Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 26(10): 285, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978703

RESUMO

Adenovirus 36 (Ad-36) is related to human obesity due to its adipogenic activity mediated by the early 4 open reading frame 1 (E4orf1) protein. Mechanisms underlying the adipogenic effect of E4orf1 are not completely understood; however, the proliferation and differentiation of fat cells are increased through the activation of the phosphatidyl inositol 3 kinase pathway by binding proteins containing PDZ domain. This study characterized E4orf1 tridimensional structure and analyzed its interactions with PDZ domain-containing proteins in order to provide new information about the behavior of this viral protein and its targets, which could provide an interesting druggable target for obesity-related cardiometabolic alterations. In silico strategies such as homology modeling, docking, and molecular dynamics (MD) were used to study the interaction of E4orf1 with five PDZ domains of disk large homolog 1 (PDZ-1 and PDZ-2), membrane-associated guanylate kinase 1 (PDZ-3), and multi-PDZ domain protein 1 (PDZ-7 and PDZ-10). Mutagenesis analysis of selected residues was performed to evaluate their effects on the stabilization of E4orf1:PDZ complexes. MD simulations showed that the E4orf1:PDZ10 complex was more stable than the others ones. The highly hydrophobic residues at the C-terminal region (114-125) of the E4orf1 are essential in the initial phase stabilization of the complexes. Moreover, the residues 80-85 in the core region contribute to longer stabilization of the E4orf1:PDZ10 complex, a result that was confirmed by in silico mutagenesis. In conclusion, E4orf1 forms a stable complex with PDZ10 domain, and the residues 80-85 are of particular importance. The characterization of E4orf1 interactions with PDZ domains provides an initial approach to discover druggable targets for Ad-36-induced obesity.


Assuntos
Proteínas E4 de Adenovirus/química , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas E4 de Adenovirus/genética , Simulação de Acoplamento Molecular , Mutação , Domínios e Motivos de Interação entre Proteínas
2.
Sci Rep ; 7(1): 7582, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790440

RESUMO

Studies on dsDNA bacteriophages have revealed that a DNA packaging complex assembles at a special vertex called the 'portal vertex' and consists of a portal, a DNA packaging ATPase and other components. AdV protein IVa2 is presumed to function as a DNA packaging ATPase. However, a protein that functions as a portal is not yet identified in AdVs. To identify the AdV portal, we performed secondary structure analysis on a set of AdV proteins and compared them with the clip region of the portal proteins of bacteriophages phi29, SPP1 and T4. Our analysis revealed that the E4 34K protein of HAdV-C5 contains a region of strong similarity with the clip region of the known portal proteins. E4 34K was found to be present in empty as well as mature AdV particles. In addition, E4 34K co-immunoprecipitates and colocalizes with AdV packaging proteins. Immunogold electron microscopy demonstrated that E4 34K is located at a single site on the virus surface. Finally, tertiary structure prediction of E4 34K and its comparison with that of single subunits of Phi29, SPP1 and T4 portal proteins revealed remarkable similarity. In conclusion, our results suggest that E4 34K is the putative AdV portal protein.


Assuntos
Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/fisiologia , Proteínas do Capsídeo/metabolismo , DNA Viral/metabolismo , Montagem de Vírus , Proteínas E4 de Adenovirus/química , Proteínas do Capsídeo/química , Células HEK293 , Humanos , Imunoprecipitação , Microscopia Imunoeletrônica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
3.
PLoS One ; 10(8): e0135317, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252791

RESUMO

Primer extension-dependent in vitro transcription assay is one of the most important approaches in the research field of gene transcription. However, conventional in vitro transcription assays incorporates radioactive isotopes that cause environmental and health concerns and restricts its scope of application. Here we report a novel non-radioactive method for in vitro transcription analysis by combining primer extension with quantitative real time PCR (qPCR). We show that the DNA template within the transcription system can be effectively eliminated to a very low level by our specially designed approach, and that the primers uniquely designed for primer extension and qPCR can specifically recognize the RNA transcripts. Quantitative PCR data demonstrate that the novel method has successfully been applied to in vitro transcription analyses using the adenovirus E4 and major late promoters. Furthermore, we show that the TFIIB recognition element inhibits transcription of TATA-less promoters using both conventional and nonradioactive in vitro transcription assays. Our method will benefit the laboratories that need to perform in vitro transcription but either lack of or choose to avoid radioactive facilities.


Assuntos
Primers do DNA/genética , Técnicas Genéticas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcrição Gênica , Adenoviridae/genética , Proteínas E4 de Adenovirus/química , Sistema Livre de Células , DNA/análise , Células HeLa , Humanos , Fenol/química , Regiões Promotoras Genéticas , RNA/análise , Fator de Transcrição TFIIB/química
4.
J Biol Chem ; 288(19): 13718-27, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23530045

RESUMO

BACKGROUND: The adenovirus E4orf4 protein must bind protein phosphatase 2A (PP2A) for its functions. RESULTS: The E4orf4 binding site in PP2A was mapped to the α1,α2 helices of the B55α subunit. CONCLUSION: The E4orf4 binding site in PP2A-B55α lies above the substrate binding site and does not overlap it. SIGNIFICANCE: A novel functional significance was assigned to the α1,α2 helices of the PP2A-B55α subunit. The adenovirus E4orf4 protein regulates the progression of viral infection and when expressed outside the context of the virus it induces nonclassical, cancer cell-specific apoptosis. All E4orf4 functions known to date require an interaction between E4orf4 and protein phosphatase 2A (PP2A), which is mediated through PP2A regulatory B subunits. Specifically, an interaction with the B55α subunit is required for induction of cell death by E4orf4. To gain a better insight into the E4orf4-PP2A interaction, mapping of the E4orf4 interaction site in PP2A-B55α has been undertaken. To this end we used a combination of bioinformatics analyses of PP2A-B55α and of E4orf4, which led to the prediction of E4orf4 binding sites on the surface of PP2A-B55α. Mutation analysis, immunoprecipitation, and GST pulldown assays based on the theoretical predictions revealed that the E4orf4 binding site included the α1 and α2 helices described in the B55α structure and involved at least three residues located in these helices facing each other. Loss of E4orf4 binding was accompanied by reduced contribution of the B55α mutants to E4orf4-induced cell death. The identified E4orf4 binding domain lies above the previously described substrate binding site and does not overlap it, although its location could be consistent with direct or indirect effects on substrate binding. This work assigns for the first time a functional significance to the α1,α2 helices of B55α, and we suggest that the binding site defined by these helices could also contribute to interactions between PP2A and some of its cellular regulators.


Assuntos
Proteínas E4 de Adenovirus/química , Proteína Fosfatase 2/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Apoptose , Sítios de Ligação , Sequência Conservada , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 2/genética , Estrutura Secundária de Proteína , Ratos , Homologia Estrutural de Proteína
5.
Cell ; 151(2): 304-19, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063122

RESUMO

Evolution of minimal DNA tumor virus' genomes has selected for small viral oncoproteins that hijack critical cellular protein interaction networks. The structural basis for the multiple and dominant functions of adenovirus oncoproteins has remained elusive. E4-ORF3 forms a nuclear polymer and simultaneously inactivates p53, PML, TRIM24, and MRE11/RAD50/NBS1 (MRN) tumor suppressors. We identify oligomerization mutants and solve the crystal structure of E4-ORF3. E4-ORF3 forms a dimer with a central ß core, and its structure is unrelated to known polymers or oncogenes. E4-ORF3 dimer units coassemble through reciprocal and nonreciprocal exchanges of their C-terminal tails. This results in linear and branched oligomer chains that further assemble in variable arrangements to form a polymer network that partitions the nuclear volume. E4-ORF3 assembly creates avidity-driven interactions with PML and an emergent MRN binding interface. This reveals an elegant structural solution whereby a small protein forms a multivalent matrix that traps disparate tumor suppressors.


Assuntos
Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Infecções por Adenovirus Humanos/virologia , Linhagem Celular , Células Cultivadas , Cristalografia por Raios X , Humanos , Células Vegetais/virologia , Dobramento de Proteína , Nicotiana/virologia
6.
PLoS One ; 6(8): e23394, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21886789

RESUMO

Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or myoblasts, and reduced glucose output by hepatocytes. Thus, the highly attractive anti-hyperglycemic effect of Ad36 is mirrored by E4orf1 protein, which may offer a novel ligand to develop anti-hyperglycemic drugs.


Assuntos
Proteínas E4 de Adenovirus/metabolismo , Glucose/metabolismo , Células 3T3-L1 , Adenoviridae/metabolismo , Proteínas E4 de Adenovirus/química , Adipócitos/metabolismo , Motivos de Aminoácidos , Animais , Técnicas de Cultura de Células , Proteína 1 Homóloga a Discs-Large , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Ligantes , Camundongos , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Associadas SAP90-PSD95 , Transdução de Sinais , Regulação para Cima , Proteínas ras/metabolismo
7.
Oncogene ; 30(26): 2912-20, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21317928

RESUMO

E4orf6 is one of the oncogene products of adenovirus, and it also has an important role for transportation of cellular and viral messenger RNA (mRNA) during the late phase of virus infection. We previously revealed that E4orf6 controls the fate of AU-rich element (ARE) containing mRNA by perturbing the chromosome maintenance region 1-dependent export mechanism. Here, we show that E4orf6 stabilizes ARE-mRNA through the region required for its oncogenic activity and ubiquitin E3 ligase assembly. Cells that failed to stabilize ARE-mRNA after HuR knockdown were unable to produce colonies in soft agar, even when E4orf6 was expressed. Furthermore, the stabilized ARE-mRNA induced the transformation of rodent immortalized cells. These findings indicate that stabilized ARE-mRNA is necessary, if not all, for the oncogenic activity of E4orf6 and has the potential to transform cells, at least under a certain condition.


Assuntos
Adenoviridae/fisiologia , Transformação Celular Neoplásica/genética , Estabilidade de RNA/fisiologia , RNA Mensageiro/metabolismo , Infecções por Adenoviridae/complicações , Infecções por Adenoviridae/genética , Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/fisiologia , Animais , Composição de Bases/genética , Composição de Bases/fisiologia , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Secundária de Proteína/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Estabilidade de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Ratos , Elementos Reguladores de Transcrição/genética
8.
EMBO J ; 28(6): 652-62, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19197236

RESUMO

The protein kinases ataxia-telangiectasia mutated (ATM) and ATM-Rad3 related (ATR) are activated in response to DNA damage, genotoxic stress and virus infections. Here we show that during infection with wild-type adenovirus, ATR and its cofactors RPA32, ATRIP and TopBP1 accumulate at viral replication centres, but there is minimal ATR activation. We show that the Mre11/Rad50/Nbs1 (MRN) complex is recruited to viral centres only during infection with adenoviruses lacking the early region E4 and ATR signaling is activated. This suggests a novel requirement for the MRN complex in ATR activation during virus infection, which is independent of Mre11 nuclease activity and recruitment of RPA/ATR/ATRIP/TopBP1. Unlike other damage scenarios, we found that ATM and ATR signaling are not dependent on each other during infection. We identify a region of the viral E4orf3 protein responsible for immobilization of the MRN complex and show that this prevents ATR signaling during adenovirus infection. We propose that immobilization of the MRN damage sensor by E4orf3 protein prevents recognition of viral genomes and blocks detrimental aspects of checkpoint signaling during virus infection.


Assuntos
Infecções por Adenoviridae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Hidrolases Anidrido Ácido , Adenoviridae/fisiologia , Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/metabolismo , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular , Humanos , Proteína Homóloga a MRE11 , Dados de Sequência Molecular , Fosforilação , Transporte Proteico , Proteínas Supressoras de Tumor/metabolismo , Replicação Viral
9.
Virology ; 382(2): 163-70, 2008 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18952251

RESUMO

The ligase IV/XRCC4 complex plays a central role in DNA double-strand break repair by non-homologous end joining (NHEJ). During adenovirus infection, NHEJ is inhibited by viral proteins E4 34k and E1B 55k, which redirect the Cul5/Rbx1/Elongin BC ubiquitin E3 ligase to polyubiquitinate and promote degradation of ligase IV. In cells infected with E1B 55k-deficient adenovirus, ligase IV could not be found in XRCC4-containing complexes and was observed in a novel ligase IV/E4 34k/Cul5/Elongin BC complex. These observations suggest that dissociation of the ligase IV/XRCC4 complex occurs at an early stage in E4 34k-mediated degradation of ligase IV and indicate a role for E4 34k in dissociation of the ligase IV/XRCCC4 complex. Expression of E4 34k alone was not sufficient to dissociate the ligase IV/XRCC4 complex, which indicates a requirement for an additional, as yet unidentified, factor in E1B 55k-independent dissociation of the ligase IV/XRCC4 complex.


Assuntos
Proteínas E1B de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/fisiologia , Adenovírus Humanos/patogenicidade , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas E1B de Adenovirus/química , Proteínas E1B de Adenovirus/genética , Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/genética , Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/genética , Proteínas Culina/química , Proteínas Culina/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , DNA Ligases/química , Reparo do DNA , Proteínas de Ligação a DNA/química , Elonguina , Deleção de Genes , Genes Virais , Células HeLa , Humanos , Modelos Biológicos , Complexos Multiproteicos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
10.
Oncogene ; 27(10): 1412-20, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17828302

RESUMO

While the process of homo-oligomer formation and disassembly into subunits represents a common strategy to regulate protein activity, reports of proteins in which the subunit and homo-oligomer perform independent functions are scarce. Tumorigenesis induced by the adenovirus E4-ORF1 oncoprotein depends on its binding to a select group of cellular PDZ proteins, including MUPP1, MAGI-1, ZO-2 and Dlg1. We report here that in cells E4-ORF1 exists as both a monomer and trimer and that monomers specifically bind and sequester MUPP1, MAGI-1 and ZO-2 within insoluble complexes whereas trimers specifically bind Dlg1 and promote its translocation to the plasma membrane. This work exposes a novel strategy wherein the oligomerization state of a protein not only determines the capacity to bind separate related targets but also couples the interactions to different functional consequences.


Assuntos
Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/química , Proteínas E4 de Adenovirus/genética , Adenovírus Humanos/enzimologia , Adenovírus Humanos/genética , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína/fisiologia , Pirofosfatases/química , Pirofosfatases/genética
11.
Virology ; 364(1): 36-44, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17367836

RESUMO

The human adenovirus E4orf6 and E1B55K proteins are part of an E3 ubiquitin ligase complex that degrades p53, Mre11 and probably other cellular polypeptides. Our group has demonstrated previously that this complex contains Cul5, Rbx1 and Elongin B and C and is formed through interactions of these cellular proteins with E4orf6. Although this E4orf6 complex is similar in many ways to the cellular SCF and VBC E3 ligase complexes, our previous work indicated that unlike all known Cullin-containing complexes, E4orf6 contains two functional BC-box motifs that permit interactions with Elongin B and C. Here we show that a third BC-box exists that also appears to be fully functional. In addition, we attempted to identify a region in E4orf6 responsible for the specific selection of Cul5, which we show herein by knocking down Cul5 protein levels, is essential for p53 degradation. One sequence within E4orf6 shares limited homology with the 'Cul5 box motif', a recently identified sequence found to be responsible for selection of Cul5 in some cellular Cullin-containing E3 ligase complexes; however, genetic analysis indicated that this motif is not involved in Cullin binding or p53 degradation. Thus E4orf6 appears to utilize a different mechanism for Cul5 selection, and, both in terms of interactions with Elongin B and C and with Cul5, assembles the E3 ligase complex in a highly novel fashion.


Assuntos
Proteínas E4 de Adenovirus/química , Adenovírus Humanos/enzimologia , Complexos Ubiquitina-Proteína Ligase/química , Ubiquitina-Proteína Ligases/química , Proteínas E4 de Adenovirus/genética , Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , DNA Viral/genética , Genes Virais , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos , Fases de Leitura Aberta , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
J Virol ; 80(6): 3042-9, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16501113

RESUMO

Nuclear domain 10 (ND10s), or promyelocytic leukemia protein (PML) nuclear bodies, are spherical nuclear structures that require PML proteins for their formation. Many viruses target these structures during infection. The E4 Orf3 protein of adenovirus 5 (Ad5) rearranges ND10s, causing PML to colocalize with Orf3 in nuclear tracks or fibers. There are six different PML isoforms (I to VI) present at ND10s, all sharing a common N terminus but with structural differences at their C termini. In this study, PML II was the only one of these six isoforms that was found to interact directly and specifically with Ad5 E4 Orf3 in vitro and in vivo; these results define a new Orf3 activity. Three of a series of 18 mutant Orf3 proteins were unable to interact with PML II; these were also unable to cause ND10 rearrangement. Moreover, in PML-null cells that contained neoformed ND10s comprising a single PML isoform, only ND10s formed of PML II were rearranged by Orf3. These data show that the interaction between Orf3 and PML II is necessary for ND10 rearrangement to occur. Finally, Orf3 was shown to self-associate in vitro. This activity was absent in mutant Orf3 proteins that were unable to form tracks and to bind PML II. Thus, Orf3 oligomerization may mediate the formation of nuclear tracks in vivo and may also be important for PML II binding.


Assuntos
Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/patogenicidade , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Estruturas do Núcleo Celular/patologia , Imunofluorescência , Humanos , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Proteína da Leucemia Promielocítica
13.
Cell Cycle ; 4(4): 597-603, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15876874

RESUMO

The p14ARF tumour suppressor regulates a series of cell cycle regulatory proteins to promote cell cycle arrest in response to abnormal hyperproliferative growth stimuli. p14ARF alterations are common in human cancers and, when inherited, confer susceptibility to cutaneous melanoma. We now propose that the mechanism of p14ARF action may involve the covalent modification of its binding partners with the small ubiquitin-related protein SUMO-1. In particular, we demonstrate that p14ARF interacts with the SUMO E2 conjugating enzyme, Ubc9 and enhances the sumoylation of its binding partners, hdm2, E2F-1, HIF-1alpha, TBP-1 and p120E4F. Furthermore, p14ARF-induced sumoylation is abrogated by a subset of melanoma-associated p14ARF mutations. These results provide a mechanism for p14ARF action through a common modification of diverse binding partners.


Assuntos
Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Proteína Supressora de Tumor p14ARF/fisiologia , Enzimas de Conjugação de Ubiquitina/química , Proteínas E4 de Adenovirus/química , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Cromatografia , Epitopos/química , Técnica Indireta de Fluorescência para Anticorpo , Genes p16 , Humanos , Ligases/química , Mutagênese , Mutação , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Proteínas Repressoras/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Transfecção , Proteína Supressora de Tumor p14ARF/metabolismo , Ubiquitina/química
14.
Mol Cell Biol ; 24(21): 9619-29, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15485928

RESUMO

Small DNA tumor viruses typically encode proteins that either inactivate or degrade p53. Human adenoviruses encode products, including E4orf6 and E1B55K, that do both. Each independently binds to p53 and inhibits its ability to activate gene expression; however, in combination they induce p53 degradation by the ubiquitin pathway. We have shown previously that p53 degradation relies on interactions of E4orf6 with the cellular proteins Cul5, Rbx1, and elongins B and C to form an E3 ligase similar to the SCF and VBC complexes. Here we show that, like other elongin BC-interacting proteins, including elongin A, von Hippel-Lindau protein, and Muf1, the interaction of E4orf6 is mediated by the BC-box motif; however, E4orf6 uniquely utilizes two BC-box motifs for degradation of p53 and another target, Mre11. In addition, our data suggest that the interaction of E1B55K with E4orf6 depends on the ability of E4orf6 to form the E3 ligase complex and that such complex formation may be required for all E4orf6-E1B55K functions.


Assuntos
Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas E1B de Adenovirus/química , Proteínas E1B de Adenovirus/genética , Proteínas E1B de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proteínas Culina/química , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elonguina , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Homóloga a MRE11 , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina/metabolismo
15.
Mol Cell Biol ; 23(24): 9104-16, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645522

RESUMO

The HMGA2 protein belongs to the HMGA family of architectural transcription factors, which play an important role in chromatin organization. HMGA proteins are overexpressed in several experimental and human tumors and have been implicated in the process of neoplastic transformation. Hmga2 knockout results in the pygmy phenotype in mice and in a decreased growth rate of embryonic fibroblasts, thus indicating a role for HMGA2 in cell proliferation. Here we show that HMGA2 associates with the E1A-regulated transcriptional repressor p120(E4F), interfering with p120(E4F) binding to the cyclin A promoter. Ectopic expression of HMGA2 results in the activation of the cyclin A promoter and induction of the endogenous cyclin A gene. In addition, chromatin immunoprecipitation experiments show that HMGA2 associates with the cyclin A promoter only when the gene is transcriptionally activated. These data identify the cyclin A gene as a cellular target for HMGA2 and, for the first time, suggest a mechanism for HMGA2-dependent cell cycle regulation.


Assuntos
Ciclina A/genética , Proteína HMGA2/metabolismo , Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/genética , Proteínas E4 de Adenovirus/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Células CHO , Ciclo Celular , Linhagem Celular , Transformação Celular Neoplásica , Cricetinae , DNA Complementar/genética , Proteína HMGA2/genética , Humanos , Camundongos , Modelos Biológicos , Células NIH 3T3 , Regiões Promotoras Genéticas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ativação Transcricional , Dedos de Zinco
16.
Oncogene ; 22(44): 6919-27, 2003 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-14534539

RESUMO

The adenovirus E4orf6 is a viral oncoprotein known to cooperate with the E1A gene product in transforming primary murine cells. It has been shown to inhibit the apoptotic activities of p53 and p73 through direct binding to these proteins. Here, we demonstrate that the adenovirus E4orf6 protein inhibits apoptosis mediated by BNIP3 and Bik, which are BH3-only proteins of the Bcl-2 family. This activity was not mediated by p53 and p73 because E4orf6 had the same effect on the apoptosis in Saos-2 cells that do not express p53-related genes. It was also ascertained that E4orf6 could change the mitochondrial localization of BNIP3 and Bik. A mutant lacking the nuclear export signal of E4orf6 failed to inhibit apoptosis and to translocate BNIP3 protein from the mitochondria. Moreover, it was also established that E4orf6 was able to interact with BNIP3 and Bik. In BNIP3 protein, the region required for the interaction included the transmembrane domain, which is required for the localization of BNIP3 to the mitochondria. These results suggest that E4orf6 is exported from the nucleus to the cytoplasm, enabling it to interact with BH3-only proteins, eventually leading to the inhibition of apoptotic activity.


Assuntos
Proteínas E4 de Adenovirus/metabolismo , Apoptose , Núcleo Celular/metabolismo , Proteínas Proto-Oncogênicas , Proteínas Supressoras de Tumor , Transporte Ativo do Núcleo Celular , Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Células COS , Células Cultivadas , Chlorocebus aethiops , Sequência Consenso , Sequência Conservada , Potenciais da Membrana , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Frações Subcelulares/metabolismo
17.
J Virol ; 76(3): 1475-87, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11773420

RESUMO

The E4orf6 protein of group C adenovirus is an oncoprotein that, in association with the E1B 55-kDa protein and by E1B-independent means, promotes virus replication. An arginine-faced amphipathic alpha-helix in the E4orf6 protein is required for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein and to enhance replication of an E4 deletion virus. In this study, E4orf6 protein variants containing arginine substitutions in the amphipathic alpha-helix were analyzed. Two of the six arginine residues within the alpha-helix, arginine-241 and arginine-243, were critical for directing nuclear localization of the E1B 55-kDa protein. The four remaining arginine residues appear to provide a net positive charge for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein. The molecular determinants of the arginine-faced amphipathic alpha-helix that were required for the functional interaction between the E4orf6 and E1B 55-kDa proteins seen in the transfected cell differed from those required to support a productive infection. Several E4orf6 protein variants with arginine-to-glutamic acid substitutions that failed to direct nuclear localization of the E1B 55-kDa protein restored replication of an E4 deletion virus. Additionally, a variant containing an arginine-to-alanine substitution at position 243 that directed nuclear localization of the E1B 55-kDa protein failed to enhance virus replication. These results indicate that the ability of the E4orf6 protein to relocalize the E1B 55-kDa protein to the nucleus can be separated from the ability of the E4orf6 protein to support a productive infection.


Assuntos
Proteínas E1B de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/fisiologia , Variação Genética , Replicação Viral/fisiologia , Proteínas E1B de Adenovirus/genética , Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/genética , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Sequência de Aminoácidos , Animais , Arginina/genética , Arginina/metabolismo , Núcleo Celular/metabolismo , Sequência Conservada , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Transfecção
18.
Tsitologiia ; 44(9): 830-8, 2002.
Artigo em Russo | MEDLINE | ID: mdl-12534236

RESUMO

The 11-kDa product of adenovirus early region 4 (E4) open reading frame (ORF) 3 participates in many processes occurring in infected cell, including post-transcriptional steps in late viral gene expression and viral DNA synthesis. In addition, E4ORF3 from adenovirus type 5 (Ad5) displays the features of a viral oncoprotein. It initiates focal transformation of primary rat cells in cooperation with Ad5 El genes and confers multiple additional transformed properties on E1-expressing cells. Biochemical details of E4ORF3 activities in these processes are not well understood. A large body of evidence indicates that its lytic and transforming functions are mediated by physical interactions with viral and cellular components involved in DNA transcription and repair, as well as by host cell factors that regulate the integrity of nuclear multiprotein complexes known as PML oncogenic domains (PODs). In this study we have employed the two-hybrid screen in yeast to isolate human cDNAs encoding for E4ORF3-interacting proteins. Among 15 positive clones five cDNAs encode for a cellular protein called AUP1. In vitro-binding assays demonstrated that AUP1 fused to glutathione S-transferase (GST) specifically binds to E4ORF3 from Ad5, Ad9 and Ad40 generated in a coupled transcription-translation system, whereas no interactions was observed with ORF3 from Ad12. Interestingly, GST-AUP1 interacted also specifically with in vitro translated Ad5 E1A proteins. Regions involved in the Ad5 E4ORF3/AUP1 interaction in vitro map to the central part of E4 protein and the carboxy-terminal region of AUP1, while E1A binds to an amino-terminal segment of the cell protein. Taken together, these studies indicate that AUP1 may represent a cellular target of both adenovirus E4ORF3 and E1A proteins. Additional studies are currently under way to confirm the significance of these interactions in living cells in vivo.


Assuntos
Proteínas E1A de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Proteínas de Transporte/metabolismo , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , DNA Complementar/biossíntese , DNA Viral/biossíntese , Glutationa Transferase/química , Humanos , Proteínas de Membrana , Fases de Leitura Aberta , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
19.
EMBO J ; 20(20): 5578-86, 2001 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11598001

RESUMO

Adenovirus type 9 (Ad9) is distinct among human adenoviruses because it elicits solely mammary tumors in animals and its primary oncogenic determinant is the E4 region-encoded ORF1 (E4-ORF1) protein. We report here that the PDZ domain-containing protein ZO-2, which is a candidate tumor suppressor protein, is a cellular target for tumorigenic Ad9 E4-ORF1 but not for non-tumorigenic wild-type E4-ORF1 proteins encoded by adenovirus types 5 and 12. Complex formation was mediated by the C-terminal PDZ domain-binding motif of Ad9 E4- ORF1 and the first PDZ domain of ZO-2, and in cells this interaction resulted in aberrant sequestration of ZO-2 within the cytoplasm. Furthermore, transformation-defective Ad9 E4-ORF1 mutants exhibited impaired binding to and sequestration of ZO-2 in cells, and overexpression of wild-type ZO-2, but not mutant ZO-2 lacking the second and third PDZ domains, interfered with Ad9 E4-ORF1-induced focus formation. Our results suggest that the select capacity to complex with the candidate tumor suppressor protein ZO-2 is key to defining the unique transforming and tumorigenic properties of the Ad9 E4-ORF1 oncoprotein.


Assuntos
Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/patogenicidade , Transformação Celular Viral/genética , Neoplasias Mamárias Experimentais/virologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/genética , Adenovírus Humanos/genética , Animais , Células COS , Compartimento Celular , Linhagem Celular , Chlorocebus aethiops , Citoplasma/metabolismo , Fibroblastos , Genes Supressores de Tumor , Humanos , Substâncias Macromoleculares , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Família Multigênica , Fases de Leitura Aberta , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/fisiologia , Transfecção , Proteína da Zônula de Oclusão-2
20.
Proteins ; 44(2): 97-109, 2001 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-11391772

RESUMO

To facilitate investigation of the molecular and biochemical functions of the adenovirus E4 Orf6 protein, we sought to derive three-dimensional structural information using computational methods, particularly threading and comparative protein modeling. The amino acid sequence of the protein was used for secondary structure and hidden Markov model (HMM) analyses, and for fold recognition by the ProCeryon program. Six alternative models were generated from the top-scoring folds identified by threading. These models were examined by 3D-1D analysis and evaluated in the light of available experimental evidence. The final model of the E4 protein derived from these and additional threading calculations was a chimera, with the tertiary structure of its C-terminal 226 residues derived from a TIM barrel template and a mainly alpha-nonbundle topology for its poorly conserved N-terminal 68 residues. To assess the accuracy of this model, additional threading calculations were performed with E4 Orf6 sequences altered as in previous experimental studies. The proposed structural model is consistent with the reported secondary structure of a functionally important C-terminal sequence and can account for the properties of proteins carrying alterations in functionally important sequences or of those that disrupt an unusual zinc-coordination motif.


Assuntos
Proteínas E4 de Adenovirus/química , Modelos Moleculares , Fases de Leitura Aberta , Proteínas E4 de Adenovirus/genética , Substituição de Aminoácidos/genética , Simulação por Computador , Humanos , Cadeias de Markov , Fases de Leitura Aberta/genética , Dobramento de Proteína , Estrutura Secundária de Proteína/genética , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...