Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Breast Cancer Res ; 26(1): 92, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840145

RESUMO

BACKGROUND: Identifying new targets in triple negative breast cancer (TNBC) remains critical. REG3A (regenerating islet-derived protein 3 A), a calcium-dependent lectin protein, was thoroughly investigated for its expression and functions in breast cancer. METHODS: Bioinformatics and local tissue analyses were employed to identify REG3A expression in breast cancer. Genetic techniques were employed to modify REG3A expression, and the resulting effects on the behaviors of breast cancer cells were examined. Subcutaneous xenograft models were established to investigate the involvement of REG3A in the in vivo growth of breast cancer cells. RESULTS: Analysis of the TCGA database uncovered increased REG3A levels in human breast cancer tissues. Additionally, REG3A mRNA and protein levels were elevated in TNBC tissues of locally treated patients, contrasting with low expression in adjacent normal tissues. In primary human TNBC cells REG3A shRNA notably hindered cell proliferation, migration, and invasion while triggering caspase-mediated apoptosis. Similarly, employing CRISPR-sgRNA for REG3A knockout showed significant anti-TNBC cell activity. Conversely, REG3A overexpression bolstered cell proliferation and migration. REG3A proved crucial for activating the Akt-mTOR cascade, as evidenced by decreased Akt-S6K1 phosphorylation upon REG3A silencing or knockout, which was reversed by REG3A overexpression. A constitutively active mutant S473D Akt1 (caAkt1) restored Akt-mTOR activation and counteracted the proliferation inhibition and apoptosis induced by REG3A knockdown in breast cancer cells. Crucially, REG3A played a key role in maintaining mTOR complex integrity. Bioinformatics identified zinc finger protein 680 (ZNF680) as a potential REG3A transcription factor. Knocking down or knocking out ZNF680 reduced REG3A expression, while its overexpression increased it in primary breast cancer cells. Additionally, enhanced binding between ZNF680 protein and the REG3A promoter was observed in breast cancer tissues and cells. In vivo, REG3A shRNA significantly inhibited primary TNBC cell xenograft growth. In REG3A-silenced xenograft tissues, reduced REG3A levels, Akt-mTOR inhibition, and activated apoptosis were evident. CONCLUSION: ZNF680-caused REG3A overexpression drives tumorigenesis in breast cancer possibly by stimulating Akt-mTOR activation, emerging as a promising and innovative cancer target.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas a Pancreatite , Proteínas Proto-Oncogênicas c-akt , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética , Animais , Camundongos , Linhagem Celular Tumoral , Apoptose/genética , Movimento Celular/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Carcinogênese/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Death Dis ; 15(5): 348, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769308

RESUMO

Regenerating gene family member 4 (Reg4) has been implicated in acute pancreatitis, but its precise functions and involved mechanisms have remained unclear. Herein, we sought to investigate the contribution of Reg4 to the pathogenesis of pancreatitis and evaluate its therapeutic effects in experimental pancreatitis. In acute pancreatitis, Reg4 deletion increases inflammatory infiltrates and mitochondrial cell death and decreases autophagy recovery, which are rescued by the administration of recombinant Reg4 (rReg4) protein. In chronic pancreatitis, Reg4 deficiency aggravates inflammation and fibrosis and inhibits compensatory cell proliferation. Moreover, C-X-C motif ligand 12 (CXCL12)/C-X-C motif receptor 4 (CXCR4) axis is sustained and activated in Reg4-deficient pancreas. The detrimental effects of Reg4 deletion are attenuated by the administration of the approved CXCR4 antagonist plerixafor (AMD3100). Mechanistically, Reg4 mediates its function in pancreatitis potentially via binding its receptor exostosin-like glycosyltransferase 3 (Extl3). In conclusion, our findings suggest that Reg4 exerts a therapeutic effect during pancreatitis by limiting inflammation and fibrosis and improving cellular regeneration.


Assuntos
Fibrose , Mitocôndrias , Proteínas Associadas a Pancreatite , Pancreatite , Receptores CXCR4 , Animais , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Pancreatite/patologia , Pancreatite/metabolismo , Camundongos , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Humanos , Camundongos Endogâmicos C57BL , Ciclamos/farmacologia , Masculino , Camundongos Knockout , Benzilaminas/farmacologia , Quimiocina CXCL12/metabolismo , Proliferação de Células , Transdução de Sinais , Autofagia , Pâncreas/patologia , Pâncreas/metabolismo , Morte Celular
3.
Microbiol Spectr ; 12(6): e0328323, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38727214

RESUMO

The immune response induced by respiratory syncytial virus (RSV) infection is closely related to changes in the composition and function of gastrointestinal microorganisms. However, the specific mechanism remains unknown and the pulmonary-intestinal axis deserves further study. In this study, the mRNA levels of ROR-γt and Foxp3 in the lung and intestine increased first and then decreased. IL-17 and IL-22 reached the maximum on the third day after infection in the lung, and on the second day after infection in the small intestine and colon, respectively. RegⅢγ in intestinal tissue reached the maximum on the third day after RSV infection. Moreover, the genus enriched in the RSV group was Aggregatibacter, and Proteus was reduced. RSV infection not only causes Th17/Treg cell imbalance in the lungs of mice but also leads to the release of excessive IL-22 from the lungs through blood circulation which binds to IL-22 receptors on the intestinal surface, inducing RegⅢγ overexpression, impaired intestinal Th17/Treg development, and altered gut microbiota composition. Our research reveals a significant link between the pulmonary and intestinal axis after RSV infection. IMPORTANCE: RSV is the most common pathogen causing acute lower respiratory tract infections in infants and young children, but the complex interactions between the immune system and gut microbiota induced by RSV infection still requires further research. In this study, it was suggested that RSV infection in 7-day-old BALB/c suckling mice caused lung inflammation and disruption of Th17/Treg cells development, and altered the composition of gut microbiota through IL-22 induced overexpression of RegⅢγ, leading to intestinal immune injury and disruption of gut microbiota. This research reveals that IL-22 may be the link between the lung and gut. This study may provide a new insight into the intestinal symptoms caused by RSV and other respiratory viruses and the connection between the lung and gut axis, as well as new therapeutic ideas for the treatment of RSV-infected children.


Assuntos
Microbioma Gastrointestinal , Interleucina 22 , Interleucinas , Pulmão , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial , Vírus Sinciciais Respiratórios , Linfócitos T Reguladores , Células Th17 , Animais , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/microbiologia , Microbioma Gastrointestinal/imunologia , Linfócitos T Reguladores/imunologia , Camundongos , Células Th17/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Pulmão/patologia , Interleucinas/metabolismo , Interleucinas/genética , Interleucinas/imunologia , Vírus Sinciciais Respiratórios/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , Feminino , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/imunologia , Proteínas Associadas a Pancreatite/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética
4.
Cell Genom ; 4(6): 100561, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38754433

RESUMO

Pancreatic cancer (PC) is the deadliest malignancy due to late diagnosis. Aberrant alterations in the blood proteome might serve as biomarkers to facilitate early detection of PC. We designed a nested case-control study of incident PC based on a prospective cohort of 38,295 elderly Chinese participants with ∼5.7 years' follow-up. Forty matched case-control pairs passed the quality controls for the proximity extension assay of 1,463 serum proteins. With a lenient threshold of p < 0.005, we discovered regenerating family member 1A (REG1A), REG1B, tumor necrosis factor (TNF), and phospholipase A2 group IB (PLA2G1B) in association with incident PC, among which the two REG1 proteins were replicated using the UK Biobank Pharma Proteomics Project, with effect sizes increasing steadily as diagnosis time approaches the baseline. Mendelian randomization analysis further supported the potential causal effects of REG1 proteins on PC. Taken together, circulating REG1A and REG1B are promising biomarkers and potential therapeutic targets for the early detection and prevention of PC.


Assuntos
Biomarcadores Tumorais , Litostatina , Neoplasias Pancreáticas , Proteômica , Humanos , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteômica/métodos , Estudos Prospectivos , Masculino , Feminino , Idoso , Litostatina/genética , Litostatina/sangue , Litostatina/metabolismo , Estudos de Casos e Controles , Pessoa de Meia-Idade , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética
5.
Microbiome ; 12(1): 76, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649950

RESUMO

BACKGROUND: The etiology of inflammatory bowel disease (IBD) is unclear but involves both genetics and environmental factors, including the gut microbiota. Indeed, exacerbated activation of the gastrointestinal immune system toward the gut microbiota occurs in genetically susceptible hosts and under the influence of the environment. For instance, a majority of IBD susceptibility loci lie within genes involved in immune responses, such as caspase recruitment domain member 9 (Card9). However, the relative impacts of genotype versus microbiota on colitis susceptibility in the context of CARD9 deficiency remain unknown. RESULTS: Card9 gene directly contributes to recovery from dextran sodium sulfate (DSS)-induced colitis by inducing the colonic expression of the cytokine IL-22 and the antimicrobial peptides Reg3ß and Reg3γ independently of the microbiota. On the other hand, Card9 is required for regulating the microbiota capacity to produce AhR ligands, which leads to the production of IL-22 in the colon, promoting recovery after colitis. In addition, cross-fostering experiments showed that 5 weeks after weaning, the microbiota transmitted from the nursing mother before weaning had a stronger impact on the tryptophan metabolism of the pups than the pups' own genotype. CONCLUSIONS: These results show the role of CARD9 and its effector IL-22 in mediating recovery from DSS-induced colitis in both microbiota-independent and microbiota-dependent manners. Card9 genotype modulates the microbiota metabolic capacity to produce AhR ligands, but this effect can be overridden by the implantation of a WT or "healthy" microbiota before weaning. It highlights the importance of the weaning reaction occurring between the immune system and microbiota for host metabolism and immune functions throughout life. A better understanding of the impact of genetics on microbiota metabolism is key to developing efficient therapeutic strategies for patients suffering from complex inflammatory disorders. Video Abstract.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Interleucina 22 , Interleucinas , Proteínas Associadas a Pancreatite , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Colite/microbiologia , Colite/genética , Colite/imunologia , Camundongos , Proteínas Associadas a Pancreatite/genética , Interleucinas/genética , Interleucinas/metabolismo , Camundongos Knockout , Predisposição Genética para Doença , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/microbiologia , Colo/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Feminino , Masculino
6.
Free Radic Biol Med ; 218: 16-25, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574974

RESUMO

A critical feature of the cellular antioxidant response is the induction of gene expression by redox-sensitive transcription factors. In many cells, activating these transcription factors is a dynamic process involving multiple redox steps, but it is unclear how these dynamics should be measured. Here, we show how the dynamic profile of the Schizosaccharomyces pombe Pap1 transcription factor is quantifiable by three parameters: signal amplitude, signal time and signal duration. In response to increasing hydrogen peroxide concentrations, the Pap1 amplitude decreased while the signal time and duration showed saturable increases. In co-response plots, these parameters showed a complex, non-linear relationship to the mRNA levels of four Pap1-regulated genes. We also demonstrate that hydrogen peroxide and tert-butyl hydroperoxide trigger quantifiably distinct Pap1 activation profiles and transcriptional responses. Based on these findings, we propose that different oxidants and oxidant concentrations modulate the Pap1 dynamic profile, leading to specific transcriptional responses. We further show how the effect of combination and pre-exposure stresses on Pap1 activation dynamics can be quantified using this approach. This method is therefore a valuable addition to the redox signalling toolbox that may illuminate the role of dynamics in determining appropriate responses to oxidative stress.


Assuntos
Peróxido de Hidrogênio , Oxirredução , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transdução de Sinais , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Peróxido de Hidrogênio/metabolismo , terc-Butil Hidroperóxido/farmacologia , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética , Regulação Fúngica da Expressão Gênica , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Oxidantes/farmacologia , Oxidantes/metabolismo
7.
Infect Immun ; 92(5): e0009924, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38557196

RESUMO

The mouse pathogen Citrobacter rodentium is utilized as a model organism for studying infections caused by the human pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) and to elucidate mechanisms of mucosal immunity. In response to C. rodentium infection, innate lymphoid cells and T cells secrete interleukin (IL)-22, a cytokine that promotes mucosal barrier function. IL-22 plays a pivotal role in enabling mice to survive and recover from C. rodentium infection, although the exact mechanisms involved remain incompletely understood. Here, we investigated whether particular components of the host response downstream of IL-22 contribute to the cytokine's protective effects during C. rodentium infection. In line with previous research, mice lacking the IL-22 gene (Il22-/- mice) were highly susceptible to C. rodentium infection. To elucidate the role of specific antimicrobial proteins modulated by IL-22, we infected the following knockout mice: S100A9-/- (calprotectin), Lcn2-/- (lipocalin-2), Reg3b-/- (Reg3ß), Reg3g-/- (Reg3γ), and C3-/- (C3). All knockout mice tested displayed a considerable level of resistance to C. rodentium infection, and none phenocopied the lethality observed in Il22-/- mice. By investigating another arm of the IL-22 response, we observed that C. rodentium-infected Il22-/- mice exhibited an overall decrease in gene expression related to intestinal barrier integrity as well as significantly elevated colonic inflammation, gut permeability, and pathogen levels in the spleen. Taken together, these results indicate that host resistance to lethal C. rodentium infection may depend on multiple antimicrobial responses acting in concert, or that other IL-22-regulated processes, such as tissue repair and maintenance of epithelial integrity, play crucial roles in host defense to attaching and effacing pathogens.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Interleucina 22 , Animais , Camundongos , Citrobacter rodentium/imunologia , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Interleucina 22/genética , Interleucina 22/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/imunologia
8.
PeerJ ; 12: e16921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426148

RESUMO

Objective: Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease characterized by an unclear pathogenesis. This study aims to screen out key genes related to UC pathogenesis. Methods: Bioinformatics analysis was conducted for screening key genes linked to UC pathogenesis, and the expression of the screened key genes was verified by establishing a UC mouse model. Results: Through bioinformatics analysis, five key genes were obtained. Subsequent infiltration analysis revealed seven significantly different immune cell types between the UC and general samples. Additionally, animal experiment results illustrated markedly decreased body weight, visible colonic shortening and damage, along with a significant increase in the DAI score of the DSS-induced mice in the UC group in comparison with the NC group. In addition, H&E staining results demonstrated histological changes including marked inflammatory cell infiltration, loss of crypts, and epithelial destruction in the colon mucosa epithelium. qRT-PCR analysis indicated a down-regulation of ABCG2 and an up-regulation of IL1RN, REG4, SERPINB5 and TRIM29 in the UC mouse model. Notably, this observed trend showed a significant dependence on the concentration of DSS, with the mouse model of UC induced by 7% DSS demonstrating a more severe disease state compared to that induced by 5% DSS. Conclusion: ABCG2, IL1RN, REG4, SERPINB5 and TRIM29 were screened out as key genes related to UC by bioinformatics analysis. The expression of ABCG2 was down-regulated, and that of IL1RN, REG4, SERPINB5 and TRIM29 were up-regulated in UC mice as revealed by animal experiments.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Regulação para Baixo/genética , Proteínas Associadas a Pancreatite/genética
9.
Microbiol Spectr ; 12(5): e0390523, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501823

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative facultative anaerobe that has become an important cause of severe infections in humans, particularly in patients with cystic fibrosis. The development of efficacious methods or mendicants against P. aeruginosa is still needed. We previously reported that regenerating islet-derived family member 4 (Reg4) has bactericidal activity against Salmonella Typhimurium, a Gram-negative flagellated bacterium. We herein explore whether Reg4 has bactericidal activity against P. aeruginosa. In the P. aeruginosa PAO1-chronic infection model, Reg4 significantly inhibits the colonization of PAO1 in the lung and subsequently ameliorates pulmonary inflammation and fibrosis. Reg4 recombinant protein suppresses the growth motility and biofilm formation capability of PAO1 in vitro. Mechanistically, Reg4 not only exerts bactericidal action via direct binding to the P. aeruginosa cell wall but also enhances the phagocytosis of alveolar macrophages in the host. Taken together, our study demonstrates that Reg4 may provide protection against P. aeruginosa-induced pulmonary inflammation and fibrosis via its antibacterial activity.IMPORTANCEChronic lung infection with Pseudomonas aeruginosa is a leading cause of morbidity and mortality in patients with cystic fibrosis. Due to the antibiotic resistance of Pseudomonas aeruginosa, antimicrobial peptides appear to be a potential alternative to combat its infection. In this study, we report an antimicrobial peptide, regenerating islet-derived 4 (Reg4), that showed killing activity against clinical strains of Pseudomonas aeruginosa PAO1 and ameliorated PAO1-induced pulmonary inflammation and fibrosis. Experimental data also showed Reg4 directly bound to the bacterial cell membrane and enhanced the phagocytosis of host alveolar macrophages. Our presented study will be a helpful resource in searching for novel antimicrobial peptides that could have the potential to replace conventional antibiotics.


Assuntos
Antibacterianos , Proteínas Associadas a Pancreatite , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Camundongos , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética , Antibacterianos/farmacologia , Humanos , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/imunologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Pneumonia/microbiologia , Peptídeos Antimicrobianos/farmacologia , Fagocitose/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Fibrose Pulmonar/microbiologia , Modelos Animais de Doenças
10.
Mitochondrion ; 76: 101875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499131

RESUMO

Pentatricopeptide repeat proteins are involved in mitochondrial both transcriptional and posttranscriptional regulation. Schizosaccharomyces pombe Ppr2 is a general mitochondrial translation factor that plays a critical role in the synthesis of all mitochondrial DNA-encoded oxidative phosphorylation subunits, which are essential for mitochondrial respiration. Our previous analysis showed that ppr2 deletion resulted in increased expression of iron uptake genes and caused ferroptosis-like cell death in S. pombe. In the present work, we showed that deletion of ppr2 reduced viability on glycerol- and galactose-containing media.Php4 is a transcription repressor that regulates iron homeostasis in fission yeast. We found that in the ppr2 deletion strain, Php4 was constitutively active and accumulated in the nucleus in the stationary phase. We also found that deletion of ppr2 decreased the ferroptosis-related protein Gpx1 in the mitochondria. Overexpression of Gpx1 improves the viability of Δppr2 cells. We showed that the deletion of ppr2 increased the production of ROS, downregulated heme synthesis and iron-sulfur cluster proteins, and induced stress proteins. Finally, we observed the nuclear accumulation of Pap1-GFP and Sty1-GFP, suggesting that Sty1 and Pap1 in response to cellular stress in the ppr2 deletion strain. These results suggest thatppr2 deletion may cause mitochondrial dysfunction, which is likely to lead to iron-sensing defect and iron starvation response, resulting in perturbation of iron homeostasis and increased hydroxyl radical production. The increased hydroxyl radical production triggers cellular responses in theppr2 deletion strain.


Assuntos
Deleção de Genes , Ferro , Estresse Oxidativo , Proteínas Associadas a Pancreatite , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Ferro/metabolismo , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Espécies Reativas de Oxigênio/metabolismo , Viabilidade Microbiana , Fator de Ligação a CCAAT , Fatores de Transcrição de Zíper de Leucina Básica
11.
Peptides ; 173: 171148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215942

RESUMO

Type 2 diabetes (T2D) is characterized by peripheral insulin resistance and altered insulin secretion due to a progressive loss of ß-cell mass and function. Today, most antidiabetic agents are designed to resolve impaired insulin secretion and/or insulin resistance, and only GLP-1-based formulations contribute to stopping the decline in ß-cell mass. HTD4010, a peptide carrying two modifications of the amino acid sequence of INGAP-PP (N-terminus acetylation and substitution of Asn13 by Ala) showed greater plasma stability and could be a good candidate for proposal as a drug that could improve ß cell mass and function lost in T2D. In the present study, we showed that HTD4010 included in the culture media of normal rat islets at a dose 100 times lower than that used for INGAP-PP was able to modulate, in the same way as the original peptide, both insulin secretion in response to glucose and the expression of key genes related to insular function, insulin and leptin intracellular pathways, neogenesis, apoptosis, and inflammatory response. Our results confirm the positive effect of HTD4010 on ß-cell function and gene expression of factors involved in the maintenance of ß-cell mass. Although new assays in animal models of prediabetes and T2D must be performed to be conclusive, our results are very encouraging, and they suggest that the use of HTD4010 at a dose 100 times lower than that of INGAP-PP could minimize its side effects in a future clinical trial.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Ilhotas Pancreáticas , Ratos , Animais , Secreção de Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Associadas a Pancreatite/genética , Ratos Wistar , Fragmentos de Peptídeos/farmacologia , Peptídeos/genética , Peptídeos/farmacologia , Peptídeos/metabolismo , Insulina/metabolismo , Expressão Gênica , Ilhotas Pancreáticas/metabolismo
12.
Plant Commun ; 5(5): 100821, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38229439

RESUMO

Anthocyanin accumulation is acknowledged as a phenotypic indicator of phosphate (Pi) starvation. However, negative regulators of this process and their molecular mechanisms remain largely unexplored. In this study, we demonstrate that WRKY33 acts as a negative regulator of phosphorus-status-dependent anthocyanin biosynthesis. WRKY33 regulates the expression of the gene encoding dihydroflavonol 4-reductase (DFR), a rate-limiting enzyme in anthocyanin production, both directly and indirectly. WRKY33 binds directly to the DFR promoter to repress its expression and also interferes with the MBW complex through interacting with PAP1 to indirectly influence DFR transcriptional activation. Under -Pi conditions, PHR1 interacts with WRKY33, and the protein level of WRKY33 decreases; the repression of DFR expression by WRKY33 is thus attenuated, leading to anthocyanin accumulation in Arabidopsis. Further genetic and biochemical assays suggest that PHR1 is also involved in regulating factors that affect WRKY33 protein turnover. Taken together, our findings reveal that Pi starvation represses WRKY33, a repressor of anthocyanin biosynthesis, to finely tune anthocyanin biosynthesis. This "double-negative logic" regulation of phosphorus-status-dependent anthocyanin biosynthesis is required for the maintenance of plant metabolic homeostasis during acclimation to Pi starvation.


Assuntos
Antocianinas , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Fosfatos , Fatores de Transcrição , Antocianinas/biossíntese , Antocianinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos/metabolismo , Aclimatação , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética
13.
Front Endocrinol (Lausanne) ; 14: 1226615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842306

RESUMO

Background: Diabetes mellitus is characterized by chronic hyperglycemia with loss of ß-cell function and mass. An attractive therapeutic approach to treat patients with diabetes in a non-invasive way is to harness the innate regenerative potential of the pancreas. The Islet Neogenesis-Associated Protein pentadecapeptide (INGAP-PP) has been shown to induce ß-cell regeneration and improve their function in rodents. To investigate its possible mechanism of action, we report here the global transcriptional effects induced by the short-term INGAP-PP in vitro treatment of adult rat pancreatic islets. Methods and findings: Rat pancreatic islets were cultured in vitro in the presence of INGAP-PP for 4 days, and RNA-seq was generated from triplicate treated and control islet samples. We performed a de novo rat gene annotation based on the alignment of RNA-seq reads. The list of INGAP-PP-regulated genes was integrated with epigenomic data. Using the new gene annotation generated in this work, we quantified RNA-seq data profiled in INS-1 cells treated with IL1ß, IL1ß+Calcipotriol (a vitamin D agonist) or vehicle, and single-cell RNA-seq data profiled in rat pancreatic islets. We found 1,669 differentially expressed genes by INGAP-PP treatment, including dozens of previously unannotated rat transcripts. Genes differentially expressed by the INGAP-PP treatment included a subset of upregulated transcripts that are associated with vitamin D receptor activation. Supported by epigenomic and single-cell RNA-seq data, we identified 9 previously unannotated long noncoding RNAs (lncRNAs) upregulated by INGAP-PP, some of which are also differentially regulated by IL1ß and vitamin D in ß-cells. These include Ri-lnc1, which is enriched in mature ß-cells. Conclusions: Our results reveal the transcriptional program that could explain the enhancement of INGAP-PP-mediated physiological effects on ß-cell mass and function. We identified novel lncRNAs that are induced by INGAP-PP in rat islets, some of which are selectively expressed in pancreatic ß-cells and downregulated by IL1ß treatment of INS-1 cells. Our results suggest a relevant function for Ri-lnc1 in ß-cells. These findings are expected to provide the basis for a deeper understanding of islet translational results from rodents to humans, with the ultimate goal of designing new therapies for people with diabetes.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , RNA Longo não Codificante , Ratos , Humanos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Peptídeos/metabolismo , Diabetes Mellitus/metabolismo , Vitamina D/metabolismo
14.
World J Gastroenterol ; 29(35): 5104-5124, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37744296

RESUMO

BACKGROUND: Regenerating gene 4 (REG4) has been proved to be carcinogenic in some cancers, but its manifestation and possible carcinogenic mechanisms in colorectal cancer (CRC) have not yet been elucidated. Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism. AIM: To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance. METHODS: We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC. The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells. We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells. Finally, we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells. RESULTS: Compared to normal mucosa, REG4 mRNA expression was high in CRC (P < 0.05) but protein expression was low. An inverse correlation existed between lymph node and distant metastases, tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression (P < 0.05), but vice versa for REG4 protein expression. REG4-related genes included: Chemokine activity; taste receptors; protein-DNA and DNA packing complexes; nucleosomes and chromatin; generation of second messenger molecules; programmed cell death signals; epigenetic regulation and DNA methylation; transcription repression and activation by DNA binding; insulin signaling pathway; sugar metabolism and transfer; and neurotransmitter receptors (P < 0.05). REG4 exposure or overexpression promoted proliferation, antiapoptosis, migration, and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway. REG4 was involved in chemoresistance not through de novo lipogenesis, but lipid droplet assembly. REG4 inhibited the transcription of acetyl-CoA carboxylase 1 (ACC1) and ATP-citrate lyase (ACLY) by disassociating the complex formation of anti-acetyl (AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY. CONCLUSION: REG4 may be involved in chemoresistance through lipid droplet assembly. REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Gotículas Lipídicas , Proteínas Associadas a Pancreatite , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , DNA , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Histonas , Fosfatidilinositol 3-Quinases , Proteínas Associadas a Pancreatite/genética
15.
J Obstet Gynaecol ; 43(1): 2213764, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37218920

RESUMO

To clarify the clinicopathological importance of REG4 mRNA expression, we used GEO, TCGA, xiantao, UALCAN, and Kaplan-Meier plotter for a bioinformatics analysis in breast, cervical, endometrial and ovarian cancers. Compared to normal tissues, REG4 expression was found to be upregulated in breast, cervical, endometrial, and ovarian cancers (p < 0.05). Breast cancer had a higher level of REG4 methylation than normal tissues (p < 0.05), which was negatively correlated with its mRNA expression. REG4 expression was positively correlated with oestrogen and progesterone receptor expression, and aggressiveness of PAM50 classification of breast cancer patients (p < 0.05). Breast infiltrating lobular carcinomas expressed more REG4 than ductal carcinomas (p < 0.05). The REG4-related signal pathways mainly included peptidase, keratinisation, brush border and digestion and so forth in gynecological cancers. Our results indicated that REG4 overexpression was associated with gynecological carcinogenesis and their histogenesis, and may be used as a marker for aggressive behaviour and prognosis of breast or cervical cancer.IMPACT STATEMENTWhat is already known on this subject? REG4 encodes a secretory c-type lectin and plays an essential role in inflammation, carcinogenesis, apoptotic and radiochemotherapeutic resistance.What do the results of this study add? As a standalone predictor, REG4 expression was positively correlated with progression-free survival. Expression of REG4 mRNA was positively associated with the T stage and adenosquamous cell carcinoma of cervical cancer. The top signal pathways related to REG4 included smell and chemical stimulus, peptidase, intermediate filament, and keratinisation in breast cancer; ligand-receptor interaction, metabolism of hormone, xenobiotic and retinol, peptidase, brush border and digestion in cervical and ovarian cancers; bile secretion, intermediate filament, chemical carcinogenesis, brush border and keratinisation in endometrial cancer. REG4 mRNA expression was positively correlated with DC cell infiltration in breast cancer, positively with Th17 cells, TFH, cytotoxic cells and T cells in cervical and endometrial cancers, and negatively with DC cell infiltration, cytotoxic cells and T cells in ovarian cancer. The top hub genes mainly included small proline rich protein 2B in breast cancer; fibrinogens and apoproteins in cervical, endometrial and ovarian cancers.What are the implications of these finding for clinical practice and/or further research? Our study has showed that REG4 mRNA expression is a potential biomarker or therapeutic target for gynaecologic cancers.


Assuntos
Neoplasias da Mama , Neoplasias do Endométrio , Neoplasias Ovarianas , Neoplasias do Colo do Útero , Feminino , Humanos , Prognóstico , RNA Mensageiro , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Neoplasias Ovarianas/patologia , Neoplasias do Endométrio/patologia , Carcinogênese/genética , Neoplasias da Mama/genética , Biologia Computacional , Proteínas Associadas a Pancreatite/genética
16.
J Cell Mol Med ; 26(17): 4710-4720, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35946046

RESUMO

The pathophysiology of inflammatory bowel diseases (IBD) reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg) family members (REG Iα, REG Iß and REG IV) are expressed in Crohn's disease (CD) and ulcerative colitis (UC) and involved as proliferative mucosal factors in IBD. We revealed that REG Iα and REG Iß were induced in cell culture system by IL-6/IL-22. Although REG IV was upregulated in IBD biopsy samples, the upregulation of REG IV was not at all induced in cell culture by autoimmune-related cytokines such as IL-6, IL-22 and TNFα. Here, we analysed REG IV expression in LS-174 T and HT-29 human intestinal epithelial cells by real-time RT-PCR and elisa. REG IV expression was induced by lipopolysaccharide (LPS). However, LPS did not activate REG IV promoter activity. As the LPS-induced upregulation of REG IV was considered to be regulated post-transcriptionally, we searched targeted microRNA (miR), which revealed that REG IV mRNA has a potential target sequence for miR-24. We measured the miR-24 level of LPS-treated cells and found that the level was significantly lower. The LPS-induced increase of REG IV mRNA was abolished by the introduction of miR-24 mimic but not by non-specific control RNA.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , MicroRNAs , Proteínas Associadas a Pancreatite/genética , Colite Ulcerativa/patologia , Regulação para Baixo/genética , Células Epiteliais/metabolismo , Humanos , Doenças Inflamatórias Intestinais/patologia , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Litostatina/genética , Litostatina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Regulação para Cima/genética
17.
J Adv Res ; 37: 43-60, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35499047

RESUMO

Introduction: Transcription factors (TFs) and cis-regulatory elements (CREs) control gene transcripts involved in various biological processes. We hypothesize that TFs and CREs can be effective molecular tools for De Novo regulation designs to engineer plants. Objectives: We selected two Arabidopsis TF types and two tobacco CRE types to design a De Novo regulation and evaluated its effectiveness in plant engineering. Methods: G-box and MYB recognition elements (MREs) were identified in four Nicotiana tabacum JAZs (NtJAZs) promoters. MRE-like and G-box like elements were identified in one nicotine pathway gene promoter. TF screening led to select Arabidopsis Production of Anthocyanin Pigment 1 (PAP1/MYB) and Transparent Testa 8 (TT8/bHLH). Two NtJAZ and two nicotine pathway gene promoters were cloned from commercial Narrow Leaf Madole (NL) and KY171 (KY) tobacco cultivars. Electrophoretic mobility shift assay (EMSA), cross-linked chromatin immunoprecipitation (ChIP), and dual-luciferase assays were performed to test the promoter binding and activation by PAP1 (P), TT8 (T), PAP1/TT8 together, and the PAP1/TT8/Transparent Testa Glabra 1 (TTG1) complex. A DNA cassette was designed and then synthesized for stacking and expressing PAP1 and TT8 together. Three years of field trials were performed by following industrial and GMO protocols. Gene expression and metabolic profiling were completed to characterize plant secondary metabolism. Results: PAP1, TT8, PAP1/TT8, and the PAP1/TT8/TTG1 complex bound to and activated NtJAZ promoters but did not bind to nicotine pathway gene promoters. The engineered red P + T plants significantly upregulated four NtJAZs but downregulated the tobacco alkaloid biosynthesis. Field trials showed significant reduction of five tobacco alkaloids and four carcinogenic tobacco specific nitrosamines in most or all cured leaves of engineered P + T and PAP1 genotypes. Conclusion: G-boxes, MREs, and two TF types are appropriate molecular tools for a De Novo regulation design to create a novel distant-pathway cross regulation for altering plant secondary metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nicotina/metabolismo , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Metabolismo Secundário/genética
18.
FASEB J ; 36(3): e22174, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35137988

RESUMO

Intestinal barrier dysfunction plays a critical role in the pathophysiology of many diseases including severe acute pancreatitis (SAP). Interleukin-22 (IL-22) is a critical regulator of intestinal epithelial homeostasis. However, the mechanism, origin site, and characteristics of IL-22 in the intestinal barrier dysfunction remains elusive. Studies were conducted in patients with SAP and SAP mice model. SAP mice model was induced by intraductal infusion of 5% taurocholic acid. The level and source of IL-22 were analyzed by flow cytometry. The effect of IL-22 in SAP-associated intestinal injury were examined through knockout of IL-22 (IL-22-/- ) or administration of recombinant IL-22 (rIL-22). IL-22 increased in the early phase of SAP but declined more quickly than that of proinflammatory cytokines, such as IL-6 and TNF-α. CD177+ neutrophils contributed to IL-22 expression in SAP. IL-22 was activated in the colon rather than the small intestine during SAP. Deletion of IL-22 worse the severity of colonic injury, whereas administration of rIL-22 reduced colonic injury. Mechanistically, IL-22 ameliorates the intestinal barrier dysfunction in SAP through decreasing colonic mucosal permeability, upregulation of E-cadherin and ZO-1 expression, activation of pSTAT3/Reg3 pathway and restoration of fecal microbiota abundance. This study revealing that early decreased colonic IL-22 aggravates intestinal mucosal barrier dysfunction and microbiota dysbiosis in SAP. Colonic IL-22 is likely a promising treating target in the early phase of SAP management. Research in context Evidence before this study Intestinal barrier dysfunction plays a critical role in the pathophysiology of severe acute pancreatitis (SAP). Interleukin-22 (IL-22) is a critical regulator of intestinal epithelial homeostasis. However, the mechanism, origin site and characteristics of IL-22 in the intestinal barrier dysfunction remains elusive. Added value of this study Firstly, we determined the dynamic expression profile of IL-22 in SAP and found that IL-22 was mostly activated in the pancreas and colon and decreased earlier than proinflammatory cytokines. CD177+ neutrophils contributed to IL-22 expression in SAP. Furthermore, we found that IL-22 ameliorates intestinal barrier dysfunction in SAP through decreasing colonic mucosal permeability, upregulation of E-cadherin and ZO-1 expression, activation of pSTAT3/Reg3 pathway and restoration of fecal microbiota abundance. Implications of all the available evidence This study highlights the role of colonic injury and colonic IL-22 in SAP. IL-22 is likely a promising treating target in the early phase of SAP management.


Assuntos
Colo/metabolismo , Microbioma Gastrointestinal , Interleucinas/metabolismo , Pancreatite/metabolismo , Adulto , Idoso , Animais , Caderinas/metabolismo , Células Cultivadas , Colo/efeitos dos fármacos , Feminino , Humanos , Interleucinas/genética , Interleucinas/uso terapêutico , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Pancreatite/tratamento farmacológico , Pancreatite/microbiologia , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Interleucina 22
19.
Blood Adv ; 6(10): 2981-2986, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35030629

RESUMO

Prognostic biomarkers used to identify likelihood of disease progression have not been identified for chronic graft-versus-host disease (cGVHD), the leading cause of late nonrelapse mortality (NRM) in survivors of allogeneic hematopoietic cell transplantation. Gastrointestinal cGVHD (GI-cGVHD) has been particularly challenging to classify. Here, we analyzed 3 proteomics markers (Regenerating islet-derived protein 3-α [Reg3α], C-X-C motif ligand 9 [CXCL9], and Stimulation-2 [ST2]) in 2 independent cohorts of patients with cGVHD totaling 289 patients. Plasma concentrations of Reg3α were significantly increased in patients with GI-cGVHD (P = .0012) compared with those without (P = .01), but plasma concentrations of CXCL9 and ST2 were not. Patients with high Reg3α (≥72 ng/mL) vs low Reg3α had higher NRM (23% vs 11%; P = .015). Because Reg3α has been identified as a lower GI tract marker in acute GVHD, we correlated Reg3α with lower acute-like GI-cGVHD vs classical fibrotic-like esophageal manifestations and found that Reg3α did not differ between the subtypes. No difference was observed between upper GI tract and lower GI tract subtypes. Patients with extremely high Reg3α (≥180 ng/mL) had higher GI scores but not higher scores for the lower GI tract. In a multivariable Cox regression model, patients with high Reg3α were 1.9 times more likely to die without relapse. Our findings demonstrate the utility of Reg3α as a prognostic marker for GI-cGVHD. These data warrant prospective biomarker validation studies.


Assuntos
Doença Enxerto-Hospedeiro , Proteínas Associadas a Pancreatite , Biomarcadores , Quimiocina CXCL9 , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Proteínas Associadas a Pancreatite/genética , Prognóstico , Estudos Prospectivos
20.
Int Rev Immunol ; 41(2): 160-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33426979

RESUMO

Since regenerating islet-derived 3ß (Reg3ß) was first reported, various studies have been conducted to explore the involvement of Reg3ß in a gamut of maladies, such as diabetes, pancreatitis, pancreatic ductal adenocarcinoma, and extrapancreatic maladies such as inflammatory bowel disease, acute liver failure, and myocardial infarction. Surprisingly, there is currently no systematic review of Reg3ß. Therefore, we summarize the structural characteristics, transcriptional regulation, putative receptors, and signaling pathways of Reg3ß. The exact functional roles in various diseases, especially gastrointestinal and liver diseases, are also discussed. Reg3ß plays multiple roles in promoting proliferation, inducing differentiation, preventing apoptosis, and resisting bacteria. The present review may provide new directions for the diagnosis and treatment of gastrointestinal, liver, and pancreatic diseases.


Assuntos
Neoplasias Pancreáticas , Regulação da Expressão Gênica , Humanos , Inflamação , Proteínas Associadas a Pancreatite/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...