Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 189(4): 813-825, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30653956

RESUMO

Syntrophins are a family of proteins forming membrane-anchored scaffolds and serving as adaptors for various transmembrane and intracellular signaling molecules. To understand the physiological roles of ß1 syntrophin, one of the least characterized members, we generated mouse models to eliminate ß1 syntrophin specifically in the endocrine or exocrine pancreas. ß1 syntrophin is dispensable for the morphology and function of insulin-producing ß cells. However, mice with ß1 syntrophin deletion in exocrine acinar cells exhibit increased severity of cerulein-induced acute pancreatitis. Reduced expression of cystic fibrosis transmembrane conductance regulator and dilation of acinar lumen are potential predisposition factors. During the disease progression, a relative lack of autophagy is associated with deficiencies in both actin assembly and endoplasmic reticulum nucleation. Our findings reveal, for the first time, that ß1 syntrophin is a critical regulator of actin cytoskeleton and autophagy in pancreatic acinar cells and is potently protective against cerulein-induced acute pancreatitis.


Assuntos
Autofagia , Ceruletídeo/toxicidade , Proteínas Associadas à Distrofina/fisiologia , Pancreatite/prevenção & controle , Substâncias Protetoras , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Pancreatite/patologia
2.
Hum Mol Genet ; 28(3): 386-395, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256963

RESUMO

Syntrophins are a family of modular adaptor proteins that are part of the dystrophin protein complex, where they recruit and anchor a variety of signaling proteins. Previously we generated mice lacking α- and/or ß2-syntrophin but showed that in the absence of one isoform, other syntrophin isoforms can partially compensate. Therefore, in the current study, we generated mice that lacked α, ß1 and ß2-syntrophins [triple syntrophin knockout (tKO) mice] and assessed skeletal and cardiac muscle function. The tKO mice showed a profound reduction in voluntary wheel running activity at both 6 and 12 months of age. Function of the tibialis anterior was assessed in situ and we found that the specific force of tKO muscle was decreased by 20-25% compared with wild-type mice. This decrease was accompanied by a shift in fiber-type composition from fast 2B to more oxidative fast 2A fibers. Using echocardiography to measure cardiac function, it was revealed that tKO hearts had left ventricular cardiac dysfunction and were hypertrophic, with a thicker left ventricular posterior wall. Interestingly, we also found that membrane-localized dystrophin expression was lower in both skeletal and cardiac muscles of tKO mice. Since dystrophin mRNA levels were not different in tKO, this finding suggests that syntrophins may regulate dystrophin trafficking to, or stabilization at, the sarcolemma. These results show that the loss of all three major muscle syntrophins has a profound effect on exercise performance, and skeletal and cardiac muscle dysfunction contributes to this deficiency.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas Associadas à Distrofina/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Musculares/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Distrofina/genética , Distrofina/fisiologia , Proteínas Associadas à Distrofina/genética , Coração/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Miocárdio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia
3.
Hum Mol Genet ; 27(17): 2978-2985, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790927

RESUMO

Mutation of the gene encoding dystrophin leads to Duchenne and Becker muscular dystrophy (DMD and BMD). Currently, dystrophin is thought to function primarily as a structural protein, connecting the muscle cell actin cytoskeleton to the extra-cellular matrix. In addition to this structural role, dystrophin also plays an important role as a scaffold that organizes an array of signaling proteins including sodium, potassium, and calcium channels, kinases, and nitric oxide synthase (nNOS). Many of these signaling proteins are linked to dystrophin via syntrophin, an adapter protein that is known to bind directly to two sites in the carboxyl terminal region of dystrophin. A search of the dystrophin sequence revealed three additional potential syntrophin binding sites (SBSs) within the spectrin-like repeat (SLR) region of dystrophin. Binding assays revealed that the site at SLR 17 bound specifically to the α isoform of syntrophin while the site at SLR 22 bound specifically to the ß-syntrophins. The SLR 17 α-SBS contained the core sequence known to be required for nNOS-dystrophin interaction. In vitro and in vivo assays indicate that α-syntrophin facilitates the nNOS-dystrophin interaction at this site rather than nNOS binding directly to dystrophin as previously reported. The identification of multiple SBSs within the SLR region of dystrophin demonstrates that this region functions as a signaling scaffold. The signaling role of the SLR region of dystrophin will need to be considered for effective gene replacement or exon skipping based DMD/BMD therapies.


Assuntos
Proteínas Associadas à Distrofina/metabolismo , Distrofina/metabolismo , Óxido Nítrico Sintase Tipo I/fisiologia , Sequências Repetitivas de Aminoácidos , Espectrina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas Associadas à Distrofina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Homologia de Sequência , Espectrina/química
4.
Cancer Genet ; 214-215: 16-25, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28595731

RESUMO

Oral cancer is a high incidence cancer in India primarily due to the prevalent tobacco/areca nut chewing habits and hence a major health concern. India constitutes 26% of the global oral cancer burden. Besides the well-established risk factors, the genomic constitution of an individual plays a role in oral cancer. The aim of the current study was to analyse genomic variants represented as single nucleotide polymorphisms (SNPs), analyse their prevalence and investigate risk association of allelotypes/genotypes to oral cancers. Eleven SNPs in genes associated with biological functions were analysed in an Indian cohort (n = 1000) comprising 500 oral cancer patients and 500 long term tobacco habitués as controls, using Allelic discrimination Real-Time PCR assay with SYBR Green dye. Fisher's exact test and Odds Ratio were used for statistical analysis. Increased risk was observed for rs9849237 CC [P = 0.008; OR 1.412 (1.09-1.82)] and rs243865 CT [P = 0.004; OR 1.469 (1.13-1.90)] genotypes, whereas rs9849237 CT [P = 0.034; OR 0.755 (0.58-0.97)], rs243865 CC [P = 0.002; OR 0.669 (0.51-0.86)] and rs10090787 CC [P = 0.049; OR 0.774 (0.60-0.99)] genotypes indicated decreased risk to oral cancer. The other SNPs showed equidistribution in both groups. Our data indicated genotypes and alleles in specific SNPs rs9849237, rs243865 and rs10090787 with increased/decreased risk to oral cancer.


Assuntos
Contactinas/genética , Proteínas Associadas à Distrofina/genética , Metaloproteinase 2 da Matriz/genética , Neoplasias Bucais/genética , Polimorfismo de Nucleotídeo Único , Estudos de Coortes , Contactinas/fisiologia , Proteínas Associadas à Distrofina/fisiologia , Predisposição Genética para Doença , Genótipo , Humanos , Índia , Metaloproteinase 2 da Matriz/fisiologia , Razão de Chances
5.
Anat Sci Int ; 90(3): 137-43, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25595671

RESUMO

Recently several potential susceptibility genes for major psychiatric disorders (schizophrenia and major depression) such as disrupted-in-schizophrenia 1(DISC1), dysbindin and pituitary adenylate cyclase-activating polypeptide (PACAP) have been reported. DISC1 is involved in neural development directly via adhesion molecules or via its binding partners of DISC1 such as elongation protein ζ-1 (FEZ1), DISC1-binding zinc-finger protein (DBZ) and kendrin. PACAP also regulates neural development via stathmin 1 or via regulation of the DISC1-DBZ binding. Dysbindin is also involved in neural development by regulating centrosomal microtubule network formation. All such molecules examined to date are involved in neural development. Thus, these findings provide new molecular insights into the mechanisms of neural development and neuropsychiatric disorders. On the other hand, in addition to neurons, both DISC and DBZ have been detected in oligodendrocytes and implicated in regulating oligodendrocyte differentiation. DISC1 inhibits the differentiation of oligodendrocyte precursor cells into oligodendrocytes, while DBZ has a positive regulatory role in oligodendrocyte differentiation. Evidence suggesting that disturbance of oligodendrocyte development causes major depression is also described.


Assuntos
Depressão/genética , Proteínas Associadas à Distrofina/genética , Predisposição Genética para Doença/genética , Proteínas do Tecido Nervoso/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Esquizofrenia/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ligação a Calmodulina/fisiologia , Diferenciação Celular/genética , Proteínas de Ligação a DNA/fisiologia , Disbindina , Proteínas Associadas à Distrofina/fisiologia , Humanos , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/genética , Oligodendroglia/citologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Ligação Proteica , Estatmina/fisiologia , Fatores de Transcrição/fisiologia
6.
J Neurosci ; 34(41): 13725-36, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25297099

RESUMO

Dysbindin is a schizophrenia susceptibility gene required for the development of dendritic spines. The expression of dysbindin proteins is decreased in the brains of schizophrenia patients, and neurons in mice carrying a deletion in the dysbindin gene have fewer dendritic spines. Hence, dysbindin might contribute to the spine pathology of schizophrenia, which manifests as a decrease in the number of dendritic spines. The development of dendritic spines is a dynamic process involving formation, retraction, and transformation of dendritic protrusions. It has yet to be determined whether dysbindin regulates the dynamics of dendritic protrusions. Here we address this question using time-lapse imaging in hippocampal neurons. Our results show that dysbindin is required to stabilize dendritic protrusions. In dysbindin-null neurons, dendritic protrusions are hyperactive in formation, retraction, and conversion between different types of protrusions. We further show that CaMKIIα is required for the stabilization of mushroom/thin spines, and that the hyperactivity of dendritic protrusions in dysbindin-null neurons is attributed in part to decreased CaMKIIα activity resulting from increased inhibition of CaMKIIα by Abi1. These findings elucidate the function of dysbindin in the dynamic morphogenesis of dendritic protrusions, and reveal the essential roles of dysbindin and CaMKIIα in the stabilization of dendritic protrusions during neuronal development.


Assuntos
Espinhas Dendríticas/fisiologia , Proteínas Associadas à Distrofina/fisiologia , Esquizofrenia/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Espinhas Dendríticas/ultraestrutura , Disbindina , Proteínas Associadas à Distrofina/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Transfecção
7.
J Mol Cell Cardiol ; 76: 106-15, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25158611

RESUMO

Duchenne muscular dystrophy is a fatal progressive disease of both cardiac and skeletal muscle resulting from the mutations in the DMD gene and loss of the protein dystrophin. Alpha-dystrobrevin (α-DB) tightly associates with dystrophin but the significance of this interaction within cardiac myocytes is poorly understood. In the current study, the functional role of α-DB in cardiomyocytes and its implications for dystrophin function are examined. Cardiac stress testing demonstrated significant heart disease in α-DB null (adbn(-/-)) mice, which displayed mortality and lesion sizes that were equivalent to those seen in dystrophin-deficient mdx mice. Despite normal expression and subcellular localization of dystrophin in the adbn(-/-) heart, there is a significant decrease in the strength of dystrophin's interaction with the membrane-bound dystrophin-associated glycoprotein complex (DGC). A similar weakening of the dystrophin-membrane interface was observed in mice lacking the sarcoglycan complex. Cardiomyocytes from adbn(-/-) mice were smaller and responded less to adrenergic receptor induced hypertrophy. The basal decrease in size could not be attributed to aberrant Akt activation. In addition, the organization of the microtubule network was significantly altered in adbn(-/-) cardiac myocytes, while the total expression of tubulin was unchanged in adbn(-/-) hearts. These studies demonstrate that α-DB is a multifunctional protein that increases dystrophin's binding to the dystrophin-glycoprotein complex, and is critical for the full functionality of dystrophin.


Assuntos
Proteínas Associadas à Distrofina/fisiologia , Distrofina/metabolismo , Sarcoglicanas/metabolismo , Animais , Células Cultivadas , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miócitos Cardíacos/metabolismo , Ligação Proteica , Estresse Fisiológico
8.
J Biol Chem ; 287(49): 41374-85, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23043099

RESUMO

The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction.


Assuntos
Barreira Hematoencefálica , Encéfalo/metabolismo , Proteínas Associadas à Distrofina/fisiologia , Edema/patologia , Neuroglia/metabolismo , Animais , Aquaporina 4/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Técnicas de Cocultura , Endotélio Vascular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microscopia de Contraste de Fase/métodos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Junções Íntimas/metabolismo
10.
Biochem Biophys Res Commun ; 412(4): 596-601, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21846462

RESUMO

α(1D)-Adrenergic receptors, key regulators of cardiovascular system function, are organized as a multi-protein complex in the plasma membrane. Using a Type-I PDZ-binding motif in their distal C-terminal domain, α(1D)-ARs associate with syntrophins and dystrophin-associated protein complex (DAPC) members utrophin, dystrobrevin and α-catulin. Three of the five syntrophin isoforms (α, ß(1) and ß(2)) interact with α(1D)-ARs and our previous studies suggest multiple isoforms are required for proper α(1D)-AR function in vivo. This study determined the contribution of each specific syntrophin isoform to α(1D)-AR function. Radioligand binding experiments reveal α-syntrophin enhances α(1D)-AR binding site density, while phosphoinositol and ERK1/2 signaling assays indicate ß(2)-syntrophin augments full and partial agonist efficacy for coupling to downstream signaling mechanisms. The results of this study provide clear evidence that the cytosolic components within the α(1D)-AR/DAPC signalosome significantly alter the pharmacological properties of α(1)-AR ligands in vitro.


Assuntos
Complexo de Proteínas Associadas Distrofina/metabolismo , Proteínas Associadas à Distrofina/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Proteínas Associadas à Distrofina/genética , Células HEK293 , Humanos , Ligantes , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Transdução de Sinais
11.
J Biol Chem ; 285(32): 24740-50, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20530487

RESUMO

alpha and beta dystrobrevins are cytoplasmic components of the dystrophin-associated protein complex that are thought to play a role as scaffold proteins in signal transduction and intracellular transport. In the search of new insights into the functions of beta-dystrobrevin, the isoform restricted to non-muscle tissues, we performed a two-hybrid screen of a mouse cDNA library to look for interacting proteins. Among the positive clones, one encodes iBRAF/HMG20a, a high mobility group (HMG)-domain protein that activates REST (RE-1 silencing transcription factor)-responsive genes, playing a key role in the initiation of neuronal differentiation. We characterized the beta-dystrobrevin-iBRAF interaction by in vitro and in vivo association assays, localized the binding region of one protein to the other, and assessed the kinetics of the interaction as one of high affinity. We also found that beta-dystrobrevin directly binds to BRAF35/HMG20b, a close homologue of iBRAF and a member of a co-repressor complex required for the repression of neural specific genes in neuronal progenitors. In vitro assays indicated that beta-dystrobrevin binds to RE-1 and represses the promoter activity of synapsin I, a REST-responsive gene that is a marker for neuronal differentiation. Altogether, our data demonstrate a direct interaction of beta-dystrobrevin with the HMG20 proteins iBRAF and BRAF35 and suggest that beta-dystrobrevin may be involved in regulating chromatin dynamics, possibly playing a role in neuronal differentiation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Associadas à Distrofina/fisiologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Neurônios/citologia , Animais , Células COS , Proteínas de Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Cromatina/química , Humanos , Cinética , Camundongos , Distrofias Musculares/metabolismo , Ratos , Ressonância de Plasmônio de Superfície
12.
Br J Haematol ; 149(1): 124-36, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20148881

RESUMO

Upon activation with physiological stimuli, human platelets undergo morphological changes, centralizing their organelles and secreting effector molecules at the site of vascular injury. Previous studies have indicated that the actin filaments and microtubules of suspension-activated platelets play a critical role in granule movement and exocytosis; however, the participation of these cytoskeleton elements in adhered platelets remains unexplored. alpha- and beta-dystrobrevin members of the dystrophin-associated protein complex in muscle and non-muscle cells have been described as motor protein receptors that might participate in the transport of cellular components in neurons. Recently, we characterized the expression of dystrobrevins in platelets; however, their functional diversity within this cellular model had not been elucidated. The present study examined the contribution of actin filaments and microtubules in granule trafficking during the platelet adhesion process using cytoskeleton-disrupting drugs, quantification of soluble P-selectin, fluorescence resonance transfer energy analysis and immunoprecipitation assays. Likewise, we assessed the interaction of alpha-dystrobrevins with the ubiquitous kinesin heavy chain. Our results strongly suggest that microtubules and actin filaments participate in the transport of alpha and dense granules in the platelet adhesion process, during which alpha-dystrobrevins play the role of regulatory and adaptor proteins that govern trafficking events.


Assuntos
Citoesqueleto de Actina/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas Associadas à Distrofina/fisiologia , Microtúbulos/metabolismo , Adesividade Plaquetária/fisiologia , Actinas/fisiologia , Transporte Biológico/fisiologia , Plaquetas/ultraestrutura , Grânulos Citoplasmáticos/ultraestrutura , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Microscopia Eletrônica , Microtúbulos/ultraestrutura , Tubulina (Proteína)/fisiologia
13.
Exp Cell Res ; 316(2): 272-85, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19836389

RESUMO

Syntrophins are components of the dystrophin glycoprotein complex (DGC), which is encoded by causative genes of muscular dystrophies. The DGC is thought to play roles not only in linking the actin cytoskeleton to the extracellular matrix, providing stability to the cell membrane, but also in signal transduction. Because of their binding to a variety of different molecules, it has been suggested that syntrophins are adaptor proteins recruiting signaling proteins to membranes and the DGC. However, critical roles in vivo remain elusive. Drosophila Syntrophin-2 (Syn2) is an orthologue of human gamma 1/gamma 2-syntrophins. Western immunoblot analysis here showed Syn2 to be expressed throughout development, with especially high levels in the adult head. Morphological aberrations were observed in Syn2 knockdown adult flies, with lack of retinal elongation and malformation of rhabdomeres. Furthermore, Syn2 knockdown flies exhibited excessive apoptosis in third instar larvae and alterations in the actin localization in the pupal retinae. Genetic crosses with a collection of Drosophila deficiency stocks allowed us to identify seven genomic regions, deletions of which caused enhancement of the rough eye phenotype induced by Syn2 knockdown. This information should facilitate identification of Syn2 regulators in Drosophila and clarification of roles of Syn2 in eye development.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas Associadas à Distrofina/fisiologia , Olho/crescimento & desenvolvimento , Olho/metabolismo , Morfogênese/fisiologia , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos/imunologia , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Encéfalo/metabolismo , Caspase 3/metabolismo , Drosophila/genética , Embrião não Mamífero/metabolismo , Olho/patologia , Olho/ultraestrutura , Feminino , Deleção de Genes , Humanos , Larva/metabolismo , Masculino , Proteínas de Membrana/genética , Dados de Sequência Molecular , Proteínas Musculares/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/patologia , Pupa/metabolismo , Retina/crescimento & desenvolvimento , Retina/patologia , Homologia de Sequência de Aminoácidos
14.
Mol Neurobiol ; 41(1): 1-21, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19899002

RESUMO

Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by progressive muscle wasting. A number of Duchenne patients also present with mental retardation. The dystrophin protein is part of the highly conserved dystrophin-associated glycoprotein complex (DGC) which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems. Many years of research into the roles of the DGC in muscle have revealed its structural function in stabilizing the sarcolemma. In addition, the DGC also acts as a scaffold for various signaling pathways. Here, we discuss recent advances in understanding DGC roles in the nervous system, gained from studies in both vertebrate and invertebrate model systems. From these studies, it has become clear that the DGC is important for the maturation of neurotransmitter receptor complexes and for the regulation of neurotransmitter release at the NMJ and central synapses. Furthermore, roles for the DGC have been established in consolidation of long-term spatial and recognition memory. The challenges ahead include the integration of the behavioral and mechanistic studies and the use of this information to identify therapeutic targets.


Assuntos
Complexo de Proteínas Associadas Distrofina/fisiologia , Proteínas Associadas à Distrofina/fisiologia , Distrofina/fisiologia , Junção Neuromuscular/fisiologia , Sinapses/fisiologia , Animais , Humanos , Distrofia Muscular de Duchenne/fisiopatologia , Transmissão Sináptica/fisiologia
15.
J Appl Physiol (1985) ; 104(5): 1476-84, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18356484

RESUMO

The dystrophin-associated protein complex (DAPC) is a scaffold of proteins linking the intracellular cytoskeleton with the extracellular matrix that is integral to structural stability and integrity, signaling and mechanotransduction, and force transmission. We hypothesized that the expression of DAPC component proteins would be altered by resistance loading during progressive resistance training (PRT)-mediated myofiber hypertrophy, and we investigated whether aging influenced these changes. Seventeen young (27 yr) and 13 older (65 yr) men completed 16 wk of PRT with muscle biopsies at baseline (T1), 24 h after bout 1 (T2), and 24 h after the final bout at week 16 (T3). Myofiber hypertrophy in the young (type I 31%, P < 0.005; type II 40%, P < 0.001) far exceeded hypertrophy in the old (type II only, 19.5%, P < 0.05). PRT altered protein expression for caveolin-3 (decreased 24% by T3, P < 0.01), alpha(1)-syntrophin (increased 16% by T3, P < 0.05), alpha-dystrobrevin (fell 23% from T2 to T3, P < 0.01), and dystrophin [rose acutely (30% by T2, P < 0.05) and returned to baseline by T3]. The phosphorylation state of membrane neuronal nitric oxide synthase (Ser(1417)) decreased 70% (P < 0.005) by T3, particularly in the old (81%), whereas p38 MAPK phosphorylation increased twofold by T3 in the old (P < 0.01). We conclude that component proteins of the DAPC are modulated by PRT, which may serve to improve both structural and signaling functions during load-mediated myofiber hypertrophy. The blunted hypertrophic adaptation seen in old vs. young men may have resulted from overstress, as suggested by marked p38 MAPK activation in old men only.


Assuntos
Envelhecimento/fisiologia , Proteínas Associadas à Distrofina/fisiologia , Aptidão Física/fisiologia , Adulto , Idoso , Ciclismo/fisiologia , Western Blotting , Proteínas de Ligação ao Cálcio/biossíntese , Caveolina 3/biossíntese , Tamanho Celular , Temperatura Baixa , Proteínas Associadas à Distrofina/biossíntese , Humanos , Luminescência , Masculino , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/biossíntese , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Fisiológico/fisiopatologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
16.
J Mol Biol ; 371(5): 1174-87, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17610895

RESUMO

The dystrophin-related and -associated protein dystrobrevin is a component of the dystrophin-associated protein complex, which directly links the cytoskeleton to the extracellular matrix. It is now thought that this complex also serves as a dynamic scaffold for signaling proteins, and dystrobrevin may play a role in this context. Since dystrobrevin involvement in signaling pathways seems to be dependent on its interaction with other proteins, we sought new insights and performed a two-hybrid screen of a mouse brain cDNA library using beta-dystrobrevin, the isoform expressed in non-muscle tissues, as bait. Among the positive clones characterized after the screen, one encodes the regulatory subunit RIalpha of the cAMP-dependent protein kinase A (PKA). We confirmed the interaction by in vitro and in vivo association assays, and mapped the binding site of beta-dystrobrevin on RIalpha to the amino-terminal region encompassing the dimerization/docking domain of PKA regulatory subunit. We also found that the domain of interaction for RIalpha is contained in the amino-terminal region of beta-dystrobrevin. We obtained evidence that beta-dystrobrevin also interacts directly with RIIbeta, and that not only beta-dystrobrevin but also alpha-dystrobrevin interacts with PKA regulatory subunits. We show that both alpha and beta-dystrobrevin are specific phosphorylation substrates for PKA and that protein phosphatase 2A (PP2A) is associated with dystrobrevins. Our results suggest a new role for dystrobrevin as a scaffold protein that may play a role in different cellular processes involving PKA signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Associadas à Distrofina/química , Proteínas Associadas à Distrofina/fisiologia , Animais , Sítios de Ligação , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Matriz Extracelular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
18.
Neuromuscul Disord ; 17(2): 123-34, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17251025

RESUMO

The alpha- and beta-dystrobrevins belong to the family of dystrophin-related and dystrophin-associated proteins. As constituents of the dystrophin-associated protein complex, alpha-dystrobrevin was believed to have a role predominantly in muscles and beta-dystrobrevin in non-muscle tissues. Recent reports described novel localisations and molecular characteristics of alpha-dystrobrevin isoforms in non-muscle tissues (developing and adult). While single and double knockout studies have revealed distinct functions of dystrobrevin in some tissues, these also suggested a strong compensatory mechanism, where dystrobrevins displaying overlapping tissue expression pattern and structure/function similarity can substitute each other. No human disease has been unequivocally associated within mutations of dystrobrevin genes. However, some significant exceptions to these overlapping expression patterns, mainly in the brain, suggest that dystrobrevin mutations might underlie some specific motor, behavioural or cognitive defects. Dystrobrevin binding partner DTNBP1 (dysbindin) is a probable susceptibility gene for schizophrenia and bipolar affective disorder in some populations. As dysbindin abnormality is linked to Hermansky-Pudlak syndrome, dystrobrevins and/or their binding partners may also be required for proper function of other non-muscle tissues.


Assuntos
Proteínas Associadas à Distrofina/genética , Proteínas Associadas à Distrofina/fisiologia , Músculo Esquelético/fisiologia , Animais , Proteínas Associadas à Distrofina/química , Proteínas Associadas à Distrofina/metabolismo , Humanos , Camundongos , Modelos Moleculares , Músculo Esquelético/metabolismo , Doenças Neuromusculares/genética , Doenças Neuromusculares/fisiopatologia , Ligação Proteica
19.
Circ Res ; 99(4): 407-14, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16857961

RESUMO

The cardiac sodium channel Na(v)1.5 plays a key role in cardiac excitability and conduction. The purpose of this study was to elucidate the role of the PDZ domain-binding motif formed by the last three residues (Ser-Ile-Val) of the Na(v)1.5 C-terminus. Pull-down experiments were performed using Na(v)1.5 C-terminus fusion proteins and human or mouse heart protein extracts, combined with mass spectrometry analysis. These experiments revealed that the C-terminus associates with dystrophin, and that this interaction was mediated by alpha- and beta-syntrophin proteins. Truncation of the PDZ domain-binding motif abolished the interaction. We used dystrophin-deficient mdx(5cv) mice to study the role of this protein complex in Na(v)1.5 function. Western blot experiments revealed a 50% decrease in the Na(v)1.5 protein levels in mdx(5cv) hearts, whereas Na(v)1.5 mRNA levels were unchanged. Patch-clamp experiments showed a 29% decrease of sodium current in isolated mdx(5cv) cardiomyocytes. Finally, ECG measurements of the mdx(5cv) mice exhibited a 19% reduction in the P wave amplitude, and an 18% increase of the QRS complex duration, compared with controls. These results indicate that the dystrophin protein complex is required for the proper expression and function of Na(v)1.5. In the absence of dystrophin, decreased sodium current may explain the alterations in cardiac conduction observed in patients with dystrophinopathies.


Assuntos
Coração/fisiologia , Células Musculares/fisiologia , Proteínas Musculares/fisiologia , Canais de Sódio/fisiologia , Animais , Clonagem Molecular , DNA Complementar/genética , Distrofina/fisiologia , Proteínas Associadas à Distrofina/fisiologia , Eletrocardiografia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Musculares/citologia , Proteínas Musculares/genética , Canal de Sódio Disparado por Voltagem NAV1.5 , Técnicas de Patch-Clamp , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Sódio/genética
20.
J Biol Chem ; 281(18): 12414-20, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16533813

RESUMO

To find novel cytoplasmic binding partners of the alpha1D-adrenergic receptor (AR), a yeast two-hybrid screen using the alpha1D-AR C terminus as bait was performed on a human brain cDNA library. Alpha-syntrophin, a protein containing one PDZ domain and two pleckstrin homology domains, was isolated in this screen as an alpha1D-AR-interacting protein. Alpha-syntrophin specifically recognized the C terminus of alpha1D- but not alpha1A- or alpha1B-ARs. In blot overlay assays, the PDZ domains of syntrophin isoforms alpha, beta1, and beta2 but not gamma1 or gamma2 showed strong selective interactions with the alpha1D-AR C-tail fusion protein. In transfected human embryonic kidney 293 cells, full-length alpha1D- but not alpha1A- or alpha1B-ARs co-immunoprecipitated with syntrophins, and the importance of the receptor C terminus for the alpha1D-AR/syntrophin interaction was confirmed using chimeric receptors. Mutation of the PDZ-interacting motif at the alpha1D-AR C terminus markedly decreased inositol phosphate formation stimulated by norepinephrine but not carbachol in transfected HEK293 cells. This mutation also dramatically decreased alpha1D-AR binding and protein expression. In addition, stable overexpression of alpha-syntrophin significantly increased alpha1D-AR protein expression and binding but did not affect those with a mutated PDZ-interacting motif, suggesting that syntrophin plays an important role in maintaining receptor stability by directly interacting with the receptor PDZ-interacting motif. This direct interaction may provide new information about the regulation of alpha1D-AR signaling and the role of syntrophins in modulating G protein-coupled receptor function.


Assuntos
Proteínas Associadas à Distrofina/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Animais , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/química , Linhagem Celular , Citoplasma/metabolismo , Proteínas Associadas à Distrofina/química , Humanos , Proteínas de Membrana/química , Camundongos , Proteínas Musculares/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...