Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 3): 70-78, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33682791

RESUMO

CRM1 is a nuclear export receptor that has been intensively targeted over the last decade for the development of antitumor and antiviral drugs. Structural analysis of several inhibitor compounds bound to CRM1 revealed that their mechanism of action relies on the covalent modification of a critical cysteine residue (Cys528 in the human receptor) located in the nuclear export signal-binding cleft. This study presents the crystal structure of human CRM1, covalently modified by 2-mercaptoethanol on Cys528, in complex with RanGTP at 2.58 Šresolution. The results demonstrate that buffer components can interfere with the characterization of cysteine-dependent inhibitor compounds.


Assuntos
Cisteína/química , Carioferinas/química , Carioferinas/metabolismo , Mercaptoetanol/química , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Sinais de Exportação Nuclear , Proteína ran de Ligação ao GTP/química , Proteína Exportina 1
3.
J Biol Chem ; 294(43): 15733-15742, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31484720

RESUMO

REV7, also termed mitotic arrest-deficient 2-like 2 (MAD2L2 or MAD2B), acts as an interaction module in a broad array of cellular pathways, including translesion DNA synthesis, cell cycle control, and nonhomologous end joining. Numerous REV7 binding partners have been identified, including the human small GTPase Ras-associated nuclear protein (RAN), which acts as a potential upstream regulator of REV7. Notably, the Shigella invasin IpaB hijacks REV7 to disrupt cell cycle control to prevent intestinal epithelial cell renewal and facilitate bacterial colonization. However, the structural details of the REV7-RAN and REV7-IpaB interactions are mostly unknown. Here, using fusion protein and rigid maltose-binding protein tagging strategies, we determined the crystal structures of these two complexes at 2.00-2.35 Å resolutions. The structures revealed that both RAN and IpaB fragments bind the "safety belt" region of REV7, inducing rearrangement of the C-terminal ß-sheet region of REV7, conserved among REV7-related complexes. Of note, the REV7-binding motifs of RAN and IpaB each displayed some unique interactions with REV7 despite sharing consensus residues. Structural alignments revealed that REV7 has an adaptor region within the safety belt region that can rearrange secondary structures to fit a variety of different ligands. Our structural and biochemical results further indicated that REV7 preferentially binds GTP-bound RAN, implying that a GTP/GDP-bound transition of RAN may serve as the molecular switch that controls REV7's activity. These results provide insights into the regulatory mechanism of REV7 in cell cycle control, which may help with the development of small-molecule inhibitors that target REV7 activity.


Assuntos
Proteínas de Bactérias/metabolismo , Guanosina Difosfato/metabolismo , Proteínas Mad2/química , Proteínas Mad2/metabolismo , Shigella/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Análise Mutacional de DNA , Guanosina Trifosfato/metabolismo , Ligantes , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Proteína ran de Ligação ao GTP/química
4.
J Cell Biol ; 218(6): 1839-1852, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31023722

RESUMO

Importins ferry proteins into nuclei while exportins carry cargoes to the cytoplasm. In the accompanying paper in this issue (Vera Rodriguez et al. 2019. J. Cell Biol. https://doi.org/10.1083/jcb.201812091), we discovered that Pdr6 is a biportin that imports, e.g., the SUMO E2 ligase Ubc9 while depleting the translation factor eIF5A from the nuclear compartment. In this paper, we report the structures of key transport intermediates, namely, of the Ubc9•Pdr6 import complex, of the RanGTP•Pdr6 heterodimer, and of the trimeric RanGTP•Pdr6•eIF5A export complex. These revealed nonlinear transport signals, chaperone-like interactions, and how the RanGTPase system drives Pdr6 to transport Ubc9 and eIF5A in opposite directions. The structures also provide unexpected insights into the evolution of transport selectivity. Specifically, they show that recognition of Ubc9 by Pdr6 differs fundamentally from that of the human Ubc9-importer Importin 13. Likewise, Pdr6 recognizes eIF5A in a nonhomologous manner compared with the mammalian eIF5A-exporter Exportin 4. This suggests that the import of Ubc9 and active nuclear exclusion of eIF5A evolved in different eukaryotic lineages more than once and independently from each other.


Assuntos
Núcleo Celular/metabolismo , Carioferinas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , beta Carioferinas/química , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Humanos , Carioferinas/química , Carioferinas/genética , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , beta Carioferinas/genética , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/genética , Fator de Iniciação de Tradução Eucariótico 5A
5.
J Biol Chem ; 293(47): 18207-18217, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30282806

RESUMO

Nav1.5 is the α-subunit of the cardiac sodium channel complex. Abnormal expression of Nav1.5 on the cell surface because of mutations that disrupt Nav1.5 trafficking causes Brugada syndrome (BrS), sick sinus syndrome (SSS), cardiac conduction disease, dilated cardiomyopathy, and sudden infant death syndrome. We and others previously reported that Ran-binding protein MOG1 (MOG1), a small protein that interacts with Nav1.5, promotes Nav1.5 intracellular trafficking to plasma membranes and that a substitution in MOG1, E83D, causes BrS. However, the molecular basis for the MOG1/Nav1.5 interaction and how the E83D substitution causes BrS remains unknown. Here, we assessed the effects of defined MOG1 deletions and alanine-scanning substitutions on MOG1's interaction with Nav1.5. Large deletion analysis mapped the MOG1 domain required for the interaction with Nav1.5 to the region spanning amino acids 146-174, and a refined deletion analysis further narrowed this domain to amino acids 146-155. Site-directed mutagenesis further revealed that Asp-148, Arg-150, and Ser-151 cluster in a peptide loop essential for binding to Nav1.5. GST pulldown and electrophysiological analyses disclosed that the substitutions E83D, D148Q, R150Q, and S151Q disrupt MOG1's interaction with Nav1.5 and significantly reduce its trafficking to the cell surface. Examination of MOG1's 3D structure revealed that Glu-83 and the loop containing Asp-148, Arg-150, and Ser-151 are spatially proximal, suggesting that these residues form a critical binding site for Nav1.5. In conclusion, our findings identify the structural elements in MOG1 that are crucial for its interaction with Nav1.5 and improve our understanding of how the E83D substitution causes BrS.


Assuntos
Síndrome de Brugada/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Síndrome de Brugada/genética , Deleção de Genes , Humanos , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/genética
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3672-3684, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30251687

RESUMO

BACKGROUND: The cardiac sodium channel Nav1.5 is essential for the physiological function of the heart and causes cardiac arrhythmias and sudden death when mutated. Many disease-causing mutations in Nav1.5 cause defects in protein trafficking, a cellular process critical to the targeting of Nav1.5 to cell surface. However, the molecular mechanisms underlying the trafficking of Nav1.5, in particular, the exit from the endoplasmic reticulum (ER) for cell surface trafficking, remain poorly understood. METHODS AND RESULTS: Here we investigated the role of the SAR1 GTPases in trafficking of Nav1.5. Overexpression of dominant-negative mutant SAR1A (T39N or H79G) or SAR1B (T39N or H79G) significantly reduces the expression level of Nav1.5 on cell surface, and decreases the peak sodium current density (INa) in HEK/Nav1.5 cells and neonatal rat cardiomyocytes. Simultaneous knockdown of SAR1A and SAR1B expression by siRNAs significantly reduces the INa density, whereas single knockdown of either SAR1A or SAR1B has minimal effect. Computer modeling showed that the three-dimensional structure of SAR1 is similar to RAN. RAN was reported to interact with MOG1, a small protein involved in regulation of the ER exit of Nav1.5. Co-immunoprecipitation showed that SAR1A or SAR1B interacted with MOG1. Interestingly, knockdown of SAR1A and SAR1B expression abolished the MOG1-mediated increases in both cell surface trafficking of Nav1.5 and the density of INa. CONCLUSIONS: These data suggest that SAR1A and SAR1B are the critical regulators of trafficking of Nav1.5. Moreover, SAR1A and SAR1B interact with MOG1, and are required for MOG1-mediated cell surface expression and function of Nav1.5.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Mutagênese , Miócitos Cardíacos/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/economia , Técnicas de Patch-Clamp , Cultura Primária de Células , Transporte Proteico/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína ran de Ligação ao GTP/química
7.
Structure ; 26(10): 1393-1398.e2, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30100359

RESUMO

In the nucleus, RanGTP binding to importin dissociates the cargo. On the other hand, RanGTP enables exportin to bind export cargo and form the export complex by each exportin's own cargo selection mechanism. Here, we present two X-ray structures for Exportin-5 (Exp-5) alone and Exp-5:RanGTP intermediate complex. The structure of Exp-5 adopts a ring-shaped closed conformation by C-terminal anchor residues 1,167-1,179, interacting with N-terminal heat repeats 4-9. The closed form of Exp-5 is important for the stability of the cargo-free state. Interaction between Exp-5 and RanGTP induces elimination of intramolecular contacts of the C-terminal anchor. A large movement of N-terminal 1-9th heat repeats and C-terminal 19-20th heat repeats creates an open space for RanGTP accommodation. Exp-5 in Exp-5:RanGTP and Exp-5:RanGTP:pre-miRNA adopts the same conformation. RanGTP binding to Exp-5 creates a selective molecular cage area for accepting its cargoes, such as small double-stranded RNAs, without conformational change in Exp-5:RanGTP.


Assuntos
Carioferinas/química , Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteína ran de Ligação ao GTP/química
8.
J Cell Biol ; 217(7): 2329-2340, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29748336

RESUMO

Exportins bind cargo molecules in a RanGTP-dependent manner inside nuclei and transport them through nuclear pores to the cytoplasm. CRM1/Xpo1 is the best-characterized exportin because specific inhibitors such as leptomycin B allow straightforward cargo validations in vivo. The analysis of other exportins lagged far behind, foremost because no such inhibitors had been available for them. In this study, we explored the cargo spectrum of exportin 7/Xpo7 in depth and identified not only ∼200 potential export cargoes but also, surprisingly, ∼30 nuclear import substrates. Moreover, we developed anti-Xpo7 nanobodies that acutely block Xpo7 function when transfected into cultured cells. The inhibition is pathway specific, mislocalizes export cargoes of Xpo7 to the nucleus and import substrates to the cytoplasm, and allowed validation of numerous tested cargo candidates. This establishes Xpo7 as a broad-spectrum bidirectional transporter and paves the way for a much deeper analysis of exportin and importin function in the future.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Carioferinas/genética , Poro Nuclear/genética , Proteína ran de Ligação ao GTP/genética , Transporte Ativo do Núcleo Celular/imunologia , Animais , Camelídeos Americanos/imunologia , Núcleo Celular/química , Núcleo Celular/genética , Células HeLa , Humanos , Carioferinas/antagonistas & inibidores , Carioferinas/química , Carioferinas/imunologia , Poro Nuclear/imunologia , Oócitos/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Xenopus laevis/genética , Proteína ran de Ligação ao GTP/antagonistas & inibidores , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/imunologia , Proteína Exportina 1
9.
J Mol Cell Biol ; 10(1): 18-32, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040603

RESUMO

Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. The Ran GTPase plays a key role in mitotic spindle assembly. However, how the generation of a chemical gradient of Ran-GTP at the spindle is coupled to mitotic post-translational modifications has never been characterized. Here, we solved the complex structure of Ran with the nucleotide release factor Mog1 and delineated a novel mitosis-specific acetylation-regulated Ran-Mog1 interaction during chromosome segregation. Our structure-guided functional analyses revealed that Mog1 competes with RCC1 for Ran binding in a GTP/GDP-dependent manner. Biochemical characterization demonstrated that Mog1-bound Ran prevents RCC1 binding and subsequent GTP loading. Surprisingly, Ran is a bona fide substrate of TIP60, and the acetylation of Lys134 by TIP60 liberates Mog1 from Ran binding during mitosis. Importantly, this acetylation-elicited switch of Ran binding to RCC1 promotes high level of Ran-GTP, which is essential for chromosome alignment. These results establish a previously uncharacterized regulatory mechanism in which TIP60 provides a homeostatic control of Ran-GTP level by tuning Ran effector binding for chromosome segregation in mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Acetilação , Proteínas de Ciclo Celular/química , Fatores de Troca do Nucleotídeo Guanina/química , Células HeLa , Humanos , Lisina Acetiltransferase 5/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas , Proteína ran de Ligação ao GTP/química
10.
Fish Shellfish Immunol ; 70: 583-592, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28935600

RESUMO

A ras-related nuclear protein (Ran) protein was obtained from Macrobrachium rosenbergii, named MrRan. Phylogenetic analysis results showed that MrRan was clustered in one group together with other crustaceans. Tissue distribution analysis revealed that MrRan was expressed mainly in gill, intestine and stomach, and expressed weakly in muscle. The MrRan expression levels in gill and hemocyte of prawns were significantly up-regulated after challenged by Spiroplasma eriocheiris. The copy number of S. eriocheiris in MrRan dsRNA injection group was significantly less than control groups during infection. Meanwhile, silencing MrRan obviously increased the survival rate of prawns. The subcellular localization experiment suggested that recombinant MrRan was mainly located in the nucleus, and relatively weak in the cytoplasm. Finally, over-expression in Drosophila S2 cell indicated that MrRan could increase copies of S. eriocheiris and decrease of cell viability. The present study suggested that MrRan participated in regulating the phagocytosis of S. eriocheiris in M. rosenbergii.


Assuntos
Imunidade Inata/genética , Palaemonidae/genética , Palaemonidae/imunologia , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Brânquias/imunologia , Hemócitos/imunologia , Filogenia , Spiroplasma/fisiologia , Proteína ran de Ligação ao GTP/química
11.
Nucleus ; 7(4): 415-23, 2016 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-27541860

RESUMO

Samp1 is a transmembrane protein of the inner nuclear membrane (INM), which interacts with the nuclear lamina and the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex in interphase and during mitosis, it localizes to the mitotic spindle. Samp1 was recently found to coprecipitate a protein complex containing Ran, a GTPase with fundamental regulatory functions both in interphase and in mitosis. To investigate the interaction between Samp1 and Ran in further detail, we have designed and expressed recombinant fusion proteins of the Chaetomium thermophilum homolog of Samp1 (Ct.Samp1) and human Ran. Pulldown experiments show that Samp1 binds directly to Ran and that Samp1 binds better to RanGTP compared to RanGDP. Samp1 also preferred RanGTP over RanGDP in living tsBN2 cells. We also show that the Ran binding domain is located between amino acids 75-135 in the nucleoplasmically exposed N-terminal tail of Samp1. This domain is unique for Samp1, without homology in any other proteins in fungi or metazoa. Samp1 is the first known transmembrane protein that binds to Ran and could provide a unique local binding site for RanGTP in the INM. Samp1 overexpression resulted in increased Ran concentrations in the nuclear periphery supporting this idea.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Chaetomium , Proteínas Fúngicas/química , Humanos , Proteínas de Membrana/química , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Especificidade por Substrato , Proteína ran de Ligação ao GTP/química
12.
Biosci Biotechnol Biochem ; 80(10): 1907-16, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27310473

RESUMO

Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.


Assuntos
Citrullus/enzimologia , Citrullus/fisiologia , Secas , Raízes de Plantas/crescimento & desenvolvimento , Proteína ran de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Citrullus/genética , Citrullus/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água/metabolismo , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/genética
13.
Nat Commun ; 7: 11952, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306458

RESUMO

Xpo4 is a bidirectional nuclear transport receptor that mediates nuclear export of eIF5A and Smad3 as well as import of Sox2 and SRY. How Xpo4 recognizes such a variety of cargoes is as yet unknown. Here we present the crystal structure of the RanGTP·Xpo4·eIF5A export complex at 3.2 Å resolution. Xpo4 has a similar structure as CRM1, but the NES-binding site is occluded, and a new interaction site evolved that recognizes both globular domains of eIF5A. eIF5A contains hypusine, a unique amino acid with two positive charges, which is essential for cell viability and eIF5A function in translation. The hypusine docks into a deep, acidic pocket of Xpo4 and is thus a critical element of eIF5A's complex export signature. This further suggests that Xpo4 recognizes other cargoes differently, and illustrates how Xpo4 suppresses - in a chaperone-like manner - undesired interactions of eIF5A inside nuclei.


Assuntos
Carioferinas/química , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/química , Proteínas de Ligação a RNA/química , Proteína ran de Ligação ao GTP/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Cinética , Lisina/química , Lisina/metabolismo , Simulação de Acoplamento Molecular , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
14.
Biophys J ; 110(6): 1264-79, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028637

RESUMO

Exportin-t (Xpot) transports mature 5'- and 3'-end processed tRNA from the nucleus to the cytoplasm by associating with a small G-protein Ran (RAs-related nuclear protein), in the nucleus. The release of tRNA in cytoplasm involves RanGTP hydrolysis. Despite the availability of crystal structures of nuclear and cytosolic forms of Xpot, the molecular details regarding the sequential events leading to tRNA release and subsequent conformational changes occurring in Xpot remain unknown. We have performed a combination of classical all-atom and accelerated molecular dynamics simulations on a set of complexes involving Xpot to study a range of features including conformational flexibility of free and cargo-bound Xpot and functionally critical contacts between Xpot and its cargo. The systems investigated include free Xpot and its different complexes, bound either to Ran (GTP/GDP) or tRNA or both. This approach provided a statistically reliable estimate of structural dynamics of Xpot after cargo release. The mechanistic basis for Xpot opening after cargo release has been explained in terms of dynamic structural hinges, about which neighboring region could be displaced to facilitate the nuclear to cytosolic state transition. Post-RanGTP hydrolysis, a cascade of events including local conformational change in RanGTP and loss of critical contacts at Xpot/tRNA interface suggest factors responsible for eventual release of tRNA. The level of flexibility in different Xpot complexes varied depending on the arrangement of individual HEAT repeats. Current study provides one of the most comprehensive and robust analysis carried out on this protein using molecular dynamics schemes.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte de RNA , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Proteínas de Transporte Nucleocitoplasmático/química , Análise de Componente Principal , Ligação Proteica , Estrutura Secundária de Proteína , RNA de Transferência/química , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/metabolismo
15.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 12): 1481-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26625290

RESUMO

High conformational flexibility is an intrinsic and indispensable property of nuclear transport receptors, which makes crystallization and structure determination of macromolecular complexes containing exportins or importins particularly challenging. Here, the crystallization and structure determination of a quaternary nuclear export complex consisting of the exportin CRM1, the small GTPase Ran in its GTP-bound form, the export cargo SPN1 and an FG repeat-containing fragment of the nuclear pore complex component nucleoporin Nup214 fused to maltose-binding protein is reported. Optimization of constructs, seeding and the development of a sophisticated protocol including successive PEG-mediated crystal dehydration as well as additional post-mounting steps were essential to obtain well diffracting crystals.


Assuntos
Núcleo Celular/metabolismo , Dessecação , Carioferinas/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Receptores Citoplasmáticos e Nucleares/química , Proteína ran de Ligação ao GTP/química , Transporte Ativo do Núcleo Celular , Cristalografia por Raios X , Modelos Moleculares , Proteína Exportina 1
16.
PLoS One ; 10(11): e0142142, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26554926

RESUMO

Ran (RanGTPase) in insects participates in the 20-hydroxyecdysone signal transduction pathway in which downstream genes, FTZ-F1, Krüppel-homolog 1 (Kr-h1) and vitellogenin, are involved. A putative Ran gene (NlRan) was cloned from Nilaparvata lugens, a destructive phloem-feeding pest of rice. NlRan has the typical Ran primary structure features that are conserved in insects. NlRan showed higher mRNA abundance immediately after molting and peaked in newly emerged female adults. Among the examined tissues ovary had the highest transcript level, followed by fat body, midgut and integument, and legs. Three days after dsNlRan injection the NlRan mRNA abundance in the third-, fourth-, and fifth-instar nymphs was decreased by 94.3%, 98.4% and 97.0%, respectively. NlFTZ-F1 expression levels in treated third- and fourth-instar nymphs were reduced by 89.3% and 23.8%, respectively. In contrast, NlKr-h1 mRNA levels were up-regulated by 67.5 and 1.5 folds, respectively. NlRan knockdown significantly decreased the body weights, delayed development, and killed >85% of the nymphs at day seven. Two apparent phenotypic defects were observed: (1) Extended body form, and failed to molt; (2) The cuticle at the notum was split open but cannot completely shed off. The newly emerged female adults from dsNlRan injected fifth-instar nymphs showed lower levels of NlRan and vitellogenin, lower weight gain and honeydew excretion comparing with the blank control, and no offspring. Those results suggest that NlRan encodes a functional protein that was involved in development and reproduction. The study established proof of concept that NlRan could serve as a target for dsRNA-based pesticides for N. lugens control.


Assuntos
Hemípteros/genética , Controle Biológico de Vetores/métodos , Interferência de RNA , Proteína ran de Ligação ao GTP/fisiologia , Sequência de Aminoácidos , Animais , Feminino , Genes de Insetos , Hemípteros/fisiologia , Dados de Sequência Molecular , Oogênese/genética , Homologia de Sequência de Aminoácidos , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/genética
17.
Proc Natl Acad Sci U S A ; 112(28): E3679-88, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124124

RESUMO

Ran is a small GTP-binding protein of the Ras superfamily regulating fundamental cellular processes: nucleo-cytoplasmic transport, nuclear envelope formation and mitotic spindle assembly. An intracellular Ran•GTP/Ran•GDP gradient created by the distinct subcellular localization of its regulators RCC1 and RanGAP mediates many of its cellular effects. Recent proteomic screens identified five Ran lysine acetylation sites in human and eleven sites in mouse/rat tissues. Some of these sites are located in functionally highly important regions such as switch I and switch II. Here, we show that lysine acetylation interferes with essential aspects of Ran function: nucleotide exchange and hydrolysis, subcellular Ran localization, GTP hydrolysis, and the interaction with import and export receptors. Deacetylation activity of certain sirtuins was detected for two Ran acetylation sites in vitro. Moreover, Ran was acetylated by CBP/p300 and Tip60 in vitro and on transferase overexpression in vivo. Overall, this study addresses many important challenges of the acetylome field, which will be discussed.


Assuntos
Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteína ran de Ligação ao GTP/fisiologia , Acetilação , Animais , Catálise , Proteínas de Ciclo Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Ligação Proteica , Ratos , Sirtuínas/metabolismo , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/metabolismo
18.
Elife ; 42015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25895666

RESUMO

The transport receptor Crm1 mediates the export of diverse cargos containing leucine-rich nuclear export signals (NESs) through complex formation with RanGTP. To ensure efficient cargo release in the cytoplasm, NESs have evolved to display low affinity for Crm1. However, mechanisms that overcome low affinity to assemble Crm1-export complexes in the nucleus remain poorly understood. In this study, we reveal a new type of RanGTP-binding protein, Slx9, which facilitates Crm1 recruitment to the 40S pre-ribosome-associated NES-containing adaptor Rio2. In vitro, Slx9 binds Rio2 and RanGTP, forming a complex. This complex directly loads Crm1, unveiling a non-canonical stepwise mechanism to assemble a Crm1-export complex. A mutation in Slx9 that impairs Crm1-export complex assembly inhibits 40S pre-ribosome export. Thus, Slx9 functions as a scaffold to optimally present RanGTP and the NES to Crm1, therefore, triggering 40S pre-ribosome export. This mechanism could represent one solution to the paradox of weak binding events underlying rapid Crm1-mediated export.


Assuntos
Carioferinas/metabolismo , Complexos Multiproteicos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Epistasia Genética , Mutação/genética , Sinais de Exportação Nuclear , Ligação Proteica , Transporte Proteico , Ribossomos/metabolismo , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/metabolismo , Proteína Exportina 1
19.
PLoS One ; 10(2): e0112969, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25723178

RESUMO

Molecular traffic between the nucleus and the cytoplasm is regulated by the nuclear pore complex (NPC), which acts as a highly selective channel perforating the nuclear envelope in eukaryotic cells. The human immunodeficiency virus (HIV) exploits the nucleocytoplasmic pathway to export its RNA transcripts across the NPC to the cytoplasm. Despite extensive study on the HIV life cycle and the many drugs developed to target this cycle, no current drugs have been successful in targeting the critical process of viral nuclear export, even though HIV's reliance on a single host protein, CRM1, to export its unspliced and partially spliced RNA transcripts makes it a tempting target. Due to recent findings implicating a DEAD-box helicase, DDX3, in HIV replication and a member of the export complex, it has become an appealing target for anti-HIV drug inhibition. In the present research, we have applied a hybrid computational protocol to analyze protein-protein interactions in the HIV mRNA export cycle. This method is based on molecular docking followed by molecular dynamics simulation and accompanied by approximate free energy calculation (MM/GBSA), computational alanine scanning, clustering, and evolutionary analysis. We highlight here some of the most likely binding modes and interfacial residues between DDX3 and CRM1 both in the absence and presence of RanGTP. This work shows that although DDX3 can bind to free CRM1, addition of RanGTP leads to more concentrated distribution of binding modes and stronger binding between CRM1 and RanGTP.


Assuntos
RNA Helicases DEAD-box/metabolismo , Produtos do Gene rev/metabolismo , Infecções por HIV/metabolismo , HIV-1 , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Replicação Viral , Proteína ran de Ligação ao GTP/metabolismo , Sítios de Ligação , RNA Helicases DEAD-box/química , Produtos do Gene rev/química , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Carioferinas/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Citoplasmáticos e Nucleares/química , Relação Estrutura-Atividade , Proteína ran de Ligação ao GTP/química , Proteína Exportina 1
20.
Elife ; 3: e04121, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25486595

RESUMO

The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-Ran(GTP) nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.


Assuntos
HIV-1/genética , Carioferinas/genética , RNA Viral/genética , Receptores Citoplasmáticos e Nucleares/genética , Elementos de Resposta , Proteína ran de Ligação ao GTP/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Cristalografia por Raios X , Citosol/metabolismo , Citosol/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Células HEK293 , HIV-1/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Carioferinas/química , Carioferinas/metabolismo , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Splicing de RNA , RNA Viral/química , RNA Viral/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/virologia , Replicação Viral/genética , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/metabolismo , Produtos do Gene rev do Vírus da Imunodeficiência Humana/química , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...