Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.394
Filtrar
1.
Theranostics ; 14(10): 4090-4106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994016

RESUMO

Purpose: Due to intrinsic defensive response, ferroptosis-activating targeted therapy fails to achieve satisfactory clinical benefits. Though p62-Keap1-Nrf2 axis is activated to form a negative feedback loop during ferroptosis induction, how p62 is activated remains largely unknown. Methods: MTS assay was applied to measure cell growth. Lipid ROS was detected with C11-BODIPY reagent by flow cytometer. Quantitative real-time PCR (qPCR) and western blotting were performed to determine mRNA and protein level. Immunofluorescence (IF) was performed to examine the distribution of proteins. Fluorescence recovery after photobleaching (FRAP) was adopted to evaluate p62 phase separation. Immunoprecipitation (IP), co-IP and Proximal ligation assay (PLA) were performed to detected protein posttranslational modifications and protein-protein interactions. Tumor xenograft model was employed to inspect in vivo growth of pancreatic cancer cells. Results: Upon ferroptosis induction, Nuclear Factor E2 Related Factor 2 (Nrf2) protein and its downstream genes such as HMOX1 and NQO1 were upregulated. Knockdown of p62 significantly reversed Nrf2 upregulation and Keap1 decrease after ferroptosis induction. Knockdown of either p62 or Nrf2 remarkably sensitized ferroptosis induction. Due to augmented p62 phase separation, formation of p62 bodies were increased to recruit Keap1 after ferroptosis induction. Protein arginine methyltransferase 6 (PRMT6) mediated asymmetric dimethylarginine (ADMA) of p62 to increase its oligomerization, promoting p62 phase separation and p62 body formation. Knockdown of p62 or PRMT6 notably sensitized pancreatic cancer cells to ferroptosis both in vitro and in vivo through suppressing Nrf2 signaling. Conclusion: During ferroptosis induction, PRMT6 mediated p62 ADMA to promote its phase separation, sequestering Keap1 to activate Nrf2 signaling and inhibit ferroptosis. Therefore, targeting PRMT6-mediated p62 ADMA could be a new option to sensitize ferroptosis for cancer treatment.


Assuntos
Arginina , Ferroptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Animais , Arginina/metabolismo , Arginina/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Linhagem Celular Tumoral , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Retroalimentação Fisiológica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Camundongos Nus , Transdução de Sinais , Separação de Fases , Proteínas de Ligação a RNA
2.
Cell Death Dis ; 15(7): 504, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009589

RESUMO

Abnormal epigenetic modifications are involved in the regulation of Warburg effect in tumor cells. Protein arginine methyltransferases (PRMTs) mediate arginine methylation and have critical functions in cellular responses. PRMTs are deregulated in a variety of cancers, but their precise roles in Warburg effect in cancer is largely unknown. Experiments from the current study showed that PRMT1 was highly expressed under conditions of glucose sufficiency. PRMT1 induced an increase in the PKM2/PKM1 ratio through upregulation of PTBP1, in turn, promoting aerobic glycolysis in non-small cell lung cancer (NSCLC). The PRMT1 level in p53-deficient and p53-mutated NSCLC remained relatively unchanged while the expression was reduced in p53 wild-type NSCLC under conditions of glucose insufficiency. Notably, p53 activation under glucose-deficient conditions could suppress USP7 and further accelerate the polyubiquitin-dependent degradation of PRMT1. Melatonin, a hormone that inhibits glucose intake, markedly suppressed cell proliferation of p53 wild-type NSCLC, while a combination of melatonin and the USP7 inhibitor P5091 enhanced the anticancer activity in p53-deficient NSCLC. Our collective findings support a role of PRMT1 in the regulation of Warburg effect in NSCLC. Moreover, combination treatment with melatonin and the USP7 inhibitor showed good efficacy, providing a rationale for the development of PRMT1-based therapy to improve p53-deficient NSCLC outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas de Membrana , Proteína-Arginina N-Metiltransferases , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos , Proteína Supressora de Tumor p53 , Efeito Warburg em Oncologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Efeito Warburg em Oncologia/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Hormônios Tireóideos/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proliferação de Células/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Animais , Glicólise/efeitos dos fármacos , Camundongos Nus , Glucose/metabolismo , Camundongos , Regulação Neoplásica da Expressão Gênica , Células A549 , Proteína de Ligação a Regiões Ricas em Polipirimidinas
3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 349-358, 2024 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38970508

RESUMO

OBJECTIVES: Obesity related glomerulopathy (ORG) is induced by obesity, but the pathogenesis remains unclear. This study aims to investigate the expression of early growth response protein 3 (EGR3) in the renal cortex tissues of ORG patients and high-fat diet-induced obese mice, and to further explore the molecular mechanism of EGR3 in inhibiting palmitic acid (PA) induced human podocyte inflammatory damage. METHODS: Renal cortex tissues were collected from ORG patients (n=6) who have been excluded from kidney damage caused by other diseases and confirmed by histopathology, and from obese mice induced by high-fat diet (n=10). Human and mouse podocytes were intervened with 150 µmol/L PA for 48 hours. EGR3 was overexpressed or silenced in human podocytes. Enzyme linked immunosorbent assay (ELISA) was used to detcet the levels of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß). Real-time RT-PCR was used to detect the mRNA expressions of EGR3, podocytes molecular markers nephrosis 1 (NPHS1), nephrosis 2 (NPHS2), podocalyxin (PODXL), and podoplanin (PDPN). RNA-seq was performed to detect differentially expressed genes (DEGs) after human podocytes overexpressing EGR3 and treated with 150 µmol/L PA compared with the control group. Co-immunoprecipitation (Co-IP) combined with liquid chromatography tandem mass spectrometry (LC-MS) was used to detect potential interacting proteins of EGR3 and the intersected with the RNA-seq results. Co-IP confirmed the interaction between EGR3 and protein arginine methyltransferases 1 (PRMT1), after silencing EGR3 and PRMT1 inhibitor intervention, the secretion of IL-6 and IL-1ß in PA-induced podocytes was detected. Western blotting was used to detect the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) after overexpression or silencing of EGR3. RESULTS: EGR3 was significantly upregulated in renal cortex tissues of ORG patients and high-fat diet-induced obese mice (both P<0.01). In addition, after treating with 150 µmol/L PA for 48 hours, the expression of EGR3 in human and mouse podocytes was significantly upregulated (both P<0.05). Overexpression or silencing of EGR3 in human podocytes inhibited or promoted the secretion of IL-6 and IL-1ß in the cell culture supernatant after PA intervention, respectively, and upregulated or downregulated the expression of NPHS1, PODXL, NPHS2,and PDPN (all P<0.05). RNA-seq showed a total of 988 DEGs, and Co-IP+LC-MS identified a total of 238 proteins that may interact with EGR3. Co-IP confirmed that PRMT1 was an interacting protein with EGR3. Furthermore, PRMT1 inhibitors could partially reduce PA-induced IL-6 and IL-1ß secretion after EGR3 silencing in human podocytes (both P<0.05). Overexpression or silencing of EGR3 negatively regulated the expression of PRMT1 and p-STAT3. CONCLUSIONS: EGR3 may reduce ORG podocyte inflammatory damage by inhibiting the PRMT1/p-STAT3 pathway.


Assuntos
Proteína 3 de Resposta de Crescimento Precoce , Obesidade , Podócitos , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Fator de Transcrição STAT3 , Podócitos/metabolismo , Podócitos/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Animais , Humanos , Camundongos , Fator de Transcrição STAT3/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Nefropatias/metabolismo , Nefropatias/etiologia , Nefropatias/patologia , Ácido Palmítico/farmacologia , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Camundongos Obesos , Masculino , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Interleucina-6/metabolismo , Interleucina-6/genética , Córtex Renal/metabolismo , Córtex Renal/patologia
4.
Oncol Res ; 32(6): 1047-1061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827317

RESUMO

Background: Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. In many cases, the poor prognosis of advanced CRC is associated with resistance to treatment with chemotherapeutic drugs such as 5-Fluorouracil (5-FU). The epithelial-to-mesenchymal transition (EMT) and dysregulation in protein methylation are two mechanisms associated with chemoresistance in many cancers. This study looked into the effect of 5-FU dose escalation on EMT and protein methylation in CRC. Materials and Methods: HCT-116, Caco-2, and DLD-1 CRC cell lines were exposed to dose escalation treatment of 5-FU. The motility and invasive potentials of the cells before and after treatment with 5-FU were investigated through wound healing and invasion assays. This was followed by a Western blot which analyzed the protein expressions of the epithelial marker E-cadherin, mesenchymal marker vimentin, and the EMT transcription factor (EMT-TF), the snail family transcriptional repressor 1 (Snail) in the parental and desensitized cells. Western blotting was also conducted to study the protein expressions of the protein methyltransferases (PMTs), Euchromatic histone lysine methyltransferase 2 (EHMT2/G9A), protein arginine methyltransferase (PRMT5), and SET domain containing 7/9 (SETD7/9) along with the global lysine and arginine methylation profiles. Results: The dose escalation method generated 5-FU desensitized CRC cells with distinct morphological features and increased tolerance to high doses of 5-FU. The 5-FU desensitized cells experienced a decrease in migration and invasion when compared to the parental cells. This was reflected in the observed reduction in E-cadherin, vimentin, and Snail in the desensitized cell lines. Additionally, the protein expressions of EHMT2/G9A, PRMT5, and SETD7/9 also decreased in the desensitized cells and global protein lysine and arginine methylation became dysregulated with 5-FU treatment. Conclusion: This study showed that continuous, dose-escalation treatment of 5-FU in CRC cells generated 5-FU desensitized cancer cells that seemed to be less aggressive than parental cells.


Assuntos
Movimento Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Fluoruracila , Humanos , Fluoruracila/farmacologia , Fluoruracila/administração & dosagem , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antimetabólitos Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Relação Dose-Resposta a Droga , Metiltransferases/metabolismo , Metiltransferases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metilação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética
5.
Oncol Res ; 32(6): 1037-1045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827324

RESUMO

Background: The dysregulation of Isocitrate dehydrogenase (IDH) and the subsequent production of 2-Hydroxyglutrate (2HG) may alter the expression of epigenetic proteins in Grade 4 astrocytoma. The interplay mechanism between IDH, O-6-methylguanine-DNA methyltransferase (MGMT)-promoter methylation, and protein methyltransferase proteins-5 (PRMT5) activity, with tumor progression has never been described. Methods: A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors. Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis. Inter-cohort statistical significance was evaluated. Results: Both IDH-mutant WHO grade 4 astrocytomas (n = 22, 64.7%) and IDH-wildtype glioblastomas (n = 12, 35.3%) had upregulated PRMT5 gene expression except in one case. Out of the 22 IDH-mutant tumors, 10 (45.5%) tumors showed MGMT-promoter methylation and 12 (54.5%) tumors had unmethylated MGMT. All IDH-wildtype tumors had unmethylated MGMT. There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma (p-value = 0.006). Statistically significant differences in progression-free survival (PFS) were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide (TMZ) or TMZ plus other chemotherapies, regardless of their IDH or MGMT-methylation status (p-value=0.0014). Specifically, IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation, who received only TMZ, have exhibited longer PFS. Conclusions: The relationship between PRMT5, MGMT-promoter, and IDH is not tri-directional. However, accumulation of D2-hydroxyglutarate (2-HG), which partially activates 2-OG-dependent deoxygenase, may not affect their activities. In IDH-wildtype glioblastomas, the 2HG-2OG pathway is typically inactive, leading to PRMT5 upregulation. TMZ alone, compared to TMZ-plus, can increase PFS in upregulated PRMT5 tumors. Thus, using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.


Assuntos
Astrocitoma , Metilação de DNA , Metilases de Modificação do DNA , Enzimas Reparadoras do DNA , Progressão da Doença , Isocitrato Desidrogenase , Mutação , Regiões Promotoras Genéticas , Proteína-Arginina N-Metiltransferases , Proteínas Supressoras de Tumor , Humanos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Isocitrato Desidrogenase/genética , Masculino , Feminino , Astrocitoma/genética , Astrocitoma/patologia , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Gradação de Tumores , Idoso , Temozolomida/uso terapêutico , Temozolomida/farmacologia , Regulação Neoplásica da Expressão Gênica
6.
Genes (Basel) ; 15(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38927636

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma. The oncogene product Tax of HTLV-I is thought to play crucial roles in leukemogenesis by promoting proliferation of the virus-infected cells through activation of growth-promoting genes. These genes code for growth factors and their receptors, cytokines, cell adhesion molecules, growth signal transducers, transcription factors and cell cycle regulators. We show here that Tax activates the gene coding for coactivator-associated arginine methyltransferase 1 (CARM1), which epigenetically enhances gene expression through methylation of histones. Tax activated the Carm1 gene and increased protein expression, not only in human T-cell lines but also in normal peripheral blood lymphocytes (PHA-PBLs). Tax increased R17-methylated histone H3 on the target gene IL-2Rα, concomitant with increased expression of CARM1. Short hairpin RNA (shRNA)-mediated knockdown of CARM1 decreased Tax-mediated induction of IL-2Rα and Cyclin D2 gene expression, reduced E2F activation and inhibited cell cycle progression. Tax acted via response elements in intron 1 of the Carm1 gene, through the NF-κB pathway. These results suggest that Tax-mediated activation of the Carm1 gene contributes to leukemogenic target-gene expression and cell cycle progression, identifying the first epigenetic target gene for Tax-mediated trans-activation in cell growth promotion.


Assuntos
Produtos do Gene tax , Vírus Linfotrópico T Tipo 1 Humano , Proteína-Arginina N-Metiltransferases , Humanos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Ciclina D2/genética , Ciclina D2/metabolismo , Ativação Transcricional , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Histonas/metabolismo , Histonas/genética , Epigênese Genética , Células Jurkat
7.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38878278

RESUMO

Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that deposits asymmetrical dimethylation marks on both histone and nonhistone substrates. The regulatory role of CARM1 in transcription was first identified in estrogen receptor positive (ER+) breast cancer. Since then, the mechanism of CARM1 in activating ER-target genes has been further interrogated. CARM1 is expressed at the highest level in ER negative (ER-) breast cancer and higher expression correlates with poor prognosis, suggesting an oncogenic role of CARM1. Indeed, in ER- breast cancer, CARM1 can promote proliferation and metastasis at least partly through methylation of proteins and activation of oncogenes. In this review, we summarize the mechanisms of transcriptional activation by CARM1 in breast cancer. The methyltransferase activity of CARM1 is important for many of its functions; here, we also highlight the nonenzymatic roles of CARM1. We also cover the biological processes regulated by CARM1 that are often deregulated in cancer and the ways to harness CARM1 in cancer treatment.


Assuntos
Neoplasias da Mama , Proteína-Arginina N-Metiltransferases , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Ativação Transcricional , Animais
8.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892217

RESUMO

Microglia-mediated inflammatory response is one key cause of many central nervous system diseases, like Alzheimer's disease. We hypothesized that a novel C15orf39 (MAPK1 substrate) plays a critical role in the microglial inflammatory response. To confirm this hypothesis, we used lipopolysaccharide (LPS)-and interferon-gamma (IFN-γ)-induced human microglia HMC3 cells as a representative indicator of the microglial in vitro inflammatory response. We found that C15orf39 was down-regulated when interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) expression increased in LPS/IFN-γ-stimulated HMC3 cells. Once C15orf39 was overexpressed, IL-6 and TNFα expression were reduced in LPS/IFN-γ-stimulated HMC3 cells. In contrast, C15orf39 knockdown promoted IL-6 and TNFα expression in LPS/IFN-γ-stimulated HMC3 cells. These results suggest that C15orf39 is a suppressive factor in the microglial inflammatory response. Mechanistically, C15orf39 interacts with the cytoplasmic protein arginine methyltransferase 2 (PRMT2). Thus, we termed C15orf39 a PRMT2 interaction protein (PRMT2 IP). Furthermore, the interaction of C15orf39 and PRMT2 suppressed the activation of NF-κB signaling via the PRMT2-IκBα signaling axis, which then led to a reduction in transcription of the inflammatory factors IL6 and TNF-α. Under inflammatory conditions, NF-κBp65 was found to be activated and to suppress C15orf39 promoter activation, after which it canceled the suppressive effect of the C15orf39-PRMT2-IκBα signaling axis on IL-6 and TNFα transcriptional expression. In conclusion, our findings demonstrate that in a steady condition, the interaction of C15orf39 and PRMT2 stabilizes IκBα to inhibit IL-6 and TNFα expression by suppressing NF-κB signaling, which reversely suppresses C15orf39 transcription to enhance IL-6 and TNFα expression in the microglial inflammatory condition. Our study provides a clue as to the role of C15orf39 in microglia-mediated inflammation, suggesting the potential therapeutic efficacy of C15orf39 in some central nervous system diseases.


Assuntos
Inflamação , Interleucina-6 , Lipopolissacarídeos , Microglia , Proteína-Arginina N-Metiltransferases , Fator de Necrose Tumoral alfa , Humanos , Linhagem Celular , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Interferon gama/metabolismo , Interferon gama/farmacologia , Interleucina-6/metabolismo , Interleucina-6/genética , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Fases de Leitura Aberta , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Cromossomos Humanos Par 15
9.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893537

RESUMO

ß-Thalassemia is an inherited genetic disorder associated with ß-globin chain synthesis, which ultimately becomes anemia. Adenosine-2,3-dialdehyde, by inhibiting arginine methyl transferase 5 (PRMT5), can induce fetal hemoglobin (HbF) levels. Hence, the materialization of PRMT5 inhibitors is considered a promising therapy in the management of ß-thalassemia. This study conducted a virtual screening of certain compounds similar to 5'-deoxy-5'methyladenosine (3XV) using the PubChem database. The top 10 compounds were chosen based on the best docking scores, while their interactions with the PRMT5 active site were analyzed. Further, the top two compounds demonstrating the lowest binding energy were subjected to drug-likeness analysis and pharmacokinetic property predictions, followed by molecular dynamics simulation studies. Based on the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) score and molecular interactions, (3R,4S)-2-(6-aminopurin-9-yl)-5-[(4-ethylcyclohexyl)sulfanylmethyl]oxolane-3,4-diol (TOP1) and 2-(6-Aminopurin-9-yl)-5-[(6-aminopurin-9-yl)methylsulfanylmethyl]oxolane-3,4-diol (TOP2) were identified as potential hit compounds, while TOP1 exhibited higher binding affinity and stabler binding capabilities than TOP2 during molecular dynamics simulation (MDS) analysis. Taken together, the outcomes of our study could aid researchers in identifying promising PRMT5 inhibitors. Moreover, further investigations through in vivo and in vitro experiments would unquestionably confirm that this compound could be employed as a therapeutic drug in the management of ß-thalassemia.


Assuntos
Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína-Arginina N-Metiltransferases , Talassemia beta , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo , Talassemia beta/tratamento farmacológico , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Descoberta de Drogas , Ligação Proteica , Domínio Catalítico , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacologia
10.
Redox Biol ; 73: 103212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838552

RESUMO

The dynamic regulation of mitochondria through fission and fusion is essential for maintaining cellular homeostasis. In this study, we discovered a role of coactivator-associated arginine methyltransferase 1 (CARM1) in mitochondrial dynamics. CARM1 methylates specific residues (R403 and R634) on dynamin-related protein 1 (DRP1). Methylated DRP1 interacts with mitochondrial fission factor (Mff) and forms self-assembly on the outer mitochondrial membrane, thereby triggering fission, reducing oxygen consumption, and increasing reactive oxygen species (ROS) production. This sets in motion a feedback loop that facilitates the translocation of CARM1 from the nucleus to the cytoplasm, enhancing DRP1 methylation and ROS production through mitochondrial fragmentation. Consequently, ROS reinforces the CARM1-DRP1-ROS axis, resulting in cellular senescence. Depletion of CARM1 or DRP1 impedes cellular senescence by reducing ROS accumulation. The uncovering of the above-described mechanism fills a missing piece in the vicious cycle of ROS-induced senescence and contributes to a better understanding of the aging process.


Assuntos
Senescência Celular , Citoplasma , Dinaminas , Dinâmica Mitocondrial , Proteína-Arginina N-Metiltransferases , Espécies Reativas de Oxigênio , Dinaminas/metabolismo , Dinaminas/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Metilação , Citoplasma/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Membrana
11.
Commun Biol ; 7(1): 753, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902349

RESUMO

Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs) and is involved in various cellular processes, including cancer development. PRMT2 expression is increased in several cancer types although its role in acute myeloid leukemia (AML) remains unknown. Here, we investigate the role of PRMT2 in a cohort of patients with AML, PRMT2 knockout AML cell lines as well as a Prmt2 knockout mouse model. In patients, low PRMT2 expressors are enriched for inflammatory signatures, including the NF-κB pathway, and show inferior survival. In keeping with a role for PRMT2 in control of inflammatory signaling, bone marrow-derived macrophages from Prmt2 KO mice display increased pro-inflammatory cytokine signaling upon LPS treatment. In PRMT2-depleted AML cell lines, aberrant inflammatory signaling has been linked to overproduction of IL6, resulting from a deregulation of the NF-κB signaling pathway, therefore leading to hyperactivation of STAT3. Together, these findings identify PRMT2 as a key regulator of inflammation in AML.


Assuntos
Inflamação , Leucemia Mieloide Aguda , Camundongos Knockout , NF-kappa B , Proteína-Arginina N-Metiltransferases , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Inflamação/metabolismo , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
12.
Crit Rev Eukaryot Gene Expr ; 34(5): 69-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38842205

RESUMO

Gastric cancer is a most malignancy in digestive tract worldwide. This study aimed to investigate the roles of protein arginine methyltransferase 6 (PRMT6) in gastric cancer. Immunohistochemistry was performed to detect PRMT6 expression in gastric tumors. Real-time transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to detected mRNA levels. Protein expression was determined using western blot. Gastric cancer cells were co-cultured with CD8+ T cells. Colony formation assay was performed to detect cell proliferation. Flow cytometry was performed to determine CD8+ T cell function and tumor cell apoptosis. PRMT6 was overexpressed in gastric tumors. High level of PRMT6 predicted poor outcomes of gastric cancer patients and inhibition of CD8+ T cell infiltration. PRMT6 promoted proliferation of CD8+ T cells and enhanced its tumor killing ability. Moreover, PRMT6 upregulated annexin A1 (ANXA1) and promoted ANXA1 protein stability. ANXA1 overexpression suppressed the proliferation of CD8+ T cells and promoted tumor cell survival. PRMT6 functions as an oncogene in gastric cancer. PRMT6-mediated protein stability inhibits the infiltration of CD8+ T cells, resulting in immune evasion of gastric cancer. The PRMT6-ANXA1 may be a promising strategy for gastric cancer.


Assuntos
Anexina A1 , Linfócitos T CD8-Positivos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteína-Arginina N-Metiltransferases , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Anexina A1/genética , Anexina A1/metabolismo , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação para Cima , Apoptose , Evasão Tumoral/genética , Masculino , Evasão da Resposta Imune , Feminino , Proteínas Nucleares
13.
Sci Adv ; 10(23): eadm9589, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838142

RESUMO

DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.


Assuntos
Replicação do DNA , Imunidade Inata , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Transdução de Sinais , Arginina/metabolismo , Arginina/análogos & derivados , Estresse Fisiológico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Dano ao DNA , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
14.
Nat Commun ; 15(1): 4790, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839752

RESUMO

Cancer cells are often addicted to serine synthesis to support growth. How serine synthesis is regulated in cancer is not well understood. We recently demonstrated protein arginine methyltransferase 1 (PRMT1) is upregulated in hepatocellular carcinoma (HCC) to methylate and activate phosphoglycerate dehydrogenase (PHGDH), thereby promoting serine synthesis. However, the mechanisms underlying PRMT1 upregulation and regulation of PRMT1-PHGDH axis remain unclear. Here, we show the E3 ubiquitin ligase F-box-only protein 7 (FBXO7) inhibits serine synthesis in HCC by binding PRMT1, inducing lysine 37 ubiquitination, and promoting proteosomal degradation of PRMT1. FBXO7-mediated PRMT1 downregulation cripples PHGDH arginine methylation and activation, resulting in impaired serine synthesis, accumulation of reactive oxygen species (ROS), and inhibition of HCC cell growth. Notably, FBXO7 is significantly downregulated in human HCC tissues, and inversely associated with PRMT1 protein and PHGDH methylation level. Overall, our study provides mechanistic insights into the regulation of cancer serine synthesis by FBXO7-PRMT1-PHGDH axis, and will facilitate the development of serine-targeting strategies for cancer therapy.


Assuntos
Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Fosfoglicerato Desidrogenase , Proteína-Arginina N-Metiltransferases , Serina , Ubiquitinação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Serina/metabolismo , Serina/biossíntese , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Camundongos , Proliferação de Células , Metilação , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Masculino , Células HEK293 , Feminino , Células Hep G2
15.
Eur J Pharmacol ; 977: 176673, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815785

RESUMO

Corneal neovascularization (CoNV) is predominantly initiated by inflammatory processes, resulting in aberrant vascular proliferation and consequent visual impairment. Existing therapeutic interventions for CoNV demonstrate limited efficacy and potential for adverse reactions. Protein arginine methyltransferase 1 (PRMT1) is associated with the regulation of inflammation and M2 macrophage polarization. Nevertheless, the precise mechanism by which PRMT1 operates in CoNV remains uncertain. This study explored the impact of PRMT1 inhibition in a murine model of CoNV induced by alkali burn. Our findings indicated a direct relationship between PRMT1 levels and corneal damage. Moreover, our observations indicated an increase in fibroblast growth factor 2 (FGF2) expression in CoNV, which was reduced after treatment with a PRMT1 inhibitor. The inhibition of PRMT1 alleviated both corneal injury and CoNV, as evidenced by decreased corneal opacity and neovascularization. Immunofluorescence analysis and evaluation of inflammatory factor expression demonstrated that PRMT1 inhibition attenuated M2 macrophage polarization, a phenomenon that was reversed by the administration of recombinant FGF2 protein. These results were confirmed through experimentation on Human Umbilical Vein Endothelial Cells (HUVECs) and Mouse leukemia cells of monocyte macrophage cells (RAW264.7). Furthermore, it was established that FGF2 played a role in PI3K/Akt signal transduction, a critical regulatory pathway for M2 macrophage polarization. Importantly, the activity of this pathway was found to be suppressed by PRMT1 inhibitors. Mechanistically, PRMT1 was shown to promote M2 macrophage polarization, thereby contributing to CoNV, through the FGF2/PI3K/Akt pathway. Therefore, targeting PRMT1 may offer a promising therapeutic approach.


Assuntos
Neovascularização da Córnea , Fator 2 de Crescimento de Fibroblastos , Células Endoteliais da Veia Umbilical Humana , Macrófagos , Fosfatidilinositol 3-Quinases , Proteína-Arginina N-Metiltransferases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Animais , Fator 2 de Crescimento de Fibroblastos/metabolismo , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Neovascularização da Córnea/patologia , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/prevenção & controle , Células RAW 264.7 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteínas Repressoras
16.
Cell Rep ; 43(5): 114176, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38691454

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis due to therapeutic resistance. We show that PDAC cells undergo global epigenetic reprogramming to acquire chemoresistance, a process that is driven at least in part by protein arginine methyltransferase 1 (PRMT1). Genetic or pharmacological PRMT1 inhibition impairs adaptive epigenetic reprogramming and delays acquired resistance to gemcitabine and other common chemo drugs. Mechanistically, gemcitabine treatment induces translocation of PRMT1 into the nucleus, where its enzymatic activity limits the assembly of chromatin-bound MAFF/BACH1 transcriptional complexes. Cut&Tag chromatin profiling of H3K27Ac, MAFF, and BACH1 suggests a pivotal role for MAFF/BACH1 in global epigenetic response to gemcitabine, which is confirmed by genetically silencing MAFF. PRMT1 and MAFF/BACH1 signature genes identified by Cut&Tag analysis distinguish gemcitabine-resistant from gemcitabine-sensitive patient-derived xenografts of PDAC, supporting the PRMT1-MAFF/BACH1 epigenetic regulatory axis as a potential therapeutic avenue for improving the efficacy and durability of chemotherapies in patients of PDAC.


Assuntos
Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Gencitabina , Neoplasias Pancreáticas , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Animais , Camundongos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética
17.
Metabolism ; 157: 155938, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795769

RESUMO

BACKGROUND AND AIMS: Hepatic lipogenesis is elevated in nutrient abundant conditions to convert the excess carbohydrate into triacylglycerol (TAG). Fatty acyl moiety of TAG is eventually transported into adipose tissues by very low density lipoprotein, leading to the accumulation of TAG as a preferred storage form of excess energy. Disruption of the balance between TAG clearance and synthesis leads to the accumulation of lipids in the liver, leading to the progression of non-alcoholic fatty liver disease (NAFLD) including non-alcoholic steatohepatitis. Protein arginine methyltransferase (PRMT) 6 has been linked to the various metabolic processes including hepatic gluconeogenesis, muscle atrophy and lipodystrophy in mouse models. However, the role of PRMT6 in the control of hepatic lipogenesis has not been elucidated to date. METHODS: We assessed the interaction between PRMT6 and LXR alpha by using co-immunoprecipitation assay. The specific arginine residue of LXR alpha that is methylated by PRMT6 was assessed by LC-MS/MS assay and the functional consequences of LXR alpha methylation was explored by mSREBP-1c luciferase assay. The effect of PRMT6 on hepatic lipogenesis was assessed by adenovirus-mediated ectopic expression of PRMT6 or knockdown of PRMT6 via shRNA in hepatocytes. Finally, the role of PRMT6 in hepatic lipid metabolism in vivo was explored by either ectopic expression of LXR alpha mutant that is defective in PRMT6-mediated arginine methylation or knockdown of PRMT6 in liver. RESULTS: We found that promoter activity of sterol regulatory element binding protein (SREBP) 1c is robustly activated by PRMT6. Interestingly, we demonstrated that PRMT6 binds to LXR alpha, a transcription factor for SREBP-1c, via its LXXLL motif, leading to the asymmetric dimethylation of an arginine residue and activation of this protein. Indeed, ectopic expression of PRMT6 in hepatocytes led to the enhanced expression of LXR alpha target genes in the lipogenic pathway. Conversely, genetic or pharmacological inhibition of PRMT6 diminished expression of lipogenic genes and the lipid accumulation in primary hepatocytes. Mechanistically, we found that asymmetric dimethylation of LXR alpha led to the dissociation of small heterodimer partner (SHP), a transcriptional co-inhibitor of this factor, resulting in the activation of LXR alpha-mediated transcriptional process. Finally, we showed that disruption of asymmetric dimethylation of LXR alpha in the liver led to the diminished expression of genes in the lipogenesis, resulting in the reduced hepatic lipid accumulation in high fat diet-fed mice in vivo. CONCLUSIONS: We showed that PRMT6 modulates LXR alpha activity by conferring asymmetric dimethylation of arginine 253, thus blocking SHP-mediated inhibition and promoting hepatic lipid accumulation. These results suggest that PRMT6 is critical in the control of lipid homeostasis by regulation of LXR alpha-mediated lipogenesis in the liver.


Assuntos
Arginina , Lipogênese , Receptores X do Fígado , Fígado , Proteína-Arginina N-Metiltransferases , Lipogênese/genética , Lipogênese/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Animais , Camundongos , Metilação , Fígado/metabolismo , Arginina/metabolismo , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Masculino , Humanos , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Células Hep G2 , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
18.
Oncogene ; 43(25): 1955-1971, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38730267

RESUMO

Procaspase-8 is a key mediator of death receptor (DR)-mediated pathways. Recently, the role of post-translational modifications (PTMs) of procaspase-8 in controlling cell death has received increasing attention. Here, using mass spectrometry screening, pharmacological inhibition and biochemical assays, we show that procaspase-8 can be targeted by the PRMT5/RIOK1/WD45 methylosome complex. Furthermore, two potential methylation sites of PRMT5 on procaspase-8, R233 and R435, were identified in silico. R233 and R435 are highly conserved in mammals and their point mutations are among the most common mutations of caspase-8 in cancer. The introduction of mutations at these positions resulted in inhibitory effects on CD95L-induced caspase-8 activity, effector caspase activation and apoptosis. In addition, we show that procaspase-8 can undergo symmetric di-methylation. Finally, the pharmacological inhibition of PRMT5 resulted in the inhibitory effects on caspase activity and apoptotic cell death. Taken together, we have unraveled the additional control checkpoint in procaspase-8 activation and the arginine methylation network in the extrinsic apoptosis pathway.


Assuntos
Apoptose , Arginina , Caspase 8 , Proteína-Arginina N-Metiltransferases , Caspase 8/metabolismo , Caspase 8/genética , Arginina/metabolismo , Humanos , Metilação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Processamento de Proteína Pós-Traducional
19.
Bioorg Chem ; 148: 107439, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754310

RESUMO

PRMT6 is a member of the protein arginine methyltransferase family, which participates in a variety of physical processes and plays an important role in the occurrence and development of tumors. Using small molecules to design and synthesize targeted protein degraders is a new strategy for drug development. Here, we report the first-in-class degrader SKLB-0124 for PRMT6 based on the hydrophobic tagging (HyT) method.Importantly, SKLB-0124 induced proteasome dependent degradation of PRMT6 and significantly inhibited the proliferation of HCC827 and MDA-MB-435 cells. Moreover, SKLB-0124 effectively induced apoptosis and cell cycle arrest in these two cell lines. Our data clarified that SKLB-0124 is a promising selective PRMT6 degrader for cancer therapy which is worthy of further evaluation.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Relação Dose-Resposta a Droga , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Humanos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Descoberta de Drogas , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Nucleares
20.
Cancer Invest ; 42(5): 435-442, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38813691

RESUMO

Coactivator-associated arginine methyltransferase 1 (CARM1) is significant as a key member of the PRMT family, crucial for regulating arginine methylation, and its association with colorectal cancer underscores its potential as a therapeutic target. Consequently, CARM1 inhibitors have emerged as potential therapeutic agents in cancer treatment and valuable chemical tools for cancer research. Despite steady progress in CARM1 inhibitor research, challenges persist in discovering effective, isoform-selective, cell-permeable, and in vivo-active CARM1 inhibitors for colorectal cancer. This review summarizes the research progress on CARM1 and its relationship with colorectal cancer, aiming to provide a theoretical basis for the radiotherapy of colorectal cancer.


Assuntos
Neoplasias Colorretais , Proteína-Arginina N-Metiltransferases , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...