Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 465, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622522

RESUMO

BACKGROUND: Gastric cancer (GC) lacks serum biomarkers with clinical diagnostic value. Multi-omics analysis is an important approach to discovering cancer biomarkers. This study aimed to identify and validate serum biomarkers for GC diagnosis by cross-analysis of proteomics and transcriptomics datasets. METHODS: A cross-omics analysis was performed to identify overlapping differentially expressed genes (DEGs) between our previous aptamer-based GC serum proteomics dataset and the GC tissue RNA-Seq dataset in The Cancer Genome Atlas (TCGA) database, followed by lasso regression and random forest analysis to select key overlapping DEGs as candidate biomarkers for GC. The mRNA levels and diagnostic performance of these candidate biomarkers were analyzed in the original and independent GC datasets to select valuable candidate biomarkers. The valuable candidate biomarkers were subjected to bioinformatics analysis to select those closely associated with the biological behaviors of GC as potential biomarkers. The clinical diagnostic value of the potential biomarkers was validated using serum samples, and their expression levels and functions in GC cells were validated using in vitro cell experiments. RESULTS: Four candidate biomarkers (ILF2, PGM2L1, CHD7, and JCHAIN) were selected. Their mRNA levels differed significantly between tumor and normal tissues and showed different diagnostic performances for GC, with areas under the receiver operating characteristic curve (AUROCs) of 0.629-0.950 in the TCGA dataset and 0.736-0.840 in the Gene Expression Omnibus (GEO) dataset. In the bioinformatics analysis, only ILF2 (interleukin enhancer-binding factor 2) gene levels were associated with immune cell infiltration, some checkpoint gene expression, chemotherapy sensitivity, and immunotherapy response. Serum levels of ILF2 were higher in GC patients than in controls, with an AUROC of 0.944 for the diagnosis of GC, and it was also detected in the supernatants of GC cells. Knockdown of ILF2 by siRNA significantly reduced the proliferation and colony formation of GC cells. Overexpression of ILF2 significantly promotes the proliferation and colony formation of gastric cancer cells. CONCLUSIONS: Trans-omics analysis of proteomics and transcriptomics is an efficient approach for discovering serum biomarkers, and ILF2 is a potential diagnostic biomarker and therapeutic target of gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína do Fator Nuclear 45/genética
2.
J Exp Clin Cancer Res ; 43(1): 22, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238853

RESUMO

BACKGROUND: Triple-negative breast cancer is a complex breast malignancy subtype characterized by poor prognosis. The pursuit of effective therapeutic approaches for this subtype is considerably challenging. Notably, recent research has illuminated the key role of the tricarboxylic acid cycle in cancer metabolism and the complex landscape of tumor development. Concurrently, an emerging body of evidence underscores the noteworthy role that long non-coding RNAs play in the trajectory of breast cancer development. Despite this growing recognition, the exploration of whether long non-coding RNAs can influence breast cancer progression by modulating the tricarboxylic acid cycle has been limited. Moreover, the underlying mechanisms orchestrating these interactions have not been identified. METHODS: The expression levels of LINC00571 and IDH2 were determined through the analysis of the public TCGA dataset, transcriptome sequencing, qRT‒PCR, and Western blotting. The distribution of LINC00571 was assessed using RNA fluorescence in situ hybridization. Alterations in biological effects were evaluated using CCK-8, colony formation, EdU, cell cycle, and apoptosis assays and a tumor xenograft model. To elucidate the interaction between LINC00571, HNRNPK, and ILF2, RNA pull-down, mass spectrometry, coimmunoprecipitation, and RNA immunoprecipitation assays were performed. The impacts of LINC00571 and IDH2 on tricarboxylic acid cycle metabolites were investigated through measurements of the oxygen consumption rate and metabolite levels. RESULTS: This study revealed the complex interactions between a novel long non-coding RNA (LINC00571) and tricarboxylic acid cycle metabolism. We validated the tumor-promoting role of LINC00571. Mechanistically, LINC00571 facilitated the interaction between HNRNPK and ILF2, leading to reduced ubiquitination and degradation of ILF2, thereby stabilizing its expression. Furthermore, ILF2 acted as a transcription factor to enhance the expression of its downstream target gene IDH2. CONCLUSIONS: Our study revealed that the LINC00571/HNRNPK/ILF2/IDH2 axis promoted the progression of triple-negative breast cancer by regulating tricarboxylic acid cycle metabolites. This discovery provides a novel theoretical foundation and new potential targets for the clinical treatment of triple-negative breast cancer.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Ciclo do Ácido Cítrico , Hibridização in Situ Fluorescente , RNA/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo
3.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298108

RESUMO

Although DNA damage repair plays a critical role in cancer chemotherapy, the function of lncRNAs in this process remains largely unclear. In this study, in silico screening identified H19 as an lncRNA that potentially plays a role in DNA damage response and sensitivity to PARP inhibitors. Increased expression of H19 is correlated with disease progression and with a poor prognosis in breast cancer. In breast cancer cells, forced expression of H19 promotes DNA damage repair and resistance to PARP inhibition, whereas H19 depletion diminishes DNA damage repair and increases sensitivity to PARP inhibitors. H19 exerted its functional roles via direct interaction with ILF2 in the cell nucleus. H19 and ILF2 increased BRCA1 stability via the ubiquitin-proteasome proteolytic pathway via the H19- and ILF2-regulated BRCA1 ubiquitin ligases HUWE1 and UBE2T. In summary, this study has identified a novel mechanism to promote BRCA1-deficiency in breast cancer cells. Therefore, targeting the H19/ILF2/BRCA1 axis might modulate therapeutic approaches in breast cancer.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/uso terapêutico , Ubiquitina/metabolismo , Dano ao DNA , Proteína do Fator Nuclear 45/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
4.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047232

RESUMO

Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.


Assuntos
Neoplasias da Próstata , Estruturas R-Loop , Humanos , Masculino , Dano ao DNA , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteômica
5.
J Exp Clin Cancer Res ; 41(1): 332, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36457025

RESUMO

BACKGROUND: The biological function of lncRNA ELF3-AS1 remains largely unknown in cancers. The cause of SNAI2 overexpression in tumor metastasis remains largely unclear. The molecular mechanisms underlying the high co-expression of antisense lncRNAs and adjacent protein-coding genes remains unclear. METHODS: RNA-seq, CHIP and dual-luciferase reporter assay were performed to identify lncRNAs regulated by SNAI2. MicroRNA-seq and RNA-seq studies were conducted to reveal the biological function of ELF3-AS1 in GC. RNA pulldown and CHIRP assays were conducted to identify the protein that interacts with ELF3-AS1. RESULTS: A total of 123 lncRNAs were identified to be regulated by SNAI2 in GC by RNA sequencing. The ELF3 gene and antisense lncRNA ELF3-AS1 were both transcriptionally repressed by SNAI2 or SNAI1. Down-regulation of ELF3-AS1 and ELF3 predicted poor prognosis in GC. Nuclear localized lncRNA ELF3-AS1 negatively regulated GC cell cycle progression via suppressing G1/S transition and histone synthesis. ELF3-AS1 mainly inhibited GC metastasis by repressing SNAI2 signaling. Additionally, ELF3-AS1 modulated ELF3 mRNA stability by RNA-RNA interaction. The RNA duplexes formed by ELF3 mRNA and lncRNA ELF3-AS1 directly interacted with the double-stranded RNA (dsRNA) binding protein complex ILF2/ILF3 (NF45/NF90). In turn, the ILF2/ILF3 complex dynamically regulated the expression of ELF3-AS1 and ELF3 by affecting the dsRNA stability. CONCLUSIONS: The SNAI2-ELF3-AS1 feedback loop regulates ELF3 expression at transcriptional and post-transcriptional levels and drives gastric cancer metastasis by maintaining SNAI2 overexpression. The ILF2/ILF3 complex plays a critical role in regulating dsRNA stability. In addition, our work provides a direct evidence that head-to-head antisense lncRNAs can share promoters with neighboring coding genes, which make their expression subject to similar transcriptional regulation, leading to high co-expression.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Retroalimentação , Estabilidade de RNA , Regulação para Baixo , RNA de Cadeia Dupla , Proteínas de Ligação a DNA , Fatores de Transcrição/genética , Proteínas Proto-Oncogênicas c-ets , Proteínas do Fator Nuclear 90/genética , Proteína do Fator Nuclear 45
6.
Rev. chil. enferm. respir ; 38(2): 106-116, jun. 2022. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1407767

RESUMO

Resumen El trasplante pulmonar implica una serie de desafíos, que como lo ha demostrado la historia, no sólo depende de un adecuado desarrollo de técnicas quirúrgicas, sino también de la comprensión de una serie de complejas interacciones inmunológicas celulares y humorales que serán las responsables del tipo de respuesta (innata y/o adquirida) fisiológica y que pudiesen desencadenar las complicaciones asociadas al trasplante (rechazo hiperagudo, agudo o crónico). Cada una de las cuales tiene su potencial prevención y/o tratamiento. El poder conocer esta serie de respuestas, permite al clínico anticiparse a algunos de estos eventos y evitar de mejor forma el daño y las consecuencias que pueden producir en los casos de trasplante pulmonar.


Lung transplantation involves a series of challenges, which as history has shown, depends not only on an adequate development of surgical techniques, but also on the understanding of a series of complex cellular and humoral immunological interactions that will be responsible for the type of physiological response (innate - acquired) and that could trigger the complications associated with transplantation (hyperacute, acute or chronic rejection). Each of which has its potential prevention and treatment. Being able to know this series of responses, allows the clinician to anticipate some of these events and to avoid in a better way the damage and the consequences that can occur in cases of lung transplantation.


Assuntos
Humanos , Imunologia de Transplantes/imunologia , Transplante de Pulmão , Rejeição de Enxerto/imunologia , Linfócitos T/imunologia , Autoimunidade , Proteína do Fator Nuclear 45 , Rejeição de Enxerto/prevenção & controle , Imunidade Celular , Imunidade Inata , Imunossupressores
7.
Sci Rep ; 12(1): 8837, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614067

RESUMO

The Nuclear Factor 90 (NF90)-NF45 complex has been known to regulate the progression of transcription, mRNA stability, translational inhibition, RNA export and microRNA biogenesis. However, the physiological functions of the NF90-NF45 complex remain unclear. We newly discovered that the NF90-NF45 complex was expressed in primary ß cells and established cell lines. Therefore, in this study, we focused on the function of the endogenous NF90-NF45 complex in the ß cells. To investigate this issue, we generated ß-cell-specific NF90-NF45 deficient mice. These mice exhibited hyperglycaemia and lower plasma insulin levels under a high fat diet together with decreased islet mass. To uncover this mechanism, we performed a whole-genome expression microarray of the total RNA prepared from ß cell lines treated with siRNAs targeting both NF90 and NF45. In this result, we found an activation of p53 signaling in the NF90-NF45-knockdown cells. This activation was supported by elevation of luciferase activity derived from a reporter plasmid harboring p53 binding sites in the NF90-NF45-knockdown cells. Furthermore, the knockdown of NF90-NF45 resulted in a significant retardation of the ß cell line growth rates. Importantly, a dominant negative form of p53 rescues the growth retardation in BTC6 cells depleted of NF90-NF45, suggesting that NF90-NF45 would be positively involved in ß cell proliferation through suppression of p53 signal pathway. Taken together, NF90-NF45 is essential for ß cell compensation under obesity-inducing metabolic stress via repression of p53 signaling.


Assuntos
Proteína do Fator Nuclear 45 , Proteínas do Fator Nuclear 90 , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , Obesidade/genética , RNA , Transdução de Sinais , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo
8.
Bioengineered ; 13(4): 8785-8797, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35333683

RESUMO

Oral squamous cell carcinoma (OSCC) is a frequent threatening head and neck malignancy. Serine hydroxymethyltransferase 2 (SHMT2) was identified to be upregulated in OSCC and its high expression was associated with poor patient prognosis. This paper set out to assess the influence of SHMT2 on OSCC progression and the potential mechanisms related to interleukin enhancer-binding factor 2 (ILF2). First of all, reverse transcription-quantitative PCR (RT-qPCR) and western blot examined the expression of SHMT2 and ILF2 in OSCC cells. Cell Counting Kit-8 (CCK-8) and colony formation assays appraised cell proliferation. Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling (TUNEL) staining was to estimate the apoptotic rate of cells. Further, wound healing and transwell assays verified the migration and invasion of cells. Western blot was adopted to detect the expression of factors related to apoptosis, migration, and epithelial-mesenchymal transition (EMT). The possible interaction of SHMT2 and ILF2 was predicted by a Molecular INTeraction (MINT) and BioGRID databases and determined using co-immunoprecipitation (IP) assay. Subsequently, ILF2 was overexpressed to investigate whether SHMT2 regulated OSCC progression by binding to ILF2. Results implied that SHMT2 possessed increased expression in OSCC cells, and OSCC cell viability, migration, invasion, EMT were inhibited and apoptosis was potentiated after its silencing. ILF2 bound to SHMT2 and ILF2 expression was downregulated after SHMT2 silencing in OSCC cells. Importantly, ILF2 overexpression abolished the suppressive role of SHMT2 interference in the progression of OSCC. Collectively, SHMT2 could promote the progression of OSCC by binding to ILF2.


Assuntos
Glicina Hidroximetiltransferase , Neoplasias Bucais , Proteína do Fator Nuclear 45 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Glicina Hidroximetiltransferase/genética , Humanos , Interleucinas , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Proteína do Fator Nuclear 45/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
9.
Sci Rep ; 12(1): 2278, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145187

RESUMO

DNA cytosine deaminase APOBEC3B (A3B) is an endogenous source of mutations in many human cancers, including multiple myeloma. A3B proteins form catalytically inactive high molecular mass (HMM) complexes in nuclei, however, the regulatory mechanisms of A3B deaminase activity in HMM complexes are still unclear. Here, we performed mass spectrometry analysis of A3B-interacting proteins from nuclear extracts of myeloma cell lines and identified 30 putative interacting proteins. These proteins are involved in RNA metabolism, including RNA binding, mRNA splicing, translation, and regulation of gene expression. Except for SAFB, these proteins interact with A3B in an RNA-dependent manner. Most of these interacting proteins are detected in A3B HMM complexes by density gradient sedimentation assays. We focused on two interacting proteins, ILF2 and SAFB. We found that overexpressed ILF2 enhanced the deaminase activity of A3B by 30%, while SAFB did not. Additionally, siRNA-mediated knockdown of ILF2 suppressed A3B deaminase activity by 30% in HEK293T cell lysates. Based on these findings, we conclude that ILF2 can interact with A3B and enhance its deaminase activity in HMM complexes.


Assuntos
Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mieloma Múltiplo/genética , Mutação/genética , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Proteína do Fator Nuclear 45/metabolismo , Mapas de Interação de Proteínas/genética
10.
Dev Comp Immunol ; 126: 104226, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34348114

RESUMO

Although interleukin and interleukin analogues which play important immunomodulatory roles in mammals have not yet been reported in invertebrates, interleukin enhancer binding factor (IEBF) which acts as a transcription factor has been recently studied in several crustaceans and it may be involved in innate immune defence against pathogens. In this study, an IEBF 2 homologue was identified in the fresh water crayfish, Procambarus clarkii. The significantly changed expression levels of Pc-iebf 2 after bacterial challenge revealed the possibility of its participation in defence against bacterial infection. The results of an RNAi assay showed that the crayfish survival rate was obviously decreased after dsIEBF 2 injection, compared with the control groups. And S. aureus proliferation was obviously enhanced at 24 and 48 h post bacterial injection, when Pc-iebf 2 was knocked down. The possible molecular mechanisms for the innate immune regulation functions of Pc-IEBF 2 were also investigated. We speculated that Pc-IEBF 2 plays an important role in defending against bacterial infection in crayfish. It could regulate some innate immune responses by affecting the Toll signalling pathway, melanisation, and cell apoptosis.


Assuntos
Proteínas de Artrópodes , Astacoidea , Sequência de Aminoácidos , Animais , Antibacterianos , Água Doce , Imunidade Inata , Mamíferos , Proteína do Fator Nuclear 45/metabolismo , Staphylococcus aureus/fisiologia
11.
Clin Transl Med ; 11(10): e608, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709752

RESUMO

BACKGROUND: 1q21.3 amplification, which is frequently observed in metastatic melanoma, is associated with cancer progression. Interleukin enhancer-binding factor 2 (ILF2) is located in the 1q21.3 amplified region, but its functional role or contribution to tumour aggressiveness in cutaneous melanoma is unknown. METHODS: In silico analyses were performed using the TCGA SKCM dataset with clinical annotations and three melanoma microarray cohorts from the GEO datasets. RNA in situ hybridisation and immunohistochemistry were utilised to validate the gene expression in melanoma tissues. Four stable melanoma cell lines were established for in vitro ILF2 functional characterisation. RESULTS: Our results showed that the ILF2 copy number variation (CNV) is positively correlated with ILF2 mRNA expression (r = 0.68, p < .0001). Additionally, ILF2 expression is significantly increased with melanoma progression (p < .0001), and significantly associated with poor overall survival for metastatic melanoma patients (p = .026). The overexpression of ILF2 (ILF2-OV) promotes proliferation in metastatic melanoma cells, whereas ILF2 knockdown decreases proliferation by blocking the cell cycle. Mechanistically, we demonstrated the interaction between ILF2 and the splicing factor U2AF2, whose knockdown reverses the proliferation effects mediated by ILF2-OV. Stage IIIB-C melanoma patients with high ILF2-U2AF2 expression showed significantly shorter overall survival (p = .024). Enhanced ILF2/U2AF2 expression promotes a more efficient DNA-damage repair by increasing RAD50 and ATM mRNA expression. Paradoxically, metastatic melanoma cells with ILF2-OV were more sensitive to ATM inhibitors. CONCLUSION: Our study uncovered that ILF2 amplification of the 1q21.3 chromosome is associated with melanoma progression and triggers a functional downstream pathway in metastatic melanoma promoting drug resistance.


Assuntos
Proliferação de Células/genética , Dano ao DNA/genética , Melanoma/genética , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Células Cultivadas , Variações do Número de Cópias de DNA/genética , Humanos , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
12.
Life Sci ; 284: 119708, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153299

RESUMO

AIMS: Hepatocellular carcinoma (HCC) is a primary malignancy of the hepatocyte. Interleukin enhancer binding factor 2 (ILF2) plays a role in the development of HCC. However, the regulatory mechanisms of ILF2 expression in HCC remain unclear. In this study, we aimed to identify ILF2-targeting microRNAs (miRNAs) and to explore how they affect ILF2 expression in HCC. MAIN METHODS: The tissue specimens were collected from 25 HCC patients. The underlying regulatory mechanism of ILF2 expression in HCC progression was determined using luciferase reporter assay, quantitative real-time PCR, Western blotting, and BrdU incorporation assay. KEY FINDINGS: Of predicted miRNA candidates (miR-122-5p, miR-425-5p, miR-136-5p, miR-7-5p, miR-421 and miR-543), a statistically significant inverse correlation by linear correlation analysis was observed between miR-136-5p and ILF2 mRNA expressions in patients with HCC (r = -0.627, P < 0.001). Further analysis demonstrated that ILF2 was directly regulated by miR-136-5p. In addition, we showed that long noncoding RNA colorectal neoplasia differentially expressed-h (lncRNA CRNDE-h) transcript expression was significantly up-regulated in HCC, and a miR-136-5p binding site was newly found in the lncRNA CRNDE-h transcript sequence using IntaRNA tool. In terms of mechanism, highly-expressed lncRNA CRNDE-h transcript can sponge miR-136-5p, thereby preventing it from interacting with target ILF2 mRNA while promoting the proliferation of HCC cells. SIGNIFICANCE: The lncRNA CRNDE-h/miR-136-5p/ILF2 axis plays a significant regulatory role in HCC progression, which may partly explain the pathogenic mechanisms of HCC and may provide promising potential targets for the diagnosis, treatment, and prognosis of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Proteína do Fator Nuclear 45/genética , RNA Longo não Codificante/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , MicroRNAs/genética , Proteína do Fator Nuclear 45/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Cancer Res ; 81(13): 3525-3538, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33975879

RESUMO

Balancing mRNA nuclear export kinetics with its nuclear decay is critical for mRNA homeostasis control. How this equilibrium is aberrantly disrupted in esophageal cancer to acquire cancer stem cell properties remains unclear. Here we find that the RNA-binding protein interleukin enhancer binding factor 2 (ILF2) is robustly upregulated by nicotine, a major chemical component of tobacco smoke, via activation of JAK2/STAT3 signaling and significantly correlates with poor prognosis in heavy-smoking patients with esophageal cancer. ILF2 bound the THO complex protein THOC4 as a regulatory cofactor to induce selective interactions with pluripotency transcription factor mRNAs to promote their assembly into export-competent messenger ribonucleoprotein complexes. ILF2 facilitated nuclear mRNA export and inhibited hMTR4-mediated exosomal degradation to promote stabilization and expression of SOX2, NANOG, and SALL4, resulting in enhanced stemness and tumor-initiating capacity of esophageal cancer cells. Importantly, inducible depletion of ILF2 significantly increased the therapeutic efficiency of cisplatin and abrogated nicotine-induced chemoresistance in vitro and in vivo. These findings reveal a novel role of ILF2 in nuclear mRNA export and maintenance of cancer stem cells and open new avenues to overcome smoking-mediated chemoresistance in esophageal cancer. SIGNIFICANCE: This study defines a previously uncharacterized role of nicotine-regulated ILF2 in facilitating nuclear mRNA export to promote cancer stemness, suggesting a potential therapeutic strategy against nicotine-induced chemoresistance in esophageal cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Nicotina/farmacologia , Proteína do Fator Nuclear 45/metabolismo , RNA Mensageiro/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Agonistas Nicotínicos/farmacologia , Proteína do Fator Nuclear 45/genética , Prognóstico , RNA Mensageiro/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Taxa de Sobrevida , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
EMBO Mol Med ; 13(3): e12834, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33555115

RESUMO

Herein, we demonstrate that NFAT, a key regulator of the immune response, translocates from cytoplasm to nucleolus and interacts with NF45/NF90 complex to collaboratively promote rDNA transcription via triggering the directly binding of NF45/NF90 to the ARRE2-like sequences in rDNA promoter upon T-cell activation in vitro. The elevated pre-rRNA level of T cells is also observed in both mouse heart or skin transplantation models and in kidney transplanted patients. Importantly, T-cell activation can be significantly suppressed by inhibiting NF45/NF90-dependent rDNA transcription. Amazingly, CX5461, a rDNA transcription-specific inhibitor, outperformed FK506, the most commonly used immunosuppressant, both in terms of potency and off-target activity (i.e., toxicity), as demonstrated by a series of skin and heart allograft models. Collectively, this reveals NF45/NF90-mediated rDNA transcription as a novel signaling pathway essential for T-cell activation and as a new target for the development of safe and effective immunosuppressants.


Assuntos
Proteína do Fator Nuclear 45 , Proteínas do Fator Nuclear 90 , Animais , DNA Ribossômico/genética , Humanos , Imunossupressores/farmacologia , Camundongos , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/genética , Proteínas do Fator Nuclear 90/metabolismo , Regiões Promotoras Genéticas
15.
Dev Comp Immunol ; 118: 103975, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33383068

RESUMO

Alternative splicing is an essential molecular mechanism that increase the protein diversity of a species to regulate important biological processes. As a transcription factor, Interleukin-2 enhancer binding factor 2 (ILF2) regulates the functions of interleukin-2 (IL-2) at the levels of transcription, splicing and translation, and plays other critical roles in the immune system. ILF2 is well-documented in vertebrates, while little is currently known in crustacean species such as the Pacific white shrimp (Litopenaeus vannamei). In the present study, five cDNA for spliced isoforms of Lv-ILF2 were identified, in which four of them are the full-length long isoforms (Lv-ILF2-L1, Lv-ILF2-L2, Lv-ILF2-L3 and Lv-ILF2-L4) and one of them is a truncated short isoform (Lv-ILF2-S). The whole sequence of ILF2 gene from L. vannamei was obtained, which is 11,680 bp in length with 9 exons separated by 8 introns. All five isoforms contain a domain associated with zinc fingers (DZF). Two alternative splicing types (alternative 5' splice site and alternative 3' splice site) were identified in the five isoforms. The Lv-ILF2 mRNA showed a broad distribution in all detected tissues, and the Lv-ILF2-L transcript levels were higher than those of Lv-ILF2-S in corresponding tissues. The mRNA levels of Lv-ILF2-S in the hepatopancreas, heart, muscle and stomach, but not in the eyestalk, were significantly increased after challenges with Vibrio harveyi or lipopolysaccharide (LPS), while no significant changes were observed for the transcript levels of Lv-ILF2-L in these tissues under the same immune stimulants. On the contrary, the transcript levels of neither Lv-ILF2-S nor Lv-ILF2-L were affected by challenges of polyinosinic: polycytidylic acid [Poly (I:C)]. In addition, after knockdown of the Lv-ILF2 mRNA level by siRNA, the mortality of shrimp and the hepatopancreatic bacterial numbers were significantly increased under V. harveyi challenge, indicating that Lv-ILF2 might participate in the immune defenses against V. harveyi invasion. Collectively, our study here supplied the first evidence for a novel splicing mechanism of ILF2 transcripts, and provided a functional link between the Lv-ILF2 isoforms and the capacity against pathogenic Vibrio in penaeid shrimp.


Assuntos
Proteínas de Artrópodes/metabolismo , Imunidade Inata/genética , Proteína do Fator Nuclear 45/metabolismo , Penaeidae/imunologia , Vibrio/imunologia , Processamento Alternativo/imunologia , Animais , Aquicultura , Proteínas de Artrópodes/genética , Técnicas de Silenciamento de Genes , Proteína do Fator Nuclear 45/genética , Penaeidae/microbiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
16.
J Mol Neurosci ; 71(2): 225-233, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32748330

RESUMO

The proliferation and migration of vascular smooth muscle cells (VSMCs) are involved in the pathogenesis of intracranial aneurysm (IA) formation and rupture. Interleukin enhancer binding factor 2 (ILF2) is known as the nuclear factor of activated T cells and regulates cell growth. This study was aimed to explore the effects of ILF2 on IA progression. Human brain VSMCs (hBVSMCs) were transfected with pCDNA3.1(+), pCDNA3.1(+)-ILF2, siRNA-negative control, and siRNA-ILF2. The transfection efficiency was then evaluated by determining ILF2 expression. The cell viability and apoptosis were determined using Cell Counting Kit-8 and Annexin V-FITC cell apoptosis assay kit, respectively. Real-time quantification PCR (RT-qPCR) was applied to measure the expression levels of apoptosis-related and inflammation-related genes. Finally, western blot was used to detect the expression level of Fas cell surface death receptor 95 (CD95) and Caspase 8. Overexpression of ILF2 could significantly increase cell viability and decrease cell apoptosis (P < 0.05), while knock-down of ILF2 showed opposite trends for hBVSMCs on cell viability and apoptosis (P < 0.05). RT-qPCR results showed that ILF2 knock-down downregulated the expression levels of BCL2 apoptosis regulator (BCL2), transcriptional regulator Myc-like (c-Myc), and caspase 1 (ICE) whereas upregulated the expression levels of CD95, p21, p53, and interleukin-13 (IL-13). Additionally, the protein expression levels of CD95 and Caspase 8 were significantly decreased after ILF2 overexpression while were significantly increased after ILF2 knock-down (P < 0.05). ILF2 knock-down may inhibit cell viability and promote cell apoptosis of hBVSMCs by regulating the expression levels of apoptosis-related genes and suppressing inflammatory response.


Assuntos
Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína do Fator Nuclear 45/fisiologia , Apoptose/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Caspase 8/biossíntese , Caspase 8/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/biossíntese , Citocinas/genética , Técnicas de Silenciamento de Genes , Humanos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/metabolismo , Transfecção , Vasculite/metabolismo , Receptor fas/biossíntese , Receptor fas/genética
17.
J Pediatr Surg ; 56(2): 352-359, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32709532

RESUMO

PURPOSE: Biliary atresia (BA) is a devastating obstructive bile duct disease of newborns. BA has the highest incidence in Asians (1/5000), and its pathogenesis is unclear. We identified BA-private rare copy number variants (CNVs; 22 duplications and 6 deletions). ILF2 gene locates in the chromosome region (Chr1:153410347-153,634,058) which was deleted in a nonsyndromic BA patient. However, it is still not known whether ILF2 plays a role in hepatobiliary development and its deletion impacts on the bile duct development. METHODS: To investigate if ILF2 is required for biliary development, we knock-out the zebrafish homologs of ILF2 by CRISPR/Cas9 approach, and discover that deletion of ILF2 causes a defective biliary development and a lack of bile flow from the liver to the gall bladder in zebrafish, which is a resemblance of phenotypes of BA. RESULTS: Our data indicate that ILF2 gene is required for biliary development; deletion of ILF2 impairs bile duct development and could contribute to BA pathogenesis. This will be the first study to functionally evaluate the genes interfered by BA-private CNVs in hepatobiliary development and in BA pathogenesis. CONCLUSIONS: Such functional study may reveal the potential value of these BA-private CNVs in the disease pathogenesis for BA. LEVEL OF EVIDENCE: N/A (animal and laboratory study).


Assuntos
Atresia Biliar , Peixe-Zebra , Animais , Bile , Ductos Biliares , Atresia Biliar/genética , Humanos , Recém-Nascido , Proteína do Fator Nuclear 45 , Peixe-Zebra/genética
18.
Blood ; 137(5): 661-677, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33197925

RESUMO

A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).


Assuntos
Acetamidas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Isoindóis/farmacologia , Leucemia Mieloide Aguda/patologia , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Piperidonas/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Acetamidas/uso terapêutico , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Humanos , Isoindóis/uso terapêutico , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Células-Tronco Neoplásicas/enzimologia , Proteína do Fator Nuclear 45/fisiologia , Proteínas do Fator Nuclear 90/fisiologia , Fatores de Terminação de Peptídeos/metabolismo , Piperidonas/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteólise , Bibliotecas de Moléculas Pequenas , Estresse Fisiológico , Serina-Treonina Quinases TOR/fisiologia , Células U937 , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Protein J ; 39(5): 411-421, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33009960

RESUMO

Interleukin enhancer-binding factor 2 (ILF2) forms a heterodimer with interleukin enhancer-binding factor 3 (ILF3) via double-stranded RNA-binding motif and zinc finger associated domain and thus regulates gene expression and cancer cell growth. However, how ILF2 is degraded in cells remains elusive. In this work, using stable isotope labeling by amino acids in cell culture (SILAC) quantitative proteomics, we find that ILF2 is downregulated in cells expressing cereblon (CRBN). Using affinity purification and immunoblotting analysis, we demonstrate that CRBN interacts with ILF2 and functions as a substrate receptor of the cullin-4 RING E3 ligase complex. Biochemical experiments disclose that CRBN expression reduces ILF2 protein level and this reduction is diminished when the proteasome is inhibited. Upon protein synthesis inhibition, the degradation of ILF2 is enhanced by CRBN. Moreover, CRBN promotes the ubiquitination of ILF2 and thus results in the ubiquitin-mediated proteasomal degradation. Analyses of previously identified post-translational modification sites and the crystal structure of ILF2 discover the potential ubiquitination sites on ILF2. Through mutagenesis and biochemical experiments, we further reveal that the K45R mutation completely abolishes the effect of CRBN on ILF2, suggesting that this is the key residue responsible for its ubiquitination. Taken together, we identify an E3 ligase that regulates ILF2 and uncover a molecular pathway for its degradation. This work might be helpful to elucidate the molecular mechanism by which CRBN regulates diverse cellular functions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína do Fator Nuclear 45/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal/genética , Células HEK293 , Humanos , Proteína do Fator Nuclear 45/genética , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina-Proteína Ligases/genética
20.
RNA ; 26(11): 1603-1620, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32675111

RESUMO

Cellular quiescence and cell cycle reentry regulate vital biological processes such as cellular development and tissue homeostasis and are controlled by precise regulation of gene expression. The roles of long noncoding RNAs (lncRNAs) during these processes remain to be elucidated. By performing genome-wide transcriptome analyses, we identify differential expression of several hundreds of lncRNAs, including a significant number of the less-characterized class of microRNA-host-gene (MIRHG) lncRNAs or lnc-MIRHGs, during cellular quiescence and cell cycle reentry in human diploid fibroblasts. We observe that MIR222HG lncRNA displays serum-stimulated RNA processing due to enhanced splicing of the host nascent pri-MIR222HG transcript. The pre-mRNA splicing factor SRSF1 negatively regulates the microprocessor-catalyzed cleavage of pri-miR-222, thereby increasing the cellular pool of the mature MIR222HG Association of SRSF1 to pri-MIR222HG, including to a mini-exon, which partially overlaps with the primary miR-222 precursor, promotes serum-stimulated splicing over microRNA processing of MIR222HG Further, we observe that the increased levels of spliced MIR222HG in serum-stimulated cells promote the cell cycle reentry post quiescence in a microRNA-independent manner. MIR222HG interacts with DNM3OS, another lncRNA whose expression is elevated upon serum-stimulation, and promotes cell cycle reentry. The double-stranded RNA binding protein ILF3/2 complex facilitates MIR222HG:DNM3OS RNP complex assembly, thereby promoting DNM3OS RNA stability. Our study identifies a novel mechanism whereby competition between the splicing and microprocessor machinery modulates the serum-induced RNA processing of MIR222HG, which dictates cell cycle reentry.


Assuntos
Perfilação da Expressão Gênica/métodos , Pulmão/citologia , RNA Longo não Codificante/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Soro/química , Ciclo Celular , Linhagem Celular , Fibroblastos/química , Fibroblastos/citologia , Células HEK293 , Humanos , Pulmão/química , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA , Análise de Sequência de RNA , Imagem Individual de Molécula , Regulação para Cima , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...