p < 0.001). Single-cell RNA-seq analysis further illustrated that the enrichment of PTPN1 in the T cell population may be linked to its exhaustion in the liver cancer microenvironment. Overall, PTPN1 (PTP1B) closely related to T cell may function as an immunotherapy target for liver cancer.


Assuntos
Neoplasias Hepáticas , Linfócitos T , Humanos , Prognóstico , Biomarcadores , Fatores de Risco , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Microambiente Tumoral , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
14.
Arch Oral Biol ; 147: 105615, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36630765

RESUMO

OBJECTIVE: Head and neck squamous cell carcinoma (HNSCC), is one of the malignant tumors with high recurrence and metastasis. The family with sequence similarity (FAM) of non-coding RNAs promoted tumorigenesis and metastasis. But so far, long non-coding RNA (lncRNA) FAM239A's function in HNSCC regulation remains unclear. This study aimed to explore the lncRNA FAM239A function and regulation mechanism in HNSCC cell proliferation and migration. DESIGN: The expression level of lncRNA FAM239A and tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP2) in HNSCC tumor tissue was tested by quantitative polymerase chain reaction. The cell proliferation and migration were tested by cell counting kit 8, kinetic live cell assay, and wound healing assay. The differential expression of SHP2 and immune infiltration in HNSCC were analyzed in the tumor immune estimation response and human protein atlas databases. And the survival analysis of SHP2 in HNSCC was analyzed in the gene expression profiling interactive analysis 2 databases. The SHP2 expression was tested by western blotting when lncRNA FAM239A overexpression and knockdown. RESULTS: LncRNA FAM239A and SHP2 were ectopically expressed in HNSCC tumor tissue. Cell proliferation and wound healing assays showed that lncRNA FAM239A promoted tumor cell proliferation and migration. SHP2 was overexpressed in HNSCC tumor tissue by database analyses, and the higher SHP2 expression caused poorer overall survival and disease-free survival in HNSCC patients. SHP2 expression was positively regulated by lncRNA FAM239A. CONCLUSIONS: LncRNA FAM239A promoted HNSCC cell proliferation and migration through upregulating SHP2 expression, which potentially provided new regulators for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteína Tirosina Fosfatase não Receptora Tipo 1 , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
15.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672250

RESUMO

Bone morphogenic protein receptor 2 (BMPR2) expression and signaling are impaired in pulmonary arterial hypertension (PAH). How BMPR2 signaling is decreased in PAH is poorly understood. Protein tyrosine phosphatases (PTPs) play important roles in vascular remodeling in PAH. To identify whether PTPs modify BMPR2 signaling, we used a siRNA-mediated high-throughput screening of 22,124 murine genes in mouse myoblastoma reporter cells using ID1 expression as readout for BMPR2 signaling. We further experimentally validated the top hit, PTPN1 (PTP1B), in healthy human pulmonary arterial endothelial cells (PAECs) either silenced by siRNA or exposed to hypoxia and confirmed its relevance to PAH by measuring PTPN1 levels in blood and PAECs collected from PAH patients. We identified PTPN1 as a novel regulator of BMPR2 signaling in PAECs, which is downregulated in the blood of PAH patients, and documented that downregulation of PTPN1 is linked to endothelial dysfunction in PAECs. These findings point to a potential involvement for PTPN1 in PAH and will aid in our understanding of the molecular mechanisms involved in the disease.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Doenças Vasculares , Animais , Humanos , Camundongos , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Doenças Vasculares/metabolismo
16.
Free Radic Biol Med ; 194: 147-159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462629

RESUMO

Reactive oxygen species (ROS), released as byproducts of mitochondrial metabolism or as products of NADPH oxidases and other processes, can directly oxidize the active-site cysteine (Cys) residue of protein tyrosine phosphatases (PTPs) in a mammalian cell. Robust degradation of irreversibly oxidized PTPs is essential for preventing accumulation of these permanently inactive enzymes. However, the mechanism underlying the degradation of these proteins was unknown. In this study, we found that the active-site Cys215 of endogenous PTP1B is sulfonated in H9c2 cardiomyocytes under physiological conditions. The sulfonation of Cys215 led PTP1B to exhibit a conformational change, and drive the subsequent ubiquitination and degradation of this protein. We then discovered that Cullin1, an E3 ligase, interacts with the Cys215-sulfonated PTP1B. The functional impairment of Cullin1 prevented PTP1B from oxidation-dependent ubiquitination and degradation in H9c2 cells. Moreover, delivery of the terminally oxidized PTP1B resulted in proteotoxicity-caused injury in the affected cells. In conclusion, we elucidate how sulfonation of the active-site Cys215 can direct turnover of endogenous PTP1B through the engagement of ubiquitin-proteasome system. These data highlight a novel mechanism that maintains PTP homeostasis in cardiomyocytes with constitutive ROS production.


Assuntos
Cisteína , Ubiquitina-Proteína Ligases , Animais , Cisteína/metabolismo , Espécies Reativas de Oxigênio , Proteínas Tirosina Fosfatases , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Mamíferos/metabolismo
17.
Pediatr Res ; 93(7): 2036-2044, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36369476

RESUMO

BACKGROUND: To study the associations of Protein Tyrosine Phosphatase-N1 (PTPN1) polymorphisms with obesity-related phenotypes in European adolescents, and the influence of physical activity on these relationships. METHODS: Five polymorphisms of PTPN1 were genotyped in 1057 European adolescents (12-18 years old). We measured several phenotypes related to obesity, such as adiposity markers, and biochemical and clinical parameters. Physical activity was objectively measured by accelerometry. RESULTS: The T, A, T, T and G alleles of the rs6067472, rs10485614, rs2143511, rs6020608 and rs968701 polymorphisms, respectively, were associated with lower levels of obesity-related phenotypes (i.e., body mass index, body fat percentage, hip circumference, fat mass index, systolic blood pressure and leptin) in European adolescents. In addition, the TATTG haplotype was associated with lower body fat percentage and fat mass index compared to the AACCA haplotype. Finally, when physical activity levels were considered, alleles of the rs6067472, rs2143511, rs6020608 and rs968701 polymorphisms were only associated with lower adiposity in active adolescents. CONCLUSIONS: PTPN1 polymorphisms were associated with adiposity in European adolescents. Specifically, alleles of these polymorphisms were associated with lower adiposity only in physically active adolescents. Therefore, meeting the recommendations of daily physical activity may reduce obesity risk by modulating the genetic predisposition to obesity. IMPACT: Using gene-phenotype and gene*environment analyses, we detected associations between polymorphisms of the Protein Tyrosine Phosphatase-N1 (PTPN1) gene and obesity-related phenotypes, suggesting a mechanism that can be modulated by physical activity. This study shows that genetic variability of PTPN1 is associated with adiposity, while physical activity seems to modulate the genetic predisposition. This brings insights about the mechanisms by which physical activity positively influences obesity.


Assuntos
Predisposição Genética para Doença , Obesidade , Humanos , Obesidade/genética , Adiposidade/genética , Exercício Físico , Fenótipo , Índice de Massa Corporal , Proteínas Tirosina Fosfatases/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
18.
Biomed Khim ; 68(6): 427-436, 2022 Dec.
Artigo em Russo | MEDLINE | ID: mdl-36573409

RESUMO

Functional disorders in obesity are largely due to a decrease in tissue sensitivity to insulin and leptin. One of the ways to restore it is inhibition of protein phosphotyrosine phosphatase 1B (PTP1B) and T-cell protein phosphotyrosine phosphatase (TCPTP), negative regulators of the insulin and leptin signaling. Despite progress in the development of inhibitors of these phosphatases, commercial preparations based on them have not been developed yet, and the mechanisms of action are poorly understood. The aim of the work was to study the effect of new derivatives of 4-oxo-1,4-dihydrocinnoline (PI04, PI06, PI07) on the activity of PTP1B and TCPTP, as well as to study the effect of their five-day administration (i.p., 10 mg/kg/day) to Wistar rats with diet-induced obesity on body weight and fat, metabolic and hormonal parameters, and gene expression of phosphatase and insulin and leptin receptors in the liver. It has been shown that PI04 is a mild, low selective inhibitor of both phosphatases (PTP1B, IC50=3.42(2.60-4.51) µM; TCPTP, IC50=4.16(3.49-4.95) µM), while PI06 and PI07 preferentially inhibit PTP1B (IC50=3.55 (2.63-4.78) µM) and TCPTP (IC50=1.45(1.18-1.78) µM), respectively. PI04 significantly reduced food intake, body weight and fat, attenuated hyperglycemia, normalized glucose tolerance, basal and glucose-stimulated levels of insulin and leptin, and insulin resistance index. Despite the anorexigenic effect, PI06 and PI07 were less effective, having little effect on glucose homeostasis and insulin sensitivity. PI04 significantly increased the expression of the PTP1B and TCPTP genes and decreased the expression of the insulin and leptin receptor genes. PI06 and PI07 had little effect on these indicators. Thus, PI04, the inhibitor of PTP1B and TCPTP phosphatases, restored metabolic and hormonal parameters in obese rats with greater efficiency than inhibitors of PTP1B (PI06) and TCPTP (PI07). This indicates the prospect of creating mixed PTP1B/TCPTP inhibitors for correction of metabolic disorders.


Assuntos
Resistência à Insulina , Leptina , Animais , Ratos , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Ratos Wistar , Linfócitos T , Tirosina
19.
Nat Commun ; 13(1): 6092, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241662

RESUMO

Insulin signaling is mediated via a network of protein phosphorylation. Dysregulation of this network is central to obesity, type 2 diabetes and metabolic syndrome. Here we investigate the role of phosphatase binding protein Alpha4 (α4) that is essential for the serine/threonine protein phosphatase 2A (PP2A) in insulin action/resistance in adipocytes. Unexpectedly, adipocyte-specific inactivation of α4 impairs insulin-induced Akt-mediated serine/threonine phosphorylation despite a decrease in the protein phosphatase 2A (PP2A) levels. Interestingly, loss of α4 also reduces insulin-induced insulin receptor tyrosine phosphorylation. This occurs through decreased association of α4 with Y-box protein 1, resulting in the enhancement of the tyrosine phosphatase protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, adipocyte-specific knockout of α4 in male mice results in impaired adipogenesis and altered mitochondrial oxidation leading to increased inflammation, systemic insulin resistance, hepatosteatosis, islet hyperplasia, and impaired thermogenesis. Thus, the α4 /Y-box protein 1(YBX1)-mediated pathway of insulin receptor signaling is involved in maintaining insulin sensitivity, normal adipose tissue homeostasis and systemic metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Homeostase , Insulina/metabolismo , Masculino , Camundongos , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo
20.
Thromb Haemost ; 122(10): 1814-1826, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36075234

RESUMO

BACKGROUND: Smooth muscle cell (SMC) phenotype switching plays a central role during vascular remodeling. Growth factor receptors are negatively regulated by protein tyrosine phosphatases (PTPs), including its prototype PTP1B. Here, we examine how reduction of PTP1B in SMCs affects the vascular remodeling response to injury. METHODS: Mice with inducible PTP1B deletion in SMCs (SMC.PTP1B-KO) were generated by crossing mice expressing Cre.ERT2 recombinase under the Myh11 promoter with PTP1Bflox/flox mice and subjected to FeCl3 carotid artery injury. RESULTS: Genetic deletion of PTP1B in SMCs resulted in adventitia enlargement, perivascular SMA+ and PDGFRß+ myofibroblast expansion, and collagen accumulation following vascular injury. Lineage tracing confirmed the appearance of Myh11-Cre reporter cells in the remodeling adventitia, and SCA1+ CD45- vascular progenitor cells increased. Elevated mRNA expression of transforming growth factor ß (TGFß) signaling components or enzymes involved in extracellular matrix remodeling and TGFß liberation was seen in injured SMC.PTP1B-KO mouse carotid arteries, and mRNA transcript levels of contractile SMC marker genes were reduced already at baseline. Mechanistically, Cre recombinase (mice) or siRNA (cells)-mediated downregulation of PTP1B or inhibition of ERK1/2 signaling in SMCs resulted in nuclear accumulation of KLF4, a central transcriptional repressor of SMC differentiation, whereas phosphorylation and nuclear translocation of SMAD2 and SMAD3 were reduced. SMAD2 siRNA transfection increased protein levels of PDGFRß and MYH10 while reducing ERK1/2 phosphorylation, thus phenocopying genetic PTP1B deletion. CONCLUSION: Chronic reduction of PTP1B in SMCs promotes dedifferentiation, perivascular fibrosis, and adverse remodeling following vascular injury by mechanisms involving an ERK1/2 phosphorylation-driven shift from SMAD2 to KLF4-regulated gene transcription.


Assuntos
Músculo Liso Vascular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Lesões do Sistema Vascular , Animais , Células Cultivadas , Fibrose , Camundongos , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Recombinases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...