Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 135(11): 2834-2841, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26134950

RESUMO

Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin interact with UVA radiation to generate reactive oxygen species that diminish NER capacity by causing protein damage. The replication protein A (RPA) DNA-binding protein has a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation, and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage, and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself, is likely to be an important contributor to skin cancer risk.


Assuntos
Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Transtornos de Fotossensibilidade/fisiopatologia , Proteína de Replicação A/efeitos da radiação , Neoplasias Cutâneas/fisiopatologia , Raios Ultravioleta/efeitos adversos , Células Cultivadas , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Estresse Oxidativo , Transtornos de Fotossensibilidade/etiologia , Fármacos Fotossensibilizantes/efeitos adversos , Fármacos Fotossensibilizantes/farmacologia , Proteína de Replicação A/efeitos dos fármacos , Proteína de Replicação A/metabolismo , Neoplasias Cutâneas/etiologia , Tioguanina/metabolismo
2.
Oral Dis ; 21(2): 156-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24589248

RESUMO

OBJECTIVE: To investigate the cell cycle regulator role of the third gaseous transmitter hydrogen sulfide (H2 S) in three oral SCC cell lines by using NaHS, a donor of H2 S. METHODS: The synchronized oral squamous cell carcinoma cell lines (Cal27, GNM, and WSU-HN6) were treated with different concentrations of NaHS and then subjected to cell proliferation, cell cycle, and Western blot analyses. RESULTS: The CCK-8 assay results showed that the exogenously administered H2 S donor, NaHS, induced CAL-27, and GNM cell proliferation in a concentration-dependent manner, and the cell cycle analysis indicated that NaHS accelerated cell cycle progression of the synchronized CAL-27, GNM, and WSU-HN6 cells. Western blot analysis revealed that the cell cycle regulatory genes RPA70 and RB1 were significantly down-regulated and that proliferating cell nuclear antigen (PCNA) and CDK4 were markedly up-regulated by NaHS at specific time points in the cell cycle. In addition, our results indicated that the phosphorylation of Akt and Erk1/2 was involved in exogenous H2 S-induced oral SCC cell proliferation. CONCLUSIONS: H2 S is a potential pro-proliferative factor of human oral SCC cells that accelerates the progression of the SCC cell cycle; thus, H2 S plays a deleterious role in oral SCC cancer development.


Assuntos
Carcinoma de Células Escamosas/patologia , Ciclo Celular/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Sulfeto de Hidrogênio/farmacologia , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Fosforilação , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação A/efeitos dos fármacos , Proteína de Replicação A/genética , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Sulfetos/farmacologia , Regulação para Cima
3.
J Med Chem ; 57(6): 2455-61, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24491171

RESUMO

Stapled helix peptides can serve as useful tools for inhibiting protein-protein interactions but can be difficult to optimize for affinity. Here we describe the discovery and optimization of a stapled helix peptide that binds to the N-terminal domain of the 70 kDa subunit of replication protein A (RPA70N). In addition to applying traditional optimization strategies, we employed a novel approach for efficiently designing peptides containing unnatural amino acids. We discovered hot spots in the target protein using a fragment-based screen, identified the amino acid that binds to the hot spot, and selected an unnatural amino acid to incorporate, based on the structure-activity relationships of small molecules that bind to this site. The resulting stapled helix peptide potently and selectively binds to RPA70N, does not disrupt ssDNA binding, and penetrates cells. This peptide may serve as a probe to explore the therapeutic potential of RPA70N inhibition in cancer.


Assuntos
Peptídeos/síntese química , Peptídeos/farmacologia , Proteína de Replicação A/metabolismo , Alanina/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Cristalização , Cristalografia por Raios X , DNA de Cadeia Simples/metabolismo , Descoberta de Drogas , Ensaio de Desvio de Mobilidade Eletroforética , Polarização de Fluorescência , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Penetrância , Peptídeos/metabolismo , Conformação Proteica , Proteína de Replicação A/efeitos dos fármacos , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
4.
Nucleic Acids Res ; 41(3): 2047-59, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23267009

RESUMO

Replication protein A (RPA), essential for DNA replication, repair and DNA damage signalling, possesses six ssDNA-binding domains (DBDs), including DBD-F on the N-terminus of the largest subunit, RPA70. This domain functions as a binding site for p53 and other DNA damage and repair proteins that contain amphipathic alpha helical domains. Here, we demonstrate direct binding of both ssDNA and the transactivation domain 2 of p53 (p53TAD2) to DBD-F, as well as DBD-F-directed dsDNA strand separation by RPA, all of which are inhibited by fumaropimaric acid (FPA). FPA binds directly to RPA, resulting in a conformational shift as determined through quenching of intrinsic tryptophan fluorescence in full length RPA. Structural analogues of FPA provide insight on chemical properties that are required for inhibition. Finally, we confirm the inability of RPA possessing R41E and R43E mutations to bind to p53, destabilize dsDNA and quench tryptophan fluorescence by FPA, suggesting that protein binding, DNA modulation and inhibitor binding all occur within the same site on DBD-F. The disruption of p53-RPA interactions by FPA may disturb the regulatory functions of p53 and RPA, thereby inhibiting cellular pathways that control the cell cycle and maintain the integrity of the human genome.


Assuntos
Diterpenos/farmacologia , Proteína de Replicação A/química , Proteína Supressora de Tumor p53/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Ligação Competitiva , DNA de Cadeia Simples/metabolismo , Diterpenos/química , Diterpenos/metabolismo , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Proteína de Replicação A/efeitos dos fármacos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Proteína Supressora de Tumor p53/química
5.
Biochem Pharmacol ; 76(8): 987-96, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18773878

RESUMO

DNA damage is accepted as a consequence of thymidylate deprivation induced by chemotherapeutic inhibitors of thymidylate synthase (TS), but the types of damage and signaling responses remain incompletely understood. Thymidylate deprivation increases dUTP and uracil in DNA, which is removed by base excision repair (BER). Because BER requires a synthesis step, strand break intermediates presumably accumulate. Thymidylate deprivation also induces cell cycle arrest during replication. Homologous recombination (HR) is a means of repairing persistent BER intermediates and collapsed replication forks. There are also intimate links between HR and S-phase checkpoint pathways. In this study, the goals were to determine the involvement of HR-associated proteins and DNA damage signaling responses to thymidylate deprivation. When RAD51, which is a central component of HR, was depleted by siRNA cells were sensitized to raltitrexed (RTX), which specifically inhibits TS. To our knowledge, this is the first demonstration in mammalian cells that depletion of RAD51 causes sensitivity to thymidylate deprivation. Activation of DNA damage signaling responses was examined following treatment with RTX. Phosphorylation of replication protein A (RPA2 subunit) and formation of damage-induced foci were strikingly evident following IC(50) doses of RTX. Induction was much more striking following RTX treatment than with hydroxyurea, which is commonly used to inhibit replication. RTX treatment also induced foci of RAD51, gamma-H2AX, phospho-Chk1, and phospho-NBS1, although the extent of co-localization with RPA2 foci varied. Collectively, the results suggest that HR and S-phase checkpoint signaling processes are invoked by thymidylate deprivation and influence cellular resistance to thymidylate deprivation.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Recombinação Genética/efeitos dos fármacos , Timidina Monofosfato/deficiência , Linhagem Celular Tumoral , Neoplasias do Colo , DNA de Neoplasias/efeitos dos fármacos , Citometria de Fluxo , Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Células HeLa/efeitos dos fármacos , Humanos , Nucleotídeos/farmacologia , Fosforilação , Quinazolinas/farmacologia , Rad51 Recombinase/efeitos dos fármacos , Rad51 Recombinase/genética , Proteína de Replicação A/efeitos dos fármacos , Proteína de Replicação A/metabolismo , Tiofenos/farmacologia , Timidilato Sintase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...