Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(1): 423-432, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32970320

RESUMO

Vascular leak is a key driver of organ injury in diseases, and strategies that reduce enhanced permeability and vascular inflammation are promising therapeutic targets. Activation of the angiopoietin-1 (ANG1)-Tie2 tyrosine kinase signaling pathway is an important regulator of vascular quiescence. Here we describe the design and construction of a new soluble ANG1 mimetic that is a potent activator of endothelial Tie2 in vitro and in vivo. Using a chimeric fusion strategy, we replaced the extracellular matrix (ECM) binding and oligomerization domain of ANG1 with a heptameric scaffold derived from the C-terminus of serum complement protein C4-binding protein α. We refer to this new fusion protein biologic as Hepta-ANG1, which forms a stable heptamer and induces Tie2 phosphorylation in cultured cells, and in the lung following intravenous injection of mice. Injection of Hepta-ANG1 ameliorates vascular endothelial growth factor- and lipopolysaccharide-induced vascular leakage, in keeping with the known functions of Angpt1-Tie2 in maintaining quiescent vascular stability. The new Hepta-ANG1 fusion is easy to produce and displays remarkable stability with high multimericity that can potently activate Tie2. It could be a new candidate ANG1 mimetic therapy for treatments of inflammatory vascular leak, such as acute respiratory distress syndrome and sepsis.


Assuntos
Angiopoietina-1 , Proteína de Ligação ao Complemento C4b , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Recombinantes de Fusão , Doenças Vasculares/tratamento farmacológico , Angiopoietina-1/biossíntese , Angiopoietina-1/genética , Angiopoietina-1/farmacologia , Animais , Proteína de Ligação ao Complemento C4b/biossíntese , Proteína de Ligação ao Complemento C4b/genética , Proteína de Ligação ao Complemento C4b/farmacologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos , Coelhos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/patologia , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
2.
Front Immunol ; 11: 2122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983170

RESUMO

Moraxella catarrhalis is a human-specific commensal of the respiratory tract and an opportunistic pathogen. It is one of the leading cause of otitis media in children and of acute exacerbations in patients with chronic obstructive pulmonary disease, resulting in significant morbidity and economic burden. Vaccines and new immunotherapeutic strategies to treat this emerging pathogen are needed. Complement is a key component of innate immunity that mediates the detection, response, and subsequent elimination of invading pathogens. Many pathogens including M. catarrhalis have evolved complement evasion mechanisms, which include the binding of human complement inhibitors such as C4b-binding protein (C4BP) and Factor H (FH). Inhibiting C4BP and FH acquisition by M. catarrhalis may provide a novel therapeutic avenue to treat infections. To achieve this, we created two chimeric proteins that combined the Moraxella-binding domains of C4BP and FH fused to human immunoglobulin Fcs: C4BP domains 1 and 2 and FH domains 6 and 7 fused to IgM and IgG Fc, respectively. As expected, FH6-7/IgG displaced FH from the bacterial surface while simultaneously activating complement via Fc-C1q interactions, together increasing pathogen elimination. C4BP1-2/IgM also increased serum killing of the bacteria through enhanced complement deposition, but did not displace C4BP from the surface of M. catarrhalis. These Fc fusion proteins could act as anti-infective immunotherapies. Many microbes bind the complement inhibitors C4BP and FH through the same domains as M. catarrhalis, therefore these Fc fusion proteins may be promising candidates as adjunctive therapy against many different drug-resistant pathogens.


Assuntos
Proteína de Ligação ao Complemento C4b/farmacologia , Fator H do Complemento/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Moraxella catarrhalis/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Animais , Ligação Competitiva , Atividade Bactericida do Sangue , Células CHO , Complemento C3b/análise , Complemento C3d/análise , Proteína de Ligação ao Complemento C4b/genética , Proteína de Ligação ao Complemento C4b/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Cricetinae , Cricetulus , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Imunoglobulina M/genética , Imunoglobulina M/metabolismo , Imunoglobulina M/farmacologia , Moraxella catarrhalis/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
3.
Mol Immunol ; 46(15): 2902-10, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19660812

RESUMO

The complement lectin pathway, an essential component of the innate immune system, is geared for rapid recognition of infections as each C4b deposited via this pathway is capable of forming a C3/C5 convertase. In the present study, role of C4b-binding protein (C4BP) in regulating the lectin pathway C3/C5 convertase assembled on zymosan and sheep erythrocytes coated with mannan (E(Man)) was examined. While the C4BP concentration for inhibiting 50% (IC(50)) formation of surface-bound C3 convertase on the two surfaces was similar to that obtained for the soluble C3 convertase (1.05nM), approximately 3- and 41-fold more was required to inhibit assembly of the C5 convertase on zymosan (2.81nM) and E(Man) (42.66nM). No difference in binding interactions between C4BP and surface-bound C4b alone or in complex with C3b was observed. Increasing the C4b density on zymosan (14,000-431,000 C4b/Zym) increased the number of C4b bound per C4BP from 2.87 to 8.23 indicating that at high C4b density all seven alpha-chains of C4BP are engaged in C4b-binding. In contrast, the number of C4b bound per C4BP remained constant (3.79+/-0.60) when the C4b density on E(Man) was increased. The data also show that C4BP regulates assembly and decay of the lectin pathway C3/C5 convertase more stringently than the classical pathway C3/C5 convertase because of a approximately 7- to 13-fold greater affinity for C4b deposited via the lectin pathway than the classical pathway. C4BP thus regulates efficiently the four times greater potential of the lectin pathway than the classical pathway in generating the C3/C5 convertase and hence production of pro-inflammatory products, which are required to fight infections but occasionally cause pathological inflammatory reactions.


Assuntos
Convertases de Complemento C3-C5/metabolismo , Proteína de Ligação ao Complemento C4b/metabolismo , Animais , Galinhas , Convertases de Complemento C3-C5/antagonistas & inibidores , Convertases de Complemento C3-C5/imunologia , Proteína de Ligação ao Complemento C4b/farmacologia , Eritrócitos/imunologia , Eritrócitos/metabolismo , Humanos , Mananas/imunologia , Ovinos , Zimosan/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...