Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Mol Cell Biol ; 22(1): 26, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947326

RESUMO

BACKGROUND: Prostate cancer occurs through multiple steps until advanced metastasis. Signaling pathways studies can result in the identification of targets to interrupt cancer progression. Glypicans are cell surface proteoglycans linked to the membrane through glycosylphosphatidylinositol. Their interaction with specific ligands has been reported to trigger diverse signaling, including Wnt. In this study, prostate cancer cell lines PC-3, DU-145, and LNCaP were compared to normal prostate RWPE-1 cell line to investigate glypican family members and the activation of the Wnt signaling pathway. RESULTS: Glypican-1 (GPC1) was highly expressed in all the examined cell lines, except for LNCaP, which expressed glypican-5 (GPC5). The subcellular localization of GPC1 was detected on the cell surface of RWPE-1, PC-3, and DU-145 cell lines, while GPC5 suggested cytoplasm localization in LNCaP cells. Besides glypican, flow cytometry analysis in these prostate cell lines confirmed the expression of Wnt-3a and unphosphorylated ß-catenin. The co-immunoprecipitation assay revealed increased levels of binding between Wnt-3a and glypicans in cancer cells, suggesting a relationship between these proteoglycans in this pathway. A marked increase in nuclear ß-catenin was observed in tumor cells. However, only PC-3 cells demonstrated activation of canonical Wnt signaling, according to the TOPFLASH assay. CONCLUSIONS: GPC1 was the majorly expressed gene in all the studied cell lines, except for LNCaP, which expressed GPC5. We assessed by co-immunoprecipitation that these GPCs could interact with Wnt-3a. However, even though nuclear ß-catenin was found increased in the prostate cancer cells (i.e., PC-3, DU-145 and LNCaP), activation of Wnt pathway was only found in PC-3 cells. In these PC-3 cells, GPC1 and Wnt-3a revealed high levels of colocalization, as assessed by confocal microscopy studies. This suggests a localization at the cellular surface, where Frizzled receptor is required for downstream activation. The interaction of Wnt-3a with GPCs in DU-145 and LNCaP cells, which occurs in absence of Wnt signaling activation, requires further studies. Once non-TCF-LEF proteins can also bind ß-catenin, another signaling pathway may be involved in these cells with regulatory function.


Assuntos
Glipicanas/metabolismo , Neoplasias da Próstata/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral , Glipicanas/genética , Humanos , Masculino , Neoplasias da Próstata/genética , Proteína Wnt3A/metabolismo , Proteína Wnt3A/fisiologia
2.
Braz J Med Biol Res ; 45(1): 58-67, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22124704

RESUMO

Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid ß-peptide (Aß25-35; 50 µM). Cells (1 x 10(6) cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of ß-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer's and Huntington's diseases.


Assuntos
Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Wnt3A/efeitos dos fármacos , Peptídeos beta-Amiloides/farmacologia , Animais , Apoptose/fisiologia , Diferenciação Celular , Proliferação de Células , Compostos Ferrosos/farmacologia , Nitrocompostos/farmacologia , Estresse Oxidativo/fisiologia , Células PC12 , Propionatos/farmacologia , Ratos , Transdução de Sinais/fisiologia , Estaurosporina/farmacologia , Proteína Wnt3A/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA