Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779419

RESUMO

Genetic variants near the TRIB1 gene are highly significantly associated with plasma lipid traits and coronary artery disease. While TRIB1 is likely causal of these associations, the molecular mechanisms are not well understood. Here we sought to investigate how TRIB1 influences low density lipoprotein cholesterol (LDL-C) levels in mice. Hepatocyte-specific deletion of Trib1 (Trib1Δhep) in mice increased plasma cholesterol and apoB and slowed the catabolism of LDL-apoB due to decreased levels of LDL receptor (LDLR) mRNA and protein. Simultaneous deletion of the transcription factor CCAAT/enhancer-binding protein alpha (CEBPα) with TRIB1 eliminated the effects of TRIB1 on hepatic LDLR regulation and LDL catabolism. Using RNA-seq, we found that activating transcription factor 3 (Atf3) was highly upregulated in the livers of Trib1Δhep but not Trib1Δhep CebpaΔhep mice. ATF3 has been shown to directly bind to the CEBPα protein, and to repress the expression of LDLR by binding its promoter. Blunting the increase of ATF3 in Trib1Δhep mice reduced the levels of plasma cholesterol and partially attenuated the effects on LDLR. Based on these data, we conclude that deletion of Trib1 leads to a posttranslational increase in CEBPα, which increases ATF3 levels, thereby contributing to the downregulation of LDLR and increased plasma LDL-C.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lipoproteínas LDL/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de LDL/análise , Fator 3 Ativador da Transcrição/fisiologia , Animais , Apolipoproteínas B/metabolismo , Feminino , Humanos , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/fisiologia
2.
Clin Cancer Res ; 27(21): 5961-5978, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407972

RESUMO

PURPOSE: To evaluate the mechanisms of how therapeutic upregulation of the transcription factor, CCAAT/enhancer-binding protein alpha (C/EBPα), prevents tumor progression in patients with advanced hepatocellular carcinoma (HCC) and in different mouse tumor models. EXPERIMENTAL DESIGN: We conducted a phase I trial in 36 patients with HCC (NCT02716012) who received sorafenib as part of their standard care, and were given therapeutic C/EBPα small activating RNA (saRNA; MTL-CEBPA) as either neoadjuvant or adjuvant treatment. In the preclinical setting, the effects of MTL-CEBPA were assessed in several mouse models, including BNL-1ME liver cancer, Lewis lung carcinoma (LLC), and colon adenocarcinoma (MC38). RESULTS: MTL-CEBPA treatment caused radiologic regression of tumors in 26.7% of HCC patients with an underlying viral etiology with 3 complete responders. MTL-CEBPA treatment in those patients caused a marked decrease in peripheral blood monocytic myeloid-derived suppressor cell (M-MDSC) numbers and an overall reduction in the numbers of protumoral M2 tumor-associated macrophages (TAM). Gene and protein analysis of patient leukocytes following treatment showed CEBPA activation affected regulation of factors involved in immune-suppressive activity. To corroborate this observation, treatment of all the mouse tumor models with MTL-CEBPA led to a reversal in the suppressive activity of M-MDSCs and TAMs, but not polymorphonuclear MDSCs (PMN-MDSC). The antitumor effects of MTL-CEBPA in these tumor models showed dependency on T cells. This was accentuated when MTL-CEBPA was combined with checkpoint inhibitors or with PMN-MDSC-targeted immunotherapy. CONCLUSIONS: This report demonstrates that therapeutic upregulation of the transcription factor C/EBPα causes inactivation of immune-suppressive myeloid cells with potent antitumor responses across different tumor models and in cancer patients. MTL-CEBPA is currently being investigated in combination with pembrolizumab in a phase I/Ib multicenter clinical study (NCT04105335).


Assuntos
Antineoplásicos/uso terapêutico , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Células Mieloides/fisiologia , Sorafenibe/uso terapêutico , Regulação para Cima , Animais , Humanos , Camundongos , Resultado do Tratamento , Células Tumorais Cultivadas
3.
Curr Cancer Drug Targets ; 20(1): 59-66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31512996

RESUMO

BACKGROUND: Forkhead box C1 (FOXC1) is an important cancer-associated gene in tumor. PPAR-γ and C/EBPα are both transcriptional regulators involved in tumor development. OBJECTIVE: We aimed to clarify the function of PPAR-γ, C/EBPα in hepatocellular carcinoma (HCC) and the relationship of PPAR-γ, C/EBPα and FOXC1 in HCC. METHODS: Western blotting, immunofluorescent staining, and immunohistochemistry were used to evaluate protein expression. qRT-PCR was used to assess mRNA expression. Co-IP was performed to detect the protein interaction. And ChIP and fluorescent reporter detection were used to determine the binding between protein and FOXC1 promoter. RESULTS: C/EBPα could bind to FOXC1 promoter and PPAR-γ could strengthen C/EBPα's function. Expressions of C/EBPα and PPAR-γ were both negatively related to FOXC1 in human HCC tissue. Confocal displayed that C/EBPα was co-located with FOXC1 in HepG2 cells. C/EBPα could bind to FOXC1 promoter by ChIP. Luciferase activity detection exhibited that C/EBPα could inhibit FOXC1 promoter activity, especially FOXC1 promoter from -600 to -300 was the critical binding site. Only PPAR-γ could not influence luciferase activity but strengthen inhibited effect of C/EBPα. Further, the Co-IP displayed that PPAR-γ could bind to C/EBPα. When C/EBPα and PPAR-γ were both high expressed, cell proliferation, migration, invasion, and colony information were inhibited enormously. C/EBPα plasmid combined with or without PPAR-γ agonist MDG548 treatment exhibited a strong tumor inhibition and FOXC1 suppression in mice. CONCLUSION: Our data establish C/EBPα targeting FOXC1 as a potential determinant in the HCC, which supplies a new pathway to treat HCC. However, PPAR-γ has no effect on FOXC1 expression.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Carcinoma Hepatocelular/patologia , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , PPAR gama/fisiologia , Animais , Movimento Celular , Proliferação de Células , Fatores de Transcrição Forkhead/fisiologia , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Regiões Promotoras Genéticas
4.
Front Immunol ; 10: 1786, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447834

RESUMO

Cancer immunotherapy relies on either restoring or activating the function of adaptive immune cells, mainly CD8+ T lymphocytes. Despite impressive clinical success, cancer immunotherapy remains ineffective in many patients due to the establishment of tumor resistance, largely dependent on the nature of tumor microenvironment. There are several cellular and molecular mechanisms at play, and the goal is to identify those that are clinically significant. Among the hematopoietic-derived cells, monocytes are endowed with high plasticity, responsible for their pro- and anti-tumoral function. Indeed, monocytes are involved in several cancer-associated processes such as immune-tolerance, metastatic spread, neoangiogenesis, and chemotherapy resistance; on the other hand, by presenting cancer-associated antigens, they can also promote and sustain anti-tumoral T cell response. Recently, by high throughput technologies, new findings have revealed previously underappreciated, profound transcriptional, epigenetic, and metabolic differences among monocyte subsets, which complement and expand our knowledge on the monocyte ontogeny, recruitment during steady state, and emergency hematopoiesis, as seen in cancer. The subdivision into discrete monocytes subsets, both in mice and humans, appears an oversimplification, whereas continuum subsets development is best for depicting the real condition. In this review, we examine the evidences sustaining the existence of a monocyte heterogeneity along with functional activities, at the primary tumor and at the metastatic niche. In particular, we describe how tumor-derived soluble factors and cell-cell contact reprogram monocyte function. Finally, we point out the role of monocytes in preparing and shaping the metastatic niche and describe relevant targetable molecules altering monocyte activities. We think that exploiting monocyte complexity can help identifying key pathways important for the treatment of cancer and several conditions where these cells are involved.


Assuntos
Monócitos/fisiologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Plasticidade Celular , Humanos , Imunoterapia , Monócitos/imunologia , Células Supressoras Mieloides/fisiologia , Neoplasias/imunologia , Neoplasias/terapia
5.
Sci Rep ; 7(1): 14048, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070836

RESUMO

Myeloid-derived suppressor cells (MDSCs) are greatly expanded in cancer patients and tumor-bearing mice. They infiltrate into tumors and modulate the tumor microenvironment. In an effort to identify molecular mediators responsible for expansion and the tumor-promoting function of MDSCs, we discovered CCAAT/enhancer binding protein alpha (C/EBPα) expression was significantly reduced in MDSCs from tumor-bearing mice compared to non-tumor-bearing hosts. Tumor-conditioned medium down-regulated C/EBPα expression, suggesting tumor secreted factors inhibiting the gene expression. Consistent with the function of C/EBPα in regulating the balance between proliferation and growth arrest in hematopoietic progenitors, myeloid lineage specific deletion of C/EBPα resulted in significantly enhanced MDSC proliferation and expansion, as well as an increase of myeloid progenitors and a decrease of mature cells. In addition, deletion of C/EBPα in MDSCs enhanced the pro-angiogenic, immune suppressive and pro-tumorigenic behavior of these cells by upregulating the production of iNOS and arginase, as well as MMP-9 and VEGF. Accordingly, tumors growing in C/EBPα conditional null mice displayed greater MDSC infiltration, increased vascularization and accelerated tumor growth. Taken together, this study reveals dual negative roles of C/EBPα in the expansion as well as pro-angiogenic and immune suppressive functions in MDSCs.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Carcinoma Pulmonar de Lewis/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/patologia , Células Supressoras Mieloides/patologia , Neovascularização Patológica/patologia , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Diferenciação Celular , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/metabolismo , Neovascularização Patológica/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral
6.
J Proteome Res ; 16(8): 2863-2876, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28665611

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is hereditary cardiomyopathy characterized by the fibro-fatty replacement of the myocardium. A small number of noncomprehensive profiling studies based on human cardiac tissues have been conducted and reported; consequently, ARVC's gene expression pattern characteristics remain largely undocumented. Our study applies large-scaled, quantitative proteomics based on TMT-labeled LC-MS/MS to analyze the left and right ventricular myocardium of four ARVC and four DCM explanted hearts to compare them with normal hearts. Our objective is to reveal the characteristic proteome pattern in ARVC compared with DCM as well as nondiseased heart. We also conducted the RNA sequencing of 10 right ventricles from ARVC hearts paired with four nondiseased donor hearts to validate the proteome results. In a manner similar to that of the well-defined DCM heart failure model, the ARVC model demonstrates the downregulation of mitochondrial function proteins and the effects of many heart failure regulators such as TGFB, RICTOR, and KDM5A. In addition, the inflammatory signaling, especially the complement system, was activated much more severely in ARVC than in DCM. Our most significant discovery was the lipid metabolism reprogramming of both ARVC ventricles in accordance with the upregulation of lipogenesis factors such as FABP4 and FASN. We identified the key upstream regulator of lipogenesis as C/EBPα. Transcriptome profiling verified the consistency with proteome alterations. This comprehensive proteogenomics profiling study reveals that an activation of C/EBPα, along with the upregulation of its lipogenesis targets, accounts for lipid storage and acts as a hallmark of ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Metabolismo dos Lipídeos , Miocárdio/metabolismo , Proteogenômica/métodos , Perfilação da Expressão Gênica , Ventrículos do Coração/metabolismo , Humanos , Inflamação , Lipogênese , Proteínas Mitocondriais/metabolismo , Miocárdio/patologia , Transdução de Sinais
7.
Leukemia ; 31(11): 2279-2285, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28720765

RESUMO

Myeloid master regulator CCAAT enhancer-binding protein alpha (C/EBPα) is deregulated by multiple mechanisms in leukemia. Inhibition of C/EBPα function plays pivotal roles in leukemogenesis. While much is known about how C/EBPα orchestrates granulopoiesis, our understanding of molecular transformation events, the role(s) of cooperating mutations and clonal evolution during C/EBPα deregulation in leukemia remains elusive. In this review, we will summarize the latest research addressing these topics with special emphasis on CEBPA mutations. We conclude by describing emerging therapeutic strategies to restore C/EBPα function.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Leucemia Mieloide Aguda/fisiopatologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Leucemia Mieloide Aguda/genética , Mutação
8.
Biochim Biophys Acta Gen Subj ; 1861(7): 1777-1787, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28341486

RESUMO

BACKGROUND: Human polo-like kinase 1 (PLK1), a highly conserved serine/threonine kinase is a key player in several essential cell-cycle events. PLK1 is considered an oncogene and its overexpression often correlates with poor prognosis of cancers, including colorectal cancer (CRC). However, regulation of PLK1 expression in colorectal cells was never studied earlier and it is currently unknown if PLK1 regulates differentiation and apoptosis of CRC. METHODS: PLK1 expression was analyzed by real-time PCR and western blotting. Transcriptional regulation was studied by reporter assay, gene knock-down, EMSA and ChIP. RESULTS: PLK1 expression was down-regulated during butyrate-induced differentiation of HT-29 and other CRC cells. Also, PLK1 down-regulation mediated the role of butyrate in CRC differentiation and apoptosis. We report here a novel transcriptional regulation of PLK1 by butyrate. Transcription factors CCAAT/enhancer-binding protein α (C/EBPα) and Oct-1 share an overlapping binding site over the PLK1 promoter. Elevated levels of C/EBPα by butyrate treatment of CRC cells competed out the activator protein Oct-1 from binding to the PLK1 promoter and sequestered it. Binding of C/EBPα was associated with increased deacetylation near the transcription start site (TSS) of the PLK1 promoter, which abrogated transcription through reduced recruitment of RNA polymerase II. We also found a synergistic role between the synthetic PLK1-inhibitor SBE13 and butyrate on the apoptosis of CRC cells. CONCLUSION: This study offered a novel p53-independent regulation of PLK1 during CRC differentiation and apoptosis. GENERAL SIGNIFICANCE: Down-regulation of PLK1 is one of the mechanisms underlying the anti-cancer role of dietary fibre-derived butyrate in CRC.


Assuntos
Apoptose , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Apoptose/efeitos dos fármacos , Benzilaminas/farmacologia , Butiratos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fator 1 de Transcrição de Octâmero/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Piridinas/farmacologia , Quinase 1 Polo-Like
9.
Arch Virol ; 161(5): 1151-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26831934

RESUMO

CCAAT/enhancer-binding protein (C/EBP) α, a member of the C/EBP family of transcription factors, is known to be involved in gene expression and DNA replication of human cytomegalovirus (HCMV). This study aimed to understand the regulation of endogenous C/EBPα during HCMV infection using an in vitro infection model. The expression and localization of C/EBPα were investigated in fibroblasts infected with HCMV. The overexpression of C/EBP homologous protein (CHOP), the endogenous inhibitor of C/EBP, was also employed to test the involvement of C/EBPα during HCMV infection. Our data showed that HCMV infection increases the expression of the full-length C/EBPα isoform (p42) especially during the late stage of infection at the transcriptional and post-translational levels. The increased p42 accumulated in the viral DNA replication compartment. p42 expression was not induced in cells treated with UV-irradiated virus or in cells infected with normal virus in the presence of ganciclovir. CHOP-mediated inhibition of C/EBP activity suppressed viral gene expression and DNA replication, which lowered the level of viral production. Together, our data suggest that HCMV-mediated C/EBPα regulation might play a beneficial role in the lytic cycle of HCMV.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Citomegalovirus/fisiologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Fibroblastos/virologia , Imunofluorescência , Regulação Viral da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/fisiologia , Células HEK293/virologia , Humanos , Immunoblotting , Reação em Cadeia da Polimerase em Tempo Real , Replicação Viral/fisiologia
11.
Hepatology ; 61(3): 965-78, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25363290

RESUMO

UNLABELLED: CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P=0.017) and multivariate Cox regression (P=0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation. CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Adulto , Idoso , Animais , Autofagia , Carcinoma Hepatocelular/metabolismo , Morte Celular , Linhagem Celular Tumoral , Humanos , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais
12.
Exp Hematol ; 43(4): 300-8.e1, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534203

RESUMO

Two types of CCAAT-enhancer-binding protein α (C/EBPα) mutants are found in acute myeloid leukemia (AML) patients: N-terminal frame-shift mutants (C/EBPα-N(m)) generating p30 as a dominant form and C-terminal basic leucine zipper domain mutants (C/EBPα-C(m)). We have previously shown that C/EBPα-K304_R323dup belonging to C/EBPα-C(m), but not C/EBPα-T60fsX159 belonging to C/EBPα-N(m), alone induced AML in mouse bone marrow transplantation (BMT) models. Here we show that various C/EBPα-C(m) mutations have a similar, but not identical, potential in myeloid leukemogenesis. Notably, like C/EBPα-K304_R323dup, any type of C/EBPα-C(m) tested (C/EBPα-S299_K304dup, K313dup, or N321D) by itself induced AML, albeit with different latencies after BMT; C/EBPα-N321D induced AML with the shortest latency. By analyzing the gene expression profiles of C/EBPα-N321D- and mock-transduced c-kit(+)Sca-1(+)Lin(-) cells, we identified Csf1r as a gene downregulated by C/EBPα-N321D. In addition, leukemic cells expressing C/EBPα-C(m) exhibited low levels of colony stimulating factor 1 receptor in mice. On the other hand, transduction with C/EBPα-N(m) did not influence Csf1r expression in c-kit(+)Sca-1(+)Lin(-) cells, implying a unique role for C/EBPα-C(m) in downregulating Csf1r. Importantly, Csf1r overexpression collaborated with C/EBPα-N321D to induce fulminant AML with leukocytosis in mouse BMT models to a greater extent than did C/EBPα-N321D alone. Collectively, these results suggest that C/EBPα-C(m)-mediated downregulation of Csf1r has a negative, rather than a positive, impact on the progression of AML involving C/EBPα-C(m), which might possibly be accelerated by additional genetic and/or epigenetic alterations inducing Csf1r upregulation.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Regulação para Baixo/fisiologia , Leucemia Mieloide Aguda/patologia , Mutação , Receptor de Fator Estimulador de Colônias de Macrófagos/fisiologia , Animais , Sequência de Bases , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Primers do DNA , Progressão da Doença , Citometria de Fluxo , Humanos , Leucemia Mieloide Aguda/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Stem Cells ; 33(4): 1345-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25546133

RESUMO

Ionizing radiation (IR) is associated with reduced hematopoietic function and increased risk of hematopoietic malignancies, although the mechanisms behind these relationships remain poorly understood. Both effects of IR have been commonly attributed to the direct induction of DNA mutations, but evidence supporting these hypotheses is largely lacking. Here we demonstrate that IR causes long-term, somatically heritable, cell-intrinsic reductions in hematopoietic stem cell (HSC) and multipotent hematopoietic progenitor cell (mHPC) self-renewal that are mediated by C/EBPα and reversed by Notch. mHPC from previously irradiated (>9 weeks prior), homeostatically restored mice exhibit gene expression profiles consistent with their precocious differentiation phenotype, including decreased expression of HSC-specific genes and increased expression of myeloid program genes (including C/EBPα). These gene expression changes are reversed by ligand-mediated activation of Notch. Loss of C/EBPα expression is selected for within previously irradiated HSC and mHPC pools and is associated with reversal of IR-dependent precocious differentiation and restoration of self-renewal. Remarkably, restoration of mHPC self-renewal by ligand-mediated activation of Notch prevents selection for C/EBPα loss of function in previously irradiated mHPC pools. We propose that environmental insults prompt HSC to initiate a program limiting their self-renewal, leading to loss of the damaged HSC from the pool while allowing this HSC to temporarily contribute to differentiated cell pools. This "programmed mediocrity" is advantageous for the sporadic genotoxic insults animals have evolved to deal with but becomes tumor promoting when the entire HSC compartment is damaged, such as during total body irradiation, by increasing selective pressure for adaptive oncogenic mutations.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Células-Tronco Multipotentes/efeitos da radiação , Radiação Ionizante , Receptores Notch/efeitos da radiação , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos da radiação , Proliferação de Células/fisiologia , Proliferação de Células/efeitos da radiação , Células Cultivadas , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Multipotentes/fisiologia , Receptores Notch/fisiologia
14.
J Leukoc Biol ; 96(6): 1023-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25258381

RESUMO

miRNAs are short, noncoding RNAs that regulate expression of target genes at post-transcriptional levels and function in many important cellular processes, including differentiation, proliferation, etc. In this study, we observed down-regulation of miR-199a-5p during monocyte/macrophage differentiation of HL-60 and THP-1 cells, as well as human CD34(+) HSPCs. This down-regulation of miR-199a-5p resulted from the up-regulation of PU.1 that was demonstrated to regulate transcription of the miR-199a-2 gene negatively. Overexpression of miR-199a-5p by miR-199a-5p mimic transfection or lentivirus-mediated gene transfer significantly inhibited monocyte/macrophage differentiation of the cell lines or HSPCs. The mRNA encoding an ACVR1B was identified as a direct target of miR-199a-5p. Gradually increased ACVR1B expression level was detected during monocyte/macrophage differentiation of the leukemic cell lines and HSPCs, and knockdown of ACVR1B resulted in inhibition of monocyte/macrophage differentiation of HL-60 and THP-1 cells, which suggested that ACVR1B functions as a positive regulator of monocyte/macrophage differentiation. We demonstrated that miR-199a-5p overexpression or ACVR1B knockdown promoted proliferation of THP-1 cells through increasing phosphorylation of Rb. We also demonstrated that the down-regulation of ACVR1B reduced p-Smad2/3, which resulted in decreased expression of C/EBPα, a key regulator of monocyte/macrophage differentiation, and finally, inhibited monocyte/macrophage differentiation.


Assuntos
Receptores de Ativinas Tipo I/fisiologia , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hematopoese/genética , Macrófagos/citologia , MicroRNAs/fisiologia , Monócitos/citologia , Receptores de Ativinas Tipo I/antagonistas & inibidores , Receptores de Ativinas Tipo I/genética , Proteína alfa Estimuladora de Ligação a CCAAT/biossíntese , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Sangue Fetal/citologia , Genes Reporter , Células HL-60 , Células-Tronco Hematopoéticas/citologia , Humanos , Proteínas de Neoplasias/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/fisiologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteína do Retinoblastoma/metabolismo , Proteína Smad2/fisiologia , Transativadores/fisiologia , Transdução Genética , Transfecção
15.
Proc Natl Acad Sci U S A ; 111(27): 9899-904, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958854

RESUMO

Homeobox A9 (HOXA9) is a homeodomain-containing transcription factor that plays a key role in hematopoietic stem cell expansion and is commonly deregulated in human acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia (AML) lead to overexpression of HOXA9, almost always in association with overexpression of its cofactor meis homeobox 1 (MEIS1) . A wide range of data suggests that HOXA9 and MEIS1 play a synergistic causative role in AML, although the molecular mechanisms leading to transformation by HOXA9 and MEIS1 remain elusive. In this study, we identify CCAAT/enhancer binding protein alpha (C/EBPα) as a critical collaborator required for Hoxa9/Meis1-mediated leukemogenesis. We show that C/EBPα is required for the proliferation of Hoxa9/Meis1-transformed cells in culture and that loss of C/EBPα greatly improves survival in both primary and secondary murine models of Hoxa9/Meis1-induced leukemia. Over 50% of Hoxa9 genome-wide binding sites are cobound by C/EBPα, which coregulates a number of downstream target genes involved in the regulation of cell proliferation and differentiation. Finally, we show that Hoxa9 represses the locus of the cyclin-dependent kinase inhibitors Cdkn2a/b in concert with C/EBPα to overcome a block in G1 cell cycle progression. Together, our results suggest a previously unidentified role for C/EBPα in maintaining the proliferation required for Hoxa9/Meis1-mediated leukemogenesis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Proteínas de Homeodomínio/fisiologia , Leucemia Experimental/fisiopatologia , Proteínas de Neoplasias/fisiologia , Animais , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Camundongos , Proteína Meis1 , Regiões Promotoras Genéticas , Ligação Proteica
16.
Dev Comp Immunol ; 46(2): 155-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24721762

RESUMO

Interleukin-8 (IL8) is an immediate-early chemokine that has been well characterized in several fish species. Ten IL8 gene variants have already been described in rainbow trout, but none of their promoters has structurally been defined or functionally characterized in teleost fish. To uncover key factors regulating IL8 expression, we intended to functionally characterize an IL8 promoter from rainbow trout. Incidentally, we isolated a novel IL8 gene variant (IL8-G). It is structurally highly similar to the other trout IL8 gene variants and its mRNA concentration increased significantly in secondary lymphoid tissues after infecting healthy fish with Aeromonas salmonicida. The proximal promoter sequence of the IL8-G-encoding gene features in close proximity two consensus elements for CEBP attachment. The proximal site overlaps with a NF-κB-binding site. Cotransfection of an IL8-G promoter-driven reporter gene together with vectors expressing various mammalian CEBP or NF-κB factors revealed in human HEK-293 cells that CEBPA and NF-κB p50, but not NF-κB p65 activate this promoter. The stimulatory effect of NF-κB p50 is likely conveyed by synergizing with CEBPA. Deletion or mutation of either the distal or the proximal CEBP-binding site, respectively, caused a significant decrease in IL8-G promoter activation. We confirmed the significance of the CEBPA factor for IL8-G expression by comparing the stimulatory capacity of the trout CEBPA and -B factors, thereby reducing the evolutionary distance in the inter-species expression assays. Similar promoter induction potential and intracellular localization of the mammalian and teleostean CEBPA and -B factors suggests their functional conservation throughout evolution.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/veterinária , Interleucina-8/genética , Oncorhynchus mykiss/genética , Ativação Transcricional , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Bovinos , Sequência Conservada , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/metabolismo , Células HEK293 , Humanos , Interleucina-8/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Dados de Sequência Molecular , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/microbiologia , Especificidade de Órgãos , Regiões Promotoras Genéticas , Transporte Proteico , Fator de Transcrição RelA/fisiologia
17.
Leukemia ; 28(4): 749-60, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23823656

RESUMO

Use of all-trans retinoic acid (ATRA) as a differentiation agent has been limited to acute promyelocytic leukemia (APL) as non-APL leukemias are insensitive to ATRA. We recently demonstrated that the rexinoid, bexarotene, induces differentiation and therapeutic responses in patients with refractory AML. Rexinoids bind and activate retinoid X receptors (RXRs); however, rexinoids alone are incapable of activating retinoic acid receptor (RAR)/RXR complexes, suggesting that myeloid differentiation can occur independent of RAR. In this study, we demonstrate that rexinoid differentiation of AML cells is RAR independent and requires the expression of PU.1. Because of the promiscuousness of RXR with other nuclear receptors, myeloid differentiation by bexarotene with other nuclear receptor ligands was explored. Bexarotene cooperated with ATRA to enhance differentiation in some AML cell lines; however, the combination of bexarotene with the PPARγ agonist rosiglitazone did not. In contrast, bexarotene combined with liver X receptor (LXR) agonists, T0901317 or GW3965, induced potent differentiation and cytotoxicity in AML cell lines and primary human AML cells, but not in normal progenitor cells. These results suggest that RXR/LXR-regulated gene expression in normal cells is deregulated in AML cells and identifies a potential role for these agonists in differentiation therapy of non-APLs.


Assuntos
Leucemia Mieloide Aguda/patologia , Receptores Nucleares Órfãos/fisiologia , Receptores X de Retinoides/fisiologia , Bexaroteno , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Hidrocarbonetos Fluorados/farmacologia , Receptores X do Fígado , Ácidos Nicotínicos/farmacologia , Proteínas Proto-Oncogênicas/fisiologia , Sulfonamidas/farmacologia , Tetra-Hidronaftalenos/farmacologia , Transativadores/fisiologia , Tretinoína/farmacologia
18.
Biochim Biophys Acta ; 1829(11): 1207-17, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24076158

RESUMO

The CCAAT/enhancer-binding protein α (C/EBPα) is the member of a family of related basic leucine zipper (bZIP) transcription factors and is critical for granulopoiesis. We previously demonstrated that C/EBPα interacts with the ETS domain of widely expressed GABPα, which leads to cooperative transcriptional activation of the myeloid-specific promoter for human FCAR encoding the Fc receptor for IgA (FcαR, CD89) in part by facilitating recruitment of C/EBPα to the promoter. The C/EBPα molecule contains transactivation domains (TADs) at its N-terminus and a DNA-binding and dimerization bZIP structure at its C-terminus. We demonstrate here that GABPα interacts with the last 18 residues of the C/EBPα C-terminus beyond the bZIP DNA-binding and dimerizing region. Deletion of this C-terminus resulted in loss of GABPα interaction but not affecting its DNA binding ability, indicating that it is not required for homodimer formation. Moreover, the C-terminus confers the ability to functionally synergize with GABP on a heterologous TAD when fused to the C-terminus of the VP16 TAD. We identified a three-amino acid stretch (amino acids 341-343) that is important for both functional and protein interactions with GABP. Ectopic expression in K562 cells of C/EBPα mutant incapable of interacting with GABPα does not induce expression of granulocytic differentiation markers including CD15, CD11b, GCSF-R and C/EBPε, and does not inhibit proliferation, whereas wild type does. These results demonstrate the functional importance of the C/EBPα C-terminus beyond the bZIP DNA-binding and dimerization region, which may mediate cooperative activation by C/EBPα and GABP of myeloid-specific genes involved in C/EBPα-dependent granulopoiesis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Diferenciação Celular/fisiologia , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Sequência de Bases , Proteína alfa Estimuladora de Ligação a CCAAT/química , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Células K562 , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Blood ; 121(20): 4073-81, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23547051

RESUMO

Dendritic cells (DCs) are master regulators of the immune system, but molecular regulation of early DC differentiation has been poorly understood. Here, we report that the transcription factor C/EBPα coordinates the development of progenitor cells required for production of multiple categories of DCs. C/EBPα was needed for differentiation from stem/progenitor cells to common DC progenitors (CDPs), but not for transition of CDP to mature DCs. C/EBPα deletion in mature DCs did not affect their numbers or function, suggesting that this transcription factor is not needed for maintenance of DCs in lymphoid tissues. ChIP-seq and microarrays were used to identify candidate genes regulated by C/EBPα and required for DC formation. Genes previously shown to be critical for DC formation were bound by C/EBPα, and their expression was decreased in the earliest hematopoietic compartments in the absence of C/EBPα. These data indicate that C/EBPα is important for the earliest stages of steady-state DC differentiation.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Diferenciação Celular/genética , Células Dendríticas/fisiologia , Células-Tronco/fisiologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Análise por Conglomerados , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco/metabolismo
20.
Diabetes ; 62(1): 115-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22933117

RESUMO

We previously identified a quantitative trait locus for adiposity, non-insulin-dependent diabetes 5 (Nidd5), on mouse chromosome 2. In the current study, we identified the actual genetic alteration at Nidd5 as a nonsense mutation of the Acvr1c gene encoding activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-ß receptors, which results in a COOH-terminal deletion of the kinase domain. We further showed that the ALK7 dysfunction causes increased lipolysis in adipocytes and leads to decreased fat accumulation. Conversely, ALK7 activation inhibits lipolysis by suppressing the expression of adipose lipases. ALK7 and activated Smads repress those lipases by downregulating peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBP) α. Although PPARγ and C/EBPα act as adipogenic transcription factors during adipocyte differentiation, they are lipolytic in sum in differentiated adipocytes and are downregulated by ALK7 in obesity to accumulate fat. Under the obese state, ALK7 deficiency improves glucose tolerance and insulin sensitivity by preferentially increasing fat combustion in mice. These findings have uncovered a net lipolytic function of PPARγ and C/EBPα in differentiated adipocytes and point to the ALK7-signaling pathway that is activated in obesity as a potential target of medical intervention.


Assuntos
Receptores de Ativinas Tipo I/fisiologia , Proteína alfa Estimuladora de Ligação a CCAAT/antagonistas & inibidores , Lipólise , Obesidade/metabolismo , PPAR gama/antagonistas & inibidores , Células 3T3-L1 , Receptores de Ativinas Tipo I/genética , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Códon sem Sentido , Regulação para Baixo , Lipase/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , PPAR gama/fisiologia , Proteínas Smad/fisiologia , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...