Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
1.
Nat Commun ; 15(1): 7654, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227578

RESUMO

Citrullination plays an essential role in various physiological or pathological processes, however, whether citrullination is involved in regulating tumour progression and the potential therapeutic significance have not been well explored. Here, we find that peptidyl arginine deiminase 4 (PADI4) directly interacts with and citrullinates hypoxia-inducible factor 1α (HIF-1α) at R698, promoting HIF-1α stabilization. Mechanistically, PADI4-mediated HIF-1αR698 citrullination blocks von Hippel-Lindau (VHL) binding, thereby antagonizing HIF-1α ubiquitination and subsequent proteasome degradation. We also show that citrullinated HIF-1αR698, HIF-1α and PADI4 are highly expressed in hepatocellular carcinoma (HCC) tumour tissues, suggesting a potential correlation between PADI4-mediated HIF-1αR698 citrullination and cancer development. Furthermore, we identify that dihydroergotamine mesylate (DHE) acts as an antagonist of PADI4, which ultimately suppresses tumour progression. Collectively, our results reveal citrullination as a posttranslational modification related to HIF-1α stability, and suggest that targeting PADI4-mediated HIF-1α citrullination is a promising therapeutic strategy for cancers with aberrant HIF-1α expression.


Assuntos
Carcinoma Hepatocelular , Citrulinação , Progressão da Doença , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Hepáticas , Proteína-Arginina Desiminase do Tipo 4 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Camundongos , Células HEK293 , Estabilidade Proteica/efeitos dos fármacos , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/genética , Camundongos Nus , Masculino
2.
Front Immunol ; 15: 1436926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315100

RESUMO

Background: Ischemia/reperfusion injury (IRI) is a complex pathological process, triggered by the restoration of blood flow following an interrupted blood supply. While restoring the blood flow is the only option to salvage the ischemic tissue, reperfusion after a prolonged period of ischemia initiates IRI, triggering a cascade of inflammatory responses ultimately leading to neutrophil recruitment to the inflamed tissue, where they release neutrophil extracellular traps (NETs). NETs are web-like structures of decondensed chromatin and neutrophilic proteins, including peptidyl-arginine deiminase 2 and 4 (PAD2, PAD4), that, once outside, can citrullinate plasma proteins, irreversibly changing their conformation and potentially their function. While the involvement of NETs in IRI is known mainly from rodent models, we aimed to determine the effect of NET formation and especially PADs-mediated extracellular protein citrullination in a porcine model of limb IRI. Methods: We conducted our study on amputated pig forelimbs exposed to 1 h or 9 h of ischemia and then reperfused in vivo for 12 h. Limb weight, edema formation, compartmental pressure were measured, and skeletal muscle was analyzed by immunofluorescence (TUNEL assay and dystrophin staining) to evaluate tissue damage. Fibrin tissue deposition, complement deposition and NETs were investigated by immunofluorescence. Citrullinated plasma proteins were immunoprecipitated and citrullinated fibrinogen was identified in the plasma by Western blot and in the tissue by immunofluorescence and Western blot. Results: Our data consolidate the involvement of NETs in a porcine model of limb IRI, correlating their contribution to damage extension with the duration of the ischemic time. We found a massive infiltration of NETs in the group subjected to 9 h ischemia compared to the 1 h and citrullinated fibrinogen levels, in plasma and tissue, were higher in 9 h ischemia group. We propose fibrinogen citrullination as one of the mechanisms contributing to the worsening of IRI. NETs and protein citrullination represent a potential therapeutic target, but approaches are still a matter of debate. Here we introduce the idea of therapeutic approaches against citrullination to specifically inhibit PADs extracellularly, avoiding the downstream effects of hypercitrullination and keeping PADs' and NETs' intracellular regulatory functions.


Assuntos
Citrulinação , Modelos Animais de Doenças , Armadilhas Extracelulares , Fibrinogênio , Traumatismo por Reperfusão , Animais , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Fibrinogênio/metabolismo , Suínos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Isquemia/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/imunologia , Músculo Esquelético/irrigação sanguínea , Membro Posterior/irrigação sanguínea , Proteína-Arginina Desiminase do Tipo 4/metabolismo
3.
Sci Transl Med ; 16(766): eadh5090, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321268

RESUMO

Lower urinary tract infection (UTI) is common but only rarely complicated by pyelonephritis. However, the mechanisms preventing extension to the kidney are unclear. Here, we identified neutrophil extracellular traps (NETs) in healthy human urine that provide an antibacterial defense strategy within the urinary tract. In both in vivo murine models of UTI where uropathogenic E. coli are inoculated into the bladder and ex vivo human urine models, NETs interacted with uromodulin to form large webs that entrapped the bacteria. Peptidyl arginine deiminase 4 (PADI4) inhibition in mice blocked NETosis and resulted in progression of cystitis into pyelonephritis, suggesting that NETosis of urinary neutrophils acts to prevent bacterial ascent into the kidney. Analysis of UK Biobank data revealed that genetic variants in PADI4 that associated with increased risk of rheumatoid arthritis in multiple genome-wide association studies were consistently associated with reduced susceptibility to UTI. Last, we showed that urine dipstick testing for leukocyte esterase was negative in the presence of intact blood neutrophils but became positive when neutrophils were stimulated to NET, and this could be prevented by selective PADI4 inhibition, demonstrating that this test does not detect absolute neutrophil count, as has long been assumed, but specifically detects neutrophils that have undergone NETosis. These findings highlight the role of NETosis in preventing ascending infections in the urinary tract and improve our understanding of one of the most common clinical tests in medicine.


Assuntos
Armadilhas Extracelulares , Rim , Neutrófilos , Proteína-Arginina Desiminase do Tipo 4 , Infecções Urinárias , Armadilhas Extracelulares/metabolismo , Humanos , Animais , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Neutrófilos/metabolismo , Infecções Urinárias/microbiologia , Infecções Urinárias/imunologia , Rim/patologia , Camundongos , Uromodulina , Feminino , Fitas Reagentes , Escherichia coli Uropatogênica/patogenicidade , Camundongos Endogâmicos C57BL , Desiminases de Arginina em Proteínas/metabolismo , Leucócitos/metabolismo , Hidrolases de Éster Carboxílico
4.
Life Sci Alliance ; 7(11)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39242155

RESUMO

Sickle cell disease (SCD) is the most common inherited monogenetic disorder. Chronic and acute pain are hallmark features of SCD involving neural and vascular injury and inflammation. Mast cells reside in the vicinity of nerve fibers and vasculature, but how they influence these structures remains unknown. We therefore examined the mechanism of mast cell activation in a sickle microenvironment replete with cell-free heme and inflammation. Mast cells exposed to this environment showed an explosion of nuclear contents with the release of citrullinated histones, suggestive of mast cell extracellular trap (MCET) release. MCETs interacted directly with the vasculature and nerve fibers, a cause of vascular and neural injury in sickle cell mice. MCET formation was dependent upon peptidylarginine deiminase 4 (PAD4). Inhibition of PAD4 ameliorated vasoocclusion, chronic and acute hyperalgesia, and inflammation in sickle mice. PAD4 activation may also underlie neutrophil trap formation in SCD, thus providing a novel target to treat the sequelae of vascular and neural injury in SCD.


Assuntos
Anemia Falciforme , Armadilhas Extracelulares , Hiperalgesia , Mastócitos , Proteína-Arginina Desiminase do Tipo 4 , Anemia Falciforme/complicações , Anemia Falciforme/metabolismo , Animais , Hiperalgesia/metabolismo , Hiperalgesia/etiologia , Armadilhas Extracelulares/metabolismo , Camundongos , Mastócitos/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Humanos , Masculino , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo
5.
Int Immunopharmacol ; 140: 112861, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39106716

RESUMO

Recurring lung injury, chronic inflammation, aberrant tissue repair and impaired tissue remodelling contribute to the pathogenesis of pulmonary fibrosis (PF). Neutrophil extracellular traps (NETs) are released by activated neutrophils to trap, immobilise and kill invading pathogen and is facilitated by peptidyl arginine deiminase-4 (PAD-4). Dysregulated NETs release and abnormal PAD-4 activation plays a crucial role in activating pro-fibrotic events in PF. Developmental endothelial locus-1 (Del-1), expressed by the endothelial cells of lungs and brain acts as an endogenous inhibitor of inflammation and fibrosis. We have hypothesised that PAD-4 inhibitor exerts anti-inflammatory and anti-fibrotic effects in mice model of PF. We have also hypothesised by PAD-4 regulated the transcription of Del-1 through co-repression and its inhibition potentiates anti-fibrotic effects of Del-1. In our study, the PAD-4 inhibitor chloro-amidine (CLA) demonstrated anti-NETotic and anti-inflammatory effects in vitro in differentiated HL-60 cells. In a bleomycin-induced PF mice model, CLA administration in two doses (3 mg/kg, I.P and 10 mg/kg, I.P) improved lung function, normalized bronchoalveolar lavage fluid parameters, and attenuated fibrotic events, including markers of extracellular matrix and epithelial-mesenchymal transition. Histological analyses confirmed the restoration of lung architecture and collagen deposition with CLA treatment. ELISA, IHC, IF, RT-PCR, and immunoblot analysis supported the anti-NETotic effects of CLA. Furthermore, BLM-induced PF reduced Del-1 and p53 expression, which was normalized by CLA treatment. These findings suggest that inhibition of PAD-4 results in amelioration of PF in animal model and may involve modulation of Del-1 and p53 pathways, warranting further investigation.


Assuntos
Bleomicina , Proteína-Arginina Desiminase do Tipo 4 , Fibrose Pulmonar , Animais , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Humanos , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Camundongos , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Células HL-60 , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Pulmão/patologia , Pulmão/efeitos dos fármacos , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Ornitina/análogos & derivados
6.
Nature ; 633(8029): 442-450, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39143217

RESUMO

Regulation of neutrophil activation is critical for disease control. Neutrophil extracellular traps (NETs), which are web-like structures composed of DNA and neutrophil-derived proteins, are formed following pro-inflammatory signals; however, if this process is uncontrolled, NETs contribute to disease pathogenesis, exacerbating inflammation and host tissue damage1,2. Here we show that myeloid inhibitory C-type lectin-like (MICL), an inhibitory C-type lectin receptor, directly recognizes DNA in NETs; this interaction is vital to regulate neutrophil activation. Loss or inhibition of MICL functionality leads to uncontrolled NET formation through the ROS-PAD4 pathway and the development of an auto-inflammatory feedback loop. We show that in the context of rheumatoid arthritis, such dysregulation leads to exacerbated pathology in both mouse models and in human patients, where autoantibodies to MICL inhibit key functions of this receptor. Of note, we also detect similarly inhibitory anti-MICL autoantibodies in patients with other diseases linked to aberrant NET formation, including lupus and severe COVID-19. By contrast, dysregulation of NET release is protective during systemic infection with the fungal pathogen Aspergillus fumigatus. Together, we show that the recognition of NETs by MICL represents a fundamental autoregulatory pathway that controls neutrophil activity and NET formation.


Assuntos
COVID-19 , Armadilhas Extracelulares , Ativação de Neutrófilo , Neutrófilos , Proteína-Arginina Desiminase do Tipo 4 , Espécies Reativas de Oxigênio , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Humanos , Animais , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , COVID-19/imunologia , COVID-19/virologia , Espécies Reativas de Oxigênio/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Autoanticorpos/imunologia , Feminino , Lectinas Tipo C/metabolismo , Lectinas Tipo C/imunologia , Masculino , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , DNA/metabolismo , DNA/imunologia , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Retroalimentação Fisiológica , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo
7.
Int J Biol Macromol ; 278(Pt 3): 134576, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127273

RESUMO

In 1958, the presence of citrulline in the structure of the proteins was discovered for the first time. Several years later they found that Arginine converted to citrulline during a post-translational modification process by PAD enzyme. Each PAD is expressed in a certain tissue developing a series of diseases such as inflammation and cancers. Among these, PAD2 and PAD4 play a role in the development of rheumatoid arthritis (RA) by producing citrullinated autoantigens and increasing the production of inflammatory cytokines. PAD4 is also associated with the formation of NET structures and thrombosis. In the crystallographic structure, PAD has several calcium binding sites, and the active site of the enzyme consists of different amino acids. Various PAD inhibitors have been developed divided into pan-PAD and selective PAD inhibitors. F-amidine, Cl-amidine, and BB-Cl-amidine are some of pan-PAD inhibitors. AFM-30a and JBI589 are selective for PAD2 and PAD4, respectively. There is a need to evaluate the effectiveness of existing inhibitors more accurately in the coming years, as well as design and production of novel inhibitors targeting highly specific isoforms.


Assuntos
Inibidores Enzimáticos , Desiminases de Arginina em Proteínas , Humanos , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Desiminases de Arginina em Proteínas/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Doença Crônica , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/enzimologia , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/química , Animais , Proteína-Arginina Desiminase do Tipo 2/química , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Citrulina/metabolismo , Citrulina/química , Terapia de Alvo Molecular
8.
Sci Rep ; 14(1): 15511, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969707

RESUMO

Anti-citrullinated protein autoantibodies (ACPA) are diagnostic for rheumatoid arthritis (RA). The antigens recognized by these autoantibodies are produced by protein arginine deiminases (PADs), particularly PAD4. However, it remains unknown why and how PAD4 causes this aberrant citrullination in RA. Here, we report that poly-perforin pores are present on freshly isolated neutrophils from RA patients, but not on healthy donor neutrophils. Neutrophils with perforin pores also contained intracellular citrullinated proteins in the region adjacent to the pores. This response was replicated in vitro by treating neutrophils with purified perforin, which generated intense dots of anti-perforin immunofluorescence, calcium influx, and intracellular citrullination. Extensive neutrophil killing in Felty's syndrome, an aggressive form of RA, correlated with particularly high ACPA, and PAD4 autoantibodies. In contrast, other forms of death, including NETosis, apoptosis, and pyroptosis, produced minimal citrullination. We conclude that neutrophil targeting by perforin leading to intracellular citrullination takes place in patients with RA.


Assuntos
Anticorpos Antiproteína Citrulinada , Artrite Reumatoide , Citrulinação , Neutrófilos , Perforina , Proteína-Arginina Desiminase do Tipo 4 , Humanos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/imunologia , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Anticorpos Antiproteína Citrulinada/metabolismo , Anticorpos Antiproteína Citrulinada/imunologia , Perforina/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Autoanticorpos/imunologia , Desiminases de Arginina em Proteínas/metabolismo , Adulto , Síndrome de Felty/metabolismo , Síndrome de Felty/patologia , Armadilhas Extracelulares/metabolismo , Citrulina/metabolismo , Idoso
9.
Talanta ; 279: 126611, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067202

RESUMO

Peptidyl arginine deiminase 4 (PAD4) plays a critical role in many autoimmune diseases including rheumatoid arthritis. Herein, a trypsin assisted highly immunoassay method was established to determine PAD4 activity and screen potent inhibitors from herbal plants extracts and purified natural products. The method was applied to determine endogenous PAD4 activity in both cell and tissue lysates, as well as the inhibitory effects of 20 herbal plants and 50 purified natural products. The Cinnamomi ramulus extract showed strongest inhibitory potency with IC50 value lower than 5 µg/mL. Meanwhile, pyrroloquinoline quinone (PQQ), widely used as a dietary supplement, was discovered as a promising PAD4 inhibitor with an IC50 value lower than 4 µM. The inhibition kinetic analysis, drug affinity response target stability (DARTS) and molecular docking were performed to confirm the interaction between PQQ and PAD4. This method has great potential for researchers to monitor activities and discover potential inhibitors of PAD4.


Assuntos
Simulação de Acoplamento Molecular , Extratos Vegetais , Proteína-Arginina Desiminase do Tipo 4 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Imunoensaio/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/análise , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Tripsina/metabolismo , Tripsina/química , Avaliação Pré-Clínica de Medicamentos , Animais
10.
Biophys Chem ; 312: 107288, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991454

RESUMO

PADI4 is one of the human isoforms of a group of enzymes intervening in the conversion of arginine to citrulline. It is involved in the development of several types of tumors, as well as other immunological illnesses, such as psoriasis, multiple sclerosis, or rheumatoid arthritis. PADI4 auto-citrullinates in several regions of its sequence, namely in correspondence of residues Arg205, Arg212, Arg218, and Arg383. We wanted to study whether the citrullinated moiety affects the conformation of nearby regions and its binding to intact PADI4. We designed two series of synthetic peptides comprising either the wild-type or the relative citrullinated versions of such regions - i.e., a first series of peptides comprising the first three arginines, and a second series comprising Arg383. We studied their conformational properties in isolation by using fluorescence, far-ultraviolet (UV) circular dichroism (CD), and 2D1H NMR. Furthermore, we characterized the binding of the wild-type and citrullinated peptides in the two series to the intact PADI4, by using isothermal titration calorimetry (ITC), fluorescence, and biolayer interferometry (BLI), as well as by molecular docking simulations. We observed that citrullination did not alter the local conformational propensities of the isolated peptides. Nevertheless, for all the peptides in the two series, citrullination slowed down the kinetic koff rates of the binding reaction to PADI4, probably due to differences in electrostatic effects compared to the presence of arginine. The affinities of PADI4 for unmodified peptides were slightly larger than those of the corresponding citrullinated ones in the two series, but they were all within the same range, indicating that there were no relevant variations in the thermodynamics of binding due to sequence effects. These results highlight details of the self-citrullination of PADI4 and, more generally, of possible auto-catalytic mechanisms taking place in vivo for other citrullinating enzymes or, alternatively, in proteins undergoing citrullination passively.


Assuntos
Citrulinação , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Proteína-Arginina Desiminase do Tipo 4/química , Humanos , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/química , Conformação Proteica , Peptídeos/química , Peptídeos/metabolismo , Citrulina/química , Citrulina/metabolismo , Ligação Proteica , Sequência de Aminoácidos
11.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062840

RESUMO

Neutrophils release neutrophil extracellular traps (NETs) as a defense strategy in response to broad-spectrum infections and sterile triggers. NETs consist of a DNA scaffold decorated with antimicrobial peptides (AMPs) and enzymatically active proteases, including peptidyl arginine deiminase type 4 (PAD4). Susceptibility to infections and inflammatory dysregulation are hallmarks of alcohol-related liver disease (ALD). Sixty-two patients with ALD were prospectively recruited, and they were followed for 90 days. Twenty-four healthy volunteers served as the control group. PAD4 concentrations were quantified using immunoenzymatic ELISAs. Correlation coefficients between PAD4 blood concentrations and markers of systemic inflammation; liver dysfunction severity scores; and ALD complications were calculated. The receiver operating curves (ROCs) and their areas under the curve (AUCs) were checked in order to assess the accuracy of PAD4 expression in predicting the degree of liver failure and the development of ALD complications. Systemic concentrations of PAD4 were significantly increased in the patients with ALD in comparison with controls. PAD4 levels correlated with the standard markers of inflammation and revealed a good predictive AUC (0.76) for survival in the whole ALD group. PAD4 seems to be an inflammatory mediator and may be potentially applied as a predictor of patient survival in ALD.


Assuntos
Biomarcadores , Hepatopatias Alcoólicas , Neutrófilos , Proteína-Arginina Desiminase do Tipo 4 , Humanos , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Masculino , Feminino , Neutrófilos/metabolismo , Pessoa de Meia-Idade , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Adulto , Biomarcadores/sangue , Armadilhas Extracelulares/metabolismo , Idoso , Curva ROC , Estudos de Casos e Controles
12.
Clin Immunol ; 266: 110308, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002794

RESUMO

Psoriasis is a chronic inflammatory skin disease connected with immune dysregulation. Macrophages are key inflammatory cells in psoriasis but the specific mechanism of their activation is not fully understood. Neutrophil extracellular traps (NETs) have been shown to regulate macrophage function. Here, we found that NET deposition was increased in psoriasis lesions. Peptidylarginine deaminase 4 (PAD4, a key enzyme for NET formation) deficiency attenuated skin lesions and inflammation in an imiquimod-induced psoriatic mouse model. Furthermore, the STING signaling pathway was markedly activated in psoriasis and abolished by PAD4 deficiency. PAD4-deficient mice treated with the STING agonist DMXAA exhibited more severe symptoms and inflammation than control mice. Mechanistically, the STING inhibitor C-176 inhibited NET-induced macrophage inflammation and further inhibited the proliferation of HaCaT cells. Our findings suggest an important role of NETs in the pathogenesis of psoriasis, and activation of macrophage STING/NF-κB signaling pathway might involve in NETs related psoriasis.


Assuntos
Armadilhas Extracelulares , Inflamação , Macrófagos , Psoríase , Transdução de Sinais , Psoríase/imunologia , Armadilhas Extracelulares/imunologia , Animais , Camundongos , Humanos , Macrófagos/imunologia , Inflamação/imunologia , NF-kappa B/metabolismo , NF-kappa B/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Imiquimode , Proteína-Arginina Desiminase do Tipo 4 , Modelos Animais de Doenças , Neutrófilos/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Masculino , Feminino
13.
Talanta ; 278: 126492, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955099

RESUMO

Dysregulation of peptidyl arginine deiminase 4 (PAD4) is involved in a variety of diseases including rheumatoid arthritis (RA) and Alzheimer's disease (AD), and it has emerged as potential and promising therapeutic target. However, no PAD4 inhibitor is ready for clinical use. Immobilized enzyme screening technology has gained increasing attention due to its low cost, reusability, easy separation from the reaction mixture, and resistance to changes in environmental conditions. In this study, PAD4 was immobilized on the magnetic nanoparticles (MNP) to prolong its activity stability, and a simple and rapid screening strategy of traditional Chinese medicine inhibitors based on immobilized PAD4 was established. The PAD4 enzyme was immobilized on magnetic nanoparticles (MNP) via Schiff base reaction using glutaraldehyde (GA) as crosslinking agent. Compared with free PAD4, the resulting MNP@GA@PAD4 exhibited an enhanced tolerance to temperature and storage stability, and its reusability was greatly improved with 66 % of initial enzyme activity after being recycled 10 times. The inhibitory activity of the immobilized PAD4 was assessed using two known PAD4 inhibitors GSK484 and BB-Cl-amidine. The semi-maximum inhibitory concentrations (IC50) of GSK484 and BB-Cl-amidine for MNP@GA@PAD4 were 1.00 and 0.97 µM, respectively, for free PAD4 were 0.64 and 0.85 µM, respectively. Finally, the MNP@GA@PAD4 was employed to rapid screen of natural PAD4 inhibitors from forty traditional Chinese medicines (TCMs). Under the same conditions, the controlled experiment was conducted with free PAD4. The screening results of TCMs inhibitors on MNP@GA@PAD4 and free PAD4 were similar, the alcohol extracts of Cinnamomi Cortex and Caryophylli Flos had significant inhibitory effects on PAD4 enzyme activity. The IC50 values of Cinnamomi Cortex extract for MNP@GA@PAD4 and free PAD4 were determined as 27 and 48 µg/mL, respectively. The IC50 values of Caryophylli Flos extracts for MNP@GA@PAD4 and free PAD4 were determined as 48 and 32 µg/mL, respectively. For the first time, this study proposed a method to immobilize PAD4 on magnetic materials, and developed a rapid, reusable and feasible strategy to screening natural PAD4 inhibitors from TCMs.


Assuntos
Inibidores Enzimáticos , Enzimas Imobilizadas , Nanopartículas de Magnetita , Proteína-Arginina Desiminase do Tipo 4 , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/antagonistas & inibidores , Nanopartículas de Magnetita/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Proteína-Arginina Desiminase do Tipo 4/química , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Avaliação Pré-Clínica de Medicamentos
14.
Int J Biol Macromol ; 274(Pt 1): 133163, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878927

RESUMO

Polycomb groups (PcGs) are transcriptional repressors, formed by a complex of several proteins, involved in multicellular development and cancer epigenetics. One of these proteins is the E3 ubiquitin-protein ligase RING1 (or RING1B), associated with the regulation of transcriptional repression and responsible for monoubiquitylation of the histone H2A. On the other hand, PADI4 is one of the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline, and it is also involved in the development of glioblastoma, among other types of cancers. In this work, we showed the association of PADI4 and RING1B in the nucleus and cytosol in several cancer cell lines by using immunofluorescence and proximity ligation assays. Furthermore, we demonstrated that binding was hampered in the presence of GSK484, an enzymatic PADI4 inhibitor, suggesting that RING1B could bind to the active site of PADI4, as confirmed by protein-protein docking simulations. In vitro and in silico findings showed that binding to PADI4 occurred for the isolated fragments corresponding to both the N-terminal (residues 1-221) and C-terminal (residues 228-336) regions of RING1B. Binding to PADI4 was also hampered by GSK484, as shown by isothermal titration calorimetry (ITC) experiments for the sole N-terminal region, and by both NMR and ITC for the C-terminal one. The dissociation constants between PADI4 and any of the two isolated RING1B fragments were in the low micromolar range (~2-10 µM), as measured by fluorescence and ITC. The interaction between RING1B and PADI4 might imply citrullination of the former, leading to several biological consequences, as well as being of potential therapeutic relevance for improving cancer treatment with the generation of new antigens.


Assuntos
Ligação Proteica , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas , Humanos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citrulinação , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/química , Complexo Repressor Polycomb 1/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/genética
15.
Am J Pathol ; 194(9): 1622-1635, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38897538

RESUMO

Accumulating evidence has substantiated the potential of ambient particulate matter (PM) to elicit detrimental health consequences in the respiratory system, notably airway inflammation. Macrophages, a pivotal component of the innate immune system, assume a crucial function in responding to exogenous agents. However, the roles and detailed mechanisms in regulating PM-induced airway inflammation remain unclear. The current study revealed that PM had the ability to stimulate the formation of macrophage extracellular traps (METs) both in vitro and in vivo. This effect was dependent on peptidylarginine deiminase type 4 (PAD4)-mediated histone citrullination. Additionally, reactive oxygen species were involved in the formation of PM-induced METs, in parallel with PAD4. Genetic deletion of PAD4 in macrophages resulted in an up-regulation of inflammatory cytokine expression. Moreover, mice with PAD4-specific knockout in myeloid cells exhibited exacerbated PM-induced airway inflammation. Mechanistically, inhibition of METs suppressed the phagocytic ability in macrophages, leading to airway epithelial injuries and an aggravated PM-induced airway inflammation. The present study demonstrates that METs play a crucial role in promoting the phagocytosis and clearance of PM by macrophages, thereby suppressing airway inflammation. Furthermore, it suggests that activation of METs may represent a novel therapeutic strategy for PM-related airway disorders.


Assuntos
Armadilhas Extracelulares , Macrófagos , Material Particulado , Proteína-Arginina Desiminase do Tipo 4 , Animais , Armadilhas Extracelulares/metabolismo , Material Particulado/efeitos adversos , Camundongos , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Inflamação/patologia , Inflamação/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Citrulinação
16.
Fitoterapia ; 177: 106095, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942299

RESUMO

Peptidyl arginine deiminase 4 (PAD4) is a promising target for the treatment of metabolic diseases associated with autoimmune and central nervous system disease. By now there are limited numbers of PAD4 inhibitors, and no one is ready for clinical use. This study aims to find efficient and specific PAD4 inhibitors from traditional herbal medicines and to investigate their inhibitory mechanisms. The inhibitory effects of forty-eight extracts from sixteen traditional herbal medicines which are widely used in traditional herbal medicines were investigated. Salvia miltiorrhiza was found to have the most potent PAD4 inhibitory activity. After that, a practical bioactivity-guided fractionation coupling with a chemical profiling strategy was used to identify the fractions from Salvia miltiorrhiza with strong PAD4 inhibition activity, and the major constituents in these bioactive fractions were characterized by LC-MS/MS. Seven compounds were found to have inhibition on PAD4 with IC50 values ranging from 33.52 µM to 667 µM, in which salvianolic acid A showed the most potent inhibitory activity, with an IC50 value of 33.52 µM. Inhibition kinetic analyses indicated that salvianolic acid A effectively inhibited PAD4 in a mixed inhibitory manner, and computer simulation analyses demonstrated that salvianolic acid A binds to PAD4 mainly using hydrogen bonding. Overall, our results suggest that salvianolic acid A from Salvia miltiorrhiza is a potent inhibitor of PAD4, and that salvianolic acid A can be used as a promising lead compound for the development of more potent PAD4 inhibitors.


Assuntos
Simulação de Acoplamento Molecular , Proteína-Arginina Desiminase do Tipo 4 , Salvia miltiorrhiza , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Salvia miltiorrhiza/química , Estrutura Molecular , Plantas Medicinais/química , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
17.
Eur J Pharmacol ; 975: 176634, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710356

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease with immune dysregulation affecting colon inflammatory response. Recent studies have highlighted that neutrophil extracellular traps (NETs) play an important role in the pathogenesis of UC. Berbamine (BBM), one of the bioactive ingredients extracted from Chinese herbal medicine Berberis vulgaris L, has attracted intensive attentions due to its significant anti-inflammatory activity and a marketing drug for treating leukemia in China. However, the exact role and potential molecular mechanism of BBM against UC remains elusive. In the present study, our results showed that BBM could markedly improve the pathological phenotype and the colon inflammation in mice with dextran sulfate sodium (DSS)-induced colitis. Then, comprehensive approaches combining network pharmacology and molecular docking analyses were employed to predict the therapeutic potential of BBM in treating UC by peptidyl-arginine deiminase 4 (PAD4), a crucial molecule involved in NETs formation. The molecular docking results showed BBM had a high affinity for PAD4 with a binding energy of -9.3 kcal/mol Moreover, PAD4 expression and NETs productions, including citrullination of histone H3 (Cit-H3), neutrophil elastase (NE), myeloperoxidase (MPO) in both neutrophils and colonic tissue were reduced after BBM administration. However, in the mice with DSS-induced colitis pretreated with GSK484, a PAD4-specific inhibitor, BBM could not further reduce disease related indexes, expression of PAD4 and NETs productions. Above all, the identification of PAD4 as a potential target for BBM to inhibit NETs formation in colitis provides novel insights into the development of BBM-derived drugs for the clinical management of UC.


Assuntos
Benzilisoquinolinas , Sulfato de Dextrana , Armadilhas Extracelulares , Simulação de Acoplamento Molecular , Proteína-Arginina Desiminase do Tipo 4 , Animais , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Camundongos , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Benzilisoquinolinas/química , Masculino , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/patologia , Colite/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Modelos Animais de Doenças
18.
Innate Immun ; 30(2-4): 66-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38780369

RESUMO

Rheumatoid arthritis (RA) is a chronic disease characterized by joint inflammation and severe disability. However, there is a lack of safe and effective drugs for treating RA. In our previous study, we discovered that myricetin (MC) and celecoxib have a synergistic effect in the treatment of RA. We conducted in vitro and in vivo experiments to further investigate the effects and mechanisms of action of MC. Our findings demonstrated that MC treatment effectively reduced the release of neutrophil extracellular traps (NETs) and alleviated the inflammatory response in RA. Mechanistic studies showed that MC prevents the entry of PADI4 and MPO into the cell nucleus, thereby protecting DNA from decondensation. In a rat arthritis model, MC improved histological changes in ankle joints and suppressed NET-related signaling factors. In conclusion, MC protects the ankle joints against arthritis by inhibiting MPO and PADI4, thereby reducing NET release. The pharmacological mechanism of MC in RA involves the inhibition of NET release.


Assuntos
Artrite Reumatoide , Modelos Animais de Doenças , Armadilhas Extracelulares , Flavonoides , Neutrófilos , Peroxidase , Proteína-Arginina Desiminase do Tipo 4 , Animais , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Artrite Reumatoide/tratamento farmacológico , Ratos , Flavonoides/farmacologia , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Humanos , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Peroxidase/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Artrite Experimental/tratamento farmacológico , Masculino , Ratos Sprague-Dawley , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Células Cultivadas , Índice de Gravidade de Doença
19.
J Med Chem ; 67(10): 7973-7994, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38728549

RESUMO

Triple-negative breast cancer is a highly aggressive and heterogeneous breast cancer subtype characterized by early metastasis, poor prognosis, and high recurrence. Targeting histone citrullination-mediated chromatin dysregulation to induce epigenetic alterations shows great promise in TNBC therapy. We report the synthesis, optimization, and evaluation of a novel series of ß-carboline-derived peptidyl arginine deiminase 4 inhibitors that exhibited potent inhibition of TNBC cell proliferation. The most outstanding PAD4 inhibitor, compound 28, hindered the PAD4-H3cit-NET signaling pathway and inhibited the growth of solid tumors and pulmonary metastatic nodules in the 4T1 in situ mouse model. Furthermore, 28 improved the tumor immune microenvironment by reshaping neutrophil phenotype, upregulating the proportions of dendritic cells and M1 macrophages, and reducing the amount of myeloid-derived suppressor cells. In conclusion, our work offered 28 as an efficacious PAD4 inhibitor that exerts a combination of conventional chemotherapy and immune-boosting effects, which represents a potential therapy strategy for TNBC.


Assuntos
Antineoplásicos , Carbolinas , Neutrófilos , Proteína-Arginina Desiminase do Tipo 4 , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Carbolinas/farmacologia , Carbolinas/química , Carbolinas/uso terapêutico , Carbolinas/síntese química , Animais , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Feminino , Humanos , Microambiente Tumoral/efeitos dos fármacos , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/uso terapêutico , Fenótipo , Relação Estrutura-Atividade
20.
Cell Mol Immunol ; 21(6): 620-633, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720063

RESUMO

Peptidyl arginine deiminase 4 (PAD4) plays a pivotal role in infection and inflammatory diseases by facilitating the formation of neutrophil extracellular traps (NETs). However, the substrates of PAD4 and its exact role in inflammatory bowel disease (IBD) remain unclear. In this study, we employed single-cell RNA sequencing (scRNA-seq) and substrate citrullination mapping to decipher the role of PAD4 in intestinal inflammation associated with IBD. Our results demonstrated that PAD4 deficiency alleviated colonic inflammation and restored intestinal barrier function in a dextran sulfate sodium (DSS)-induced colitis mouse model. scRNA-seq analysis revealed significant alterations in intestinal cell populations, with reduced neutrophil numbers and changes in epithelial subsets upon PAD4 deletion. Gene expression analysis highlighted pathways related to inflammation and epithelial cell function. Furthermore, we found that neutrophil-derived extracellular vesicles (EVs) carrying PAD4 were secreted into intestinal epithelial cells (IECs). Within IECs, PAD4 citrullinates mitochondrial creatine kinase 1 (CKMT1) at the R242 site, leading to reduced CKMT1 protein stability via the autophagy pathway. This action compromises mitochondrial homeostasis, impairs intestinal barrier integrity, and induces IECs apoptosis. IEC-specific depletion of CKMT1 exacerbated intestinal inflammation and apoptosis in mice with colitis. Clinical analysis of IBD patients revealed elevated levels of PAD4, increased CKMT1 citrullination, and decreased CKMT1 expression. In summary, our findings highlight the crucial role of PAD4 in IBD, where it modulates IECs plasticity via CKMT1 citrullination, suggesting that PAD4 may be a potential therapeutic target for IBD.


Assuntos
Citrulinação , Inflamação , Doenças Inflamatórias Intestinais , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Neutrófilos , Proteína-Arginina Desiminase do Tipo 4 , Animais , Humanos , Masculino , Camundongos , Colite/patologia , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Camundongos Knockout , Neutrófilos/metabolismo , Neutrófilos/imunologia , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Creatina Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA