Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2278, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145187

RESUMO

DNA cytosine deaminase APOBEC3B (A3B) is an endogenous source of mutations in many human cancers, including multiple myeloma. A3B proteins form catalytically inactive high molecular mass (HMM) complexes in nuclei, however, the regulatory mechanisms of A3B deaminase activity in HMM complexes are still unclear. Here, we performed mass spectrometry analysis of A3B-interacting proteins from nuclear extracts of myeloma cell lines and identified 30 putative interacting proteins. These proteins are involved in RNA metabolism, including RNA binding, mRNA splicing, translation, and regulation of gene expression. Except for SAFB, these proteins interact with A3B in an RNA-dependent manner. Most of these interacting proteins are detected in A3B HMM complexes by density gradient sedimentation assays. We focused on two interacting proteins, ILF2 and SAFB. We found that overexpressed ILF2 enhanced the deaminase activity of A3B by 30%, while SAFB did not. Additionally, siRNA-mediated knockdown of ILF2 suppressed A3B deaminase activity by 30% in HEK293T cell lysates. Based on these findings, we conclude that ILF2 can interact with A3B and enhance its deaminase activity in HMM complexes.


Assuntos
Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mieloma Múltiplo/genética , Mutação/genética , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Proteína do Fator Nuclear 45/metabolismo , Mapas de Interação de Proteínas/genética
2.
J Mol Neurosci ; 71(2): 225-233, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32748330

RESUMO

The proliferation and migration of vascular smooth muscle cells (VSMCs) are involved in the pathogenesis of intracranial aneurysm (IA) formation and rupture. Interleukin enhancer binding factor 2 (ILF2) is known as the nuclear factor of activated T cells and regulates cell growth. This study was aimed to explore the effects of ILF2 on IA progression. Human brain VSMCs (hBVSMCs) were transfected with pCDNA3.1(+), pCDNA3.1(+)-ILF2, siRNA-negative control, and siRNA-ILF2. The transfection efficiency was then evaluated by determining ILF2 expression. The cell viability and apoptosis were determined using Cell Counting Kit-8 and Annexin V-FITC cell apoptosis assay kit, respectively. Real-time quantification PCR (RT-qPCR) was applied to measure the expression levels of apoptosis-related and inflammation-related genes. Finally, western blot was used to detect the expression level of Fas cell surface death receptor 95 (CD95) and Caspase 8. Overexpression of ILF2 could significantly increase cell viability and decrease cell apoptosis (P < 0.05), while knock-down of ILF2 showed opposite trends for hBVSMCs on cell viability and apoptosis (P < 0.05). RT-qPCR results showed that ILF2 knock-down downregulated the expression levels of BCL2 apoptosis regulator (BCL2), transcriptional regulator Myc-like (c-Myc), and caspase 1 (ICE) whereas upregulated the expression levels of CD95, p21, p53, and interleukin-13 (IL-13). Additionally, the protein expression levels of CD95 and Caspase 8 were significantly decreased after ILF2 overexpression while were significantly increased after ILF2 knock-down (P < 0.05). ILF2 knock-down may inhibit cell viability and promote cell apoptosis of hBVSMCs by regulating the expression levels of apoptosis-related genes and suppressing inflammatory response.


Assuntos
Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína do Fator Nuclear 45/fisiologia , Apoptose/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Caspase 8/biossíntese , Caspase 8/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/biossíntese , Citocinas/genética , Técnicas de Silenciamento de Genes , Humanos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/metabolismo , Transfecção , Vasculite/metabolismo , Receptor fas/biossíntese , Receptor fas/genética
3.
Blood ; 137(5): 661-677, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33197925

RESUMO

A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).


Assuntos
Acetamidas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Isoindóis/farmacologia , Leucemia Mieloide Aguda/patologia , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Piperidonas/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Acetamidas/uso terapêutico , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Humanos , Isoindóis/uso terapêutico , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Células-Tronco Neoplásicas/enzimologia , Proteína do Fator Nuclear 45/fisiologia , Proteínas do Fator Nuclear 90/fisiologia , Fatores de Terminação de Peptídeos/metabolismo , Piperidonas/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteólise , Bibliotecas de Moléculas Pequenas , Estresse Fisiológico , Serina-Treonina Quinases TOR/fisiologia , Células U937 , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Arch Biochem Biophys ; 663: 101-108, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30550728

RESUMO

Nuclear factor 45 (NF-45) has been found to be markedly upregulated in several cancers, including esophageal squamous cell carcinoma (ESCC). However, the molecular mechanisms underlying its functions remain unclear. In this study, we confirm that overexpression of NF45 was frequently detected in ESCC tissues and was associated with poor outcome. Overexpression studies revealed that NF-45 promoted cell growth and invasion and upregulated Rac1/Tiam1 signalling via 14-3-3ε protein in ESCC cell lines. This novel mechanism linking upregulated NF45 expression to increased 14-3-3ε/Rac1/Tiam1 signalling and subsequent growth and invasion in ESCC may aid in identification of new therapeutic targets for this disease.


Assuntos
Proteínas 14-3-3/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Invasividade Neoplásica , Proteína do Fator Nuclear 45/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo
5.
Cancer Cell ; 32(1): 88-100.e6, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28669490

RESUMO

Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage. The intimate link between 1q21-amplified ILF2 and the regulation of RNA splicing of DNA repair genes may be exploited to optimize the use of DNA-damaging agents in patients with high-risk MM.


Assuntos
Mieloma Múltiplo/genética , Proteína do Fator Nuclear 45/fisiologia , Splicing de RNA/genética , Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Humanos , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Fator de Processamento U2AF/metabolismo , Células Tumorais Cultivadas , Proteína 1 de Ligação a Y-Box/metabolismo
6.
Mol Cell Biol ; 35(20): 3491-503, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26240280

RESUMO

The interleukin enhancer binding factors ILF2 (NF45) and ILF3 (NF90/NF110) have been implicated in various cellular pathways, such as transcription, microRNA (miRNA) processing, DNA repair, and translation, in mammalian cells. Using tandem affinity purification, we identified human NF45 and NF90 as components of precursors to 60S (pre-60S) ribosomal subunits. NF45 and NF90 are enriched in nucleoli and cosediment with pre-60S ribosomal particles in density gradient analysis. We show that association of the NF45/NF90 heterodimer with pre-60S ribosomal particles requires the double-stranded RNA binding domains of NF90, while depletion of NF45 and NF90 by RNA interference leads to a defect in 60S biogenesis. Nucleoli of cells depleted of NF45 and NF90 have altered morphology and display a characteristic spherical shape. These effects are not due to impaired rRNA transcription or processing of the precursors to 28S rRNA. Consistent with a role of the NF45/NF90 heterodimer in nucleolar steps of 60S subunit biogenesis, downregulation of NF45 and NF90 leads to a p53 response, accompanied by induction of the cyclin-dependent kinase inhibitor p21/CIP1, which can be counteracted by depletion of RPL11. Together, these data indicate that NF45 and NF90 are novel higher-eukaryote-specific factors required for the maturation of 60S ribosomal subunits.


Assuntos
Proteína do Fator Nuclear 45/fisiologia , Proteínas do Fator Nuclear 90/fisiologia , Proteínas Ribossômicas/biossíntese , Nucléolo Celular/metabolismo , Forma do Núcleo Celular , Células HEK293 , Células HeLa , Humanos , Transporte Proteico , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo
7.
J Virol ; 84(20): 10592-605, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20702628

RESUMO

Two of the central issues in developing new strategies to interfere with viral infections concern the identification of cellular proteins involved in viral replication and/or antiviral measures and the dissection of the underlying molecular mechanisms. To gain initial insight into the role of host proteins in the life cycle of infectious bursal disease virus (IBDV), a double-stranded RNA virus, we examined the cellular nuclear factor 45 (NF45). NF45 was previously indicated to be involved in the replication process of other types of RNA viruses. Interestingly, by performing immunofluorescence studies, we found that in IBDV-infected cells the mainly nuclear NF45 accumulated at the sites of viral replication in the cytoplasm. NF45 was shown to specifically colocalize with the viral RNA-dependent RNA polymerase VP1, the capsid protein VP2, and the ribonucleoprotein VP3. Immunoprecipitation experiments indicated protein-protein associations between NF45 and VP1, VP2, and VP3. Expression of the individual VP3 or the combination of expression of VP1 and VP3 did not result in a cytoplasmic accumulation of NF45, which, among other data, showed that recruitment of the cellular protein in infected cells functionally correlates with the viral replication process. Since small interfering RNA(siRNA)-mediated downregulation of NF45 resulted in an approximately 5-fold increase of virus yield, our study suggests that NF45, by association with viral proteins, is part of a yet-uncharacterized cellular defense mechanism against IBDV infections.


Assuntos
Vírus da Doença Infecciosa da Bursa/fisiologia , Proteína do Fator Nuclear 45/fisiologia , Proteínas Virais/fisiologia , Animais , Anticorpos Antivirais/biossíntese , Sequência de Bases , Linhagem Celular , Galinhas , Chlorocebus aethiops , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Primers do DNA/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/patogenicidade , Carioferinas/metabolismo , Proteína do Fator Nuclear 45/antagonistas & inibidores , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/imunologia , Interferência de RNA , RNA Interferente Pequeno/genética , Coelhos , Receptores Citoplasmáticos e Nucleares/metabolismo , Células Vero , Proteínas Virais/genética , Replicação Viral/genética , Replicação Viral/fisiologia , Proteína Exportina 1
8.
J Androl ; 29(2): 186-97, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17942973

RESUMO

Identification of transcription factors involved in the progression of spermatogenic cell differentiation is important for understanding the molecular mechanisms controlling spermatogenesis. To this end, we utilized the mouse SP-10 gene encoding a conserved acrosomal protein as an experimental model. Promoter analysis in transgenic mice had previously shown that the -186/-91 region of the SP-10 promoter was critical for spermatid-specific expression. Here, we focus on a purine (Pu) box (-agaaaa) located at -154, which is conserved in the mouse, monkey, and human SP-10 gene promoters. NF45 and NF90, which belong to the family of nuclear factor of activated T cells (NFAT), are known as Pu-box-binding proteins. We tested the potential of NF45 and NF90 to activate the SP-10 promoter via the Pu-box element. Immunohistochemistry showed the presence of NF45 and NF90 in the nuclei of pachytene spermatocytes, round spermatids, and Sertoli cells. In gel shift assays, recombinant NF45 bound to the mouse SP-10 promoter in an AGAAAA site-specific manner. Cotransfection of NF45 and NF90 up-regulated SP-10 promoter-driven luciferase expression in transiently transfected spermatogenic GC2 cell line; this up-regulation required the -AGAAAA- site. Furthermore, stimulation of the endogenous NF45-NF90 complex in Jurkat cells by phorbol myristate acetate + ionomycin up-regulated the SP-10 promoter activity in plasmid-based assays. In the context of chromatin, however, stimulation of NF45-NF90 alone was not sufficient to activate an SP-10 promoter-driven green fluorescent protein transgene. Based on these results, we propose that NF45 and NF90 have the potential to activate SP-10 gene transcription, and that a chromatin modification event must occur first in order to provide access to these transcription factors.


Assuntos
Proteínas de Membrana/genética , Proteína do Fator Nuclear 45/fisiologia , Proteínas do Fator Nuclear 90/fisiologia , Epitélio Seminífero/metabolismo , Animais , Sequência de Bases , Haplorrinos , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas/fisiologia , Alinhamento de Sequência , Ativação Transcricional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...