Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.928
Filtrar
1.
Nano Lett ; 24(25): 7629-7636, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874796

RESUMO

Vaccination for cancers arising from human papillomavirus (HPV) infection holds immense potential, yet clinical success has been elusive. Herein, we describe vaccination studies involving spherical nucleic acids (SNAs) incorporating a CpG adjuvant and a peptide antigen (E711-19) from the HPV-E7 oncoprotein. Administering the vaccine to humanized mice induced immunity-dependent on the oligonucleotide anchor chemistry (cholesterol vs (C12)9). SNAs containing a (C12)9-anchor enhanced IFN-γ production >200-fold, doubled memory CD8+ T-cell formation, and delivered more than twice the amount of oligonucleotide to lymph nodes in vivo compared to a simple admixture. Importantly, the analogous construct with a weaker cholesterol anchor performed similar to admix. Moreover, (C12)9-SNAs activated 50% more dendritic cells and generated T-cells cytotoxic toward an HPV+ cancer cell line, UM-SCC-104, with near 2-fold greater efficiency. These observations highlight the pivotal role of structural design, and specifically oligonucleotide anchoring strength (which correlates with overall construct stability), in developing efficacious therapeutic vaccines.


Assuntos
Vacinas Anticâncer , Proteínas E7 de Papillomavirus , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Vacinas Anticâncer/administração & dosagem , Camundongos , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/química , Humanos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/imunologia , Ácidos Nucleicos/química , Ácidos Nucleicos/imunologia , DNA/química , DNA/imunologia
2.
Genes (Basel) ; 15(5)2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38790189

RESUMO

BACKGROUND: Cervical cancer is among the highest-ranking types of cancer worldwide, with human papillomavirus (HPV) as the agent driving the malignant process. One aspect of the infection's evolution is given by epigenetic modifications, mainly DNA methylation and chromatin alteration. These processes are guided by several chromatin remodeling complexes, including NuRD. The purpose of this study was to evaluate the genome-wide binding patterns of the NuRD complex components (MBD2 and MBD3) in the presence of active HPV16 E6 and E7 oncogenes and to determine the potential of identified genes through an experimental model to differentiate between cervical precursor lesions, with the aim of establishing their utility as biomarkers. METHODS: The experimental model was built using the CaSki cell line and shRNA for E6 and E7 HPV16 silencing, ChIP-seq, qRT-PCR, and Western blot analyses. Selected genes' expression was also assessed in patients. RESULTS: Several genes have been identified to exhibit altered transcriptional activity due to the influence of HPV16 E6/E7 viral oncogenes acting through the MBD2/MBD3 NuRD complex, linking them to viral infection and cervical oncogenesis. CONCLUSIONS: The impacted genes primarily play roles in governing gene transcription, mRNA processing, and regulation of translation. Understanding these mechanisms offers valuable insights into the process of HPV-induced oncogenesis.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Proteínas Repressoras , Neoplasias do Colo do Útero , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Montagem e Desmontagem da Cromatina/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidade , Carcinogênese/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Regulação Neoplásica da Expressão Gênica
3.
Mol Immunol ; 171: 56-65, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795685

RESUMO

The oncogenic protein E7 of the Human Papillomavirus (HPV) is constitutionally expressed in HPV-associated tumors and has the potential to be targeted in T cell receptor (TCR)-based immunotherapy. Adoptive transfer of TCR-engineered T (TCR-T) cells has shown promise as a therapeutic approach for HPV-induced tumors. This study aimed to identify HPV-E7 specific TCRs from HLA-A11:01 transgenic mice through single-cell sorting and sequencing facilitated by E789-97/HLA-A11:01 tetramer. Two dominant TCRs were identified, which exhibited specific binding to E789-97 presented in the context of HLA-A*11:01. TCR-T cells were prepared by infecting primary T cells with lentiviruses containing the TCR genes, and the two TCRs demonstrated substantial responsiveness and showed CD8+ dependent cytokine secretion characteristics. Further analyses of the cytokine profiles revealed that the two TCRs were capable of exerting polyfunctional responses upon specific stimulation. These findings suggest that the two TCRs represent promising candidates for the development of future therapeutic drugs targeting HPV-E7 in the context of HLA-A*11:01 for tumor immunotherapy.


Assuntos
Camundongos Transgênicos , Proteínas E7 de Papillomavirus , Receptores de Antígenos de Linfócitos T , Animais , Camundongos , Proteínas E7 de Papillomavirus/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/terapia , Camundongos Endogâmicos C57BL , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Neoplasias/imunologia , Feminino
4.
Front Biosci (Landmark Ed) ; 29(5): 189, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38812317

RESUMO

BACKGROUND: It has been demonstrated that exosomes derived from HPV-16 E7-over-expressiong non-small cell lung cancer (NSCLC) cells (E7 Exo) trigger increased levels of epidermal growth factor receptor (EGFR) and miR-381-3p. The purpose of this investigation was to examine the role of E7 Exo in NSCLC angiogenesis, and to analyze the contribution of exosomal EGFR and miR-381-3p to it. METHODS: The influence of E7 Exo on the proliferation and migration of human umbilical vein endothelial cells (HUVECs) was assessed using colony formation and transwell migration assays. Experiments on both cells and animal models were conducted to evaluate the angiogenic effect of E7 Exo treatment. The involvement of exosomal EGFR and miR-381-3p in NSCLC angiogenesis was further investigated through suppressing exosome release or EGFR activation, or by over-expressing miR-381-3p. RESULTS: Treatment with E7 Exo increased the proliferation, migration, and tube formation capacities of HUVECs, as well as angiogenesis in animal models. The suppression of exosome release or EGFR activation in NSCLC cells decreased the E7-induced enhancements in HUVEC migration and tube formation, and notably reduced vascular endothelial growth factor A (VEGFA) and Ang-1 levels. HUVECs that combined miR-381-3p mimic transfection and E7 Exo treatment exhibited a more significant tube-forming capacity than E7 Exo-treated HUVECs alone, but were reversed by the miR-381-3p inhibitor. CONCLUSION: The angiogenesis induced by HPV-16 E7 in NSCLC is mediated through exosomal EGFR and miR-381-3p.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Receptores ErbB , Exossomos , Células Endoteliais da Veia Umbilical Humana , Neoplasias Pulmonares , MicroRNAs , Neovascularização Patológica , Proteínas E7 de Papillomavirus , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Exossomos/metabolismo , Exossomos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/irrigação sanguínea , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Papillomavirus Humano 16/genética , Angiogênese
5.
BMC Genomics ; 25(1): 507, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778248

RESUMO

BACKGROUND: Alpha-papillomavirus 9 (α-9) is a member of the human papillomavirus (HPV) α genus, causing 75% invasive cervical cancers worldwide. The purpose of this study was to provide data for effective treatment of HPV-induced cervical lesions in Taizhou by analysing the genetic variation and antigenic epitopes of α-9 HPV E6 and E7. METHODS: Cervical exfoliated cells were collected for HPV genotyping. Positive samples of the α-9 HPV single type were selected for E6 and E7 gene sequencing. The obtained nucleotide sequences were translated into amino acid sequences (protein primary structure) using MEGA X, and positive selection sites of the amino acid sequences were evaluated using PAML. The secondary and tertiary structures of the E6 and E7 proteins were predicted using PSIPred, SWISS-MODEL, and PyMol. Potential T/B-cell epitopes were predicted by Industrial Engineering Database (IEDB). RESULTS: From 2012 to 2023, α-9 HPV accounted for 75.0% (7815/10423) of high-risk HPV-positive samples in Taizhou, both alone and in combination with other types. Among these, single-type-positive samples of α-9 HPV were selected, and the entire E6 and E7 genes were sequenced, including 298 HPV16, 149 HPV31, 185 HPV33, 123 HPV35, 325 HPV52, and 199 HPV58 samples. Compared with reference sequences, 34, 12, 10, 2, 17, and 17 nonsynonymous nucleotide mutations were detected in HPV16, 31, 33, 35, 52, and 58, respectively. Among all nonsynonymous nucleotide mutations, 19 positive selection sites were selected, which may have evolutionary significance in rendering α-9 HPV adaptive to its environment. Immunoinformatics predicted 57 potential linear and 59 conformational B-cell epitopes, many of which are also predicted as CTL epitopes. CONCLUSION: The present study provides almost comprehensive data on the genetic variations, phylogenetics, positive selection sites, and antigenic epitopes of α-9 HPV E6 and E7 in Taizhou, China, which will be helpful for local HPV therapeutic vaccine development.


Assuntos
Proteínas Oncogênicas Virais , Filogenia , China , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Feminino , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Alphapapillomavirus/genética , Alphapapillomavirus/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Epitopos/imunologia , Epitopos/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Infecções por Papillomavirus/virologia , Sequência de Aminoácidos
6.
Hum Vaccin Immunother ; 20(1): 2352908, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38780076

RESUMO

Cervical cancer, among the deadliest cancers affecting women globally, primarily arises from persistent infection with high-risk human papillomavirus (HPV). To effectively combat persistent infection and prevent the progression of precancerous lesions into malignancy, a therapeutic HPV vaccine is under development. This study utilized an immunoinformatics approach to predict epitopes of cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs) using the E6 and E7 oncoproteins of the HPV16 strain as target antigens. Subsequently, through meticulous selection of T-cell epitopes and other necessary elements, a multi-epitope vaccine was constructed, exhibiting good immunogenic, physicochemical, and structural characteristics. Furthermore, in silico simulations showed that the vaccine not only interacted well with toll-like receptors (TLR2/TLR3/TLR4), but also induced a strong innate and adaptive immune response characterized by elevated Th1-type cytokines, such as interferon-gamma (IFN-γ) and interleukin-2 (IL2). Additionally, our study investigated the effects of different immunization intervals on immune responses, aiming to optimize a time-efficient immunization program. In animal model experiments, the vaccine exhibited robust immunogenic, therapeutic, and prophylactic effects. Administered thrice, it consistently induced the expansion of specific CD4 and CD8 T cells, resulting in substantial cytokines release and increased proliferation of memory T cell subsets in splenic cells. Overall, our findings support the potential of this multi-epitope vaccine in combating HPV16 infection and signify its candidacy for future HPV vaccine development.


Through the stringent selection of T-cell epitopes and other necessary elements, a novel multi-epitope vaccine targeting HPV 16 E6 and E7 oncoproteins was constructed using an immunoinformatics approach.The vaccine designed can induce both cellular and humoral immune responses, encompassing all the required immunogenic, physicochemical, and structural characteristics for an ideal vaccine design. Moreover, it offers decent worldwide coverage.In animal studies, the vaccine demonstrated strong immune responses, including expansion of CD4 and CD8 T cells, cytokine release, and enhanced memory T cell proliferation, resulting in long-term anti-tumor effects, inhibition of tumor growth, and prolonged survival in tumor-bearing mice.The immunological evaluation of the designed vaccine suggests its potential as a novel vaccine candidate against HPV 16.


Assuntos
Epitopos de Linfócito T , Papillomavirus Humano 16 , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Vacinas de DNA , Feminino , Vacinas contra Papillomavirus/imunologia , Vacinas contra Papillomavirus/administração & dosagem , Papillomavirus Humano 16/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/imunologia , Epitopos de Linfócito T/imunologia , Animais , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/genética , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia , Proteínas E7 de Papillomavirus/imunologia , Camundongos , Humanos , Linfócitos T Citotóxicos/imunologia , Proteínas Repressoras/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Interferon gama/imunologia
7.
J Med Virol ; 96(6): e29685, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38783790

RESUMO

Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses causally associated with 5% of human cancers, comprising both anogenital and upper aerodigestive tract carcinomas. Despite the availability of prophylactic vaccines, HPVs continue to pose a significant global health challenge, primarily due to inadequate vaccine access and coverage. These viruses can establish persistent infections by evading both the intrinsic defenses of infected tissues and the extrinsic defenses provided by professional innate immune cells. Crucial for their evasion strategies is their unique intraepithelial life cycle, which effectively shields them from host detection. Thus, strategies aimed at reactivating the innate immune response within infected or transformed epithelial cells, particularly through the production of type I interferons (IFNs) and lymphocyte-recruiting chemokines, are considered viable solutions to counteract the adverse effects of persistent infections by these oncogenic viruses. This review focuses on the complex interplay between the high-risk HPV oncoproteins E6 and E7 and the innate immune response in epithelial cells and HPV-associated cancers. In particular, it details the molecular mechanisms by which E6 and E7 modulate the innate immune response, highlighting significant progress in our comprehension of these processes. It also examines forward-looking strategies that exploit the innate immune system to ameliorate existing anticancer therapies, thereby providing crucial insights into future therapeutic developments.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/imunologia , Papillomaviridae/imunologia , Papillomaviridae/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Células Epiteliais/virologia , Células Epiteliais/imunologia
8.
Clin Exp Pharmacol Physiol ; 51(6): e13864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679464

RESUMO

Human papillomavirus (HPV) infection has been reported to be associated with N6-methyladenosine (m6A) modification in cancers. However, the underlying mechanism by which m6A methylation participates in HPV-related cervical squamous cell carcinoma (CSCC) remains largely unclear. In this study, we observed that m6A regulators methyltransferase like protein (METTL14) and insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) were upregulated in HPV-positive CSCC tissues and cell lines, and their high expression predicted poor prognosis for HPV-infected CSCC patients. Cellular functional experiments verified that HPV16 oncogenes E6/E7 upregulated the expression of METTL14 and IGF2BP3 to promote cell proliferation and epithelial mesenchymal transition of CSCC cells. Next, we found that E6/E7 stabilized fascin actin-bundling protein 1 (FSCN1) mRNA and elevated FSCN1 expression in CSCC cells through upregulating METTL14/IGF2BP3-mediated m6A modification, and FSCN1 expression was also validated to be positively associated with worse outcomes of HPV-positive CSCC patients. Finally, HPV16-positive CSCC cell lines SiHa and CaSki were transfected with knockdown vector for E6/E7 or METTL14/IGF2BP3 and overexpressing vector for FSCN1, and functional verification experiments were performed through using MTT assay, flow cytometry, wound healing assay and tumour formation assay. Results indicated that knockdown of E6/E7 or METTL14/IGF2BP3 suppressed cell proliferation, migration and tumorigenesis, and accelerated cell apoptosis of HPV-positive CSCC cells. Their tumour-suppressive effects were abolished through overexpressing FSCN1. Overall, HPV E6/E7 advanced CSCC development through upregulating METTL14/IGF2BP3-mediated FSCN1 m6A modification.


Assuntos
Carcinoma de Células Escamosas , Papillomavirus Humano 16 , Metiltransferases , Proteínas dos Microfilamentos , Infecções por Papillomavirus , Proteínas de Ligação a RNA , Neoplasias do Colo do Útero , Feminino , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Carcinoma de Células Escamosas/virologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Proteínas Repressoras , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo
9.
BMC Cancer ; 24(1): 442, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600473

RESUMO

Head and neck cancers, particularly oropharyngeal cancers (OPC), have been increasingly associated with human papillomavirus (HPV) infections, specifically HPV16. The current methods for HPV16 detection primarily rely on p16 staining or PCR techniques. However, it is important to note the limitations of conventional PCR, as the presence of viral DNA does not always indicate an ongoing viral infection. Moreover, these tests heavily rely on the availability of tissue samples, which can present challenges in certain situations. In this study, we developed a RT-qPCR biplex approach to detect HPV16 oncogenes E6 and E7 RNA in saliva samples from OPC patients. Salivary supernatant was used as the liquid biopsy source. We successfully obtained RNA from salivary supernatant, preserving its integrity as indicated by the detection of several housekeeping genes. Our biplex approach accurately detected E6 and E7 RNA in HPV16-positive cell lines, tissues, and finally in OPC salivary samples. Importantly, the assay specifically targeted HPV16 and not HPV18. This biplexing technique allowed for reduced sample input without compromising specificity. In summary, our approach demonstrates the potential to detect viable HPV16 in saliva from OPC patients. Since the assay measures HPV16 RNA, it provides insights into the transcriptional activity of the virus. This could guide clinical decision-making and treatment planning for individuals with HPV-related OPC.


Assuntos
Proteínas Oncogênicas Virais , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Papillomavirus Humano 16/genética , Saliva/metabolismo , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/complicações , Proteínas Oncogênicas Virais/genética , Neoplasias Orofaríngeas/patologia , RNA , Reação em Cadeia da Polimerase , Proteínas E7 de Papillomavirus/genética
10.
J Virol ; 98(5): e0192523, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38624230

RESUMO

Recurrent respiratory papillomatosis (RRP) is a rare benign tumor caused mainly by the infection of the respiratory tract epithelial cells by the human papillomavirus (HPV) type 6/11. However, the specific mechanisms underlying the inhibition of the host's innate immune response by HPV remain unclear. For this purpose, we employed single-cell RNA sequencing to analyze the states of various immune cells in RRP samples post-HPV infection and utilized a cellular model of HPV infection to elucidate the mechanisms by which HPV evades the innate immune system in RRP. The results revealed distinct immune cell heterogeneity in RRP and demonstrated that HPV11 E7 can inhibit the phosphorylation of the stimulator of interferon genes protein, thereby circumventing the body's antiviral response. In vitro co-culture experiments demonstrated that stimulation of macrophages to produce interferon-beta induced the death of HPV-infected epithelial cells, also reducing HPV viral levels. In summary, our study preliminarily identifies the potential mechanisms by which HPV evades the host's antiviral immune response, as well as the latent antiviral functions exhibited by activated macrophages. This research serves as an initial exploration of antiviral immune evasion in RRP, laying a solid foundation for investigating immunotherapeutic approaches for the disease.IMPORTANCESurgical tumor reduction is the most common treatment for recurrent respiratory papillomatosis (RRP). One of the characteristics of RRP is its persistent recurrence, and multiple surgeries are usually required to control the symptoms. Recently, some adjuvant therapies have shown effectiveness, but none of them can completely clear human papillomavirus (HPV) infection, and thus, a localized antiviral immune response is significant for disease control; after all, HPV infection is limited to the epithelium. Inhibition of interferon-beta (IFN-ß) secretion by HPV11 E7 viral proteins in epithelial cells by affecting stimulator of interferon genes phosphorylation may account for the persistence of low-risk HPV replication in the RRP. Moreover, suppression of the IFN-I pathway in RRP cell types might provide clues regarding the hyporeactive function of local immune cells. However, activation of macrophage groups to produce IFN-ß can still destroy HPV-infected cells.


Assuntos
Papillomavirus Humano 11 , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Infecções Respiratórias , Adulto , Feminino , Humanos , Masculino , Células Epiteliais/virologia , Células Epiteliais/imunologia , Papillomavirus Humano 11/genética , Papillomavirus Humano 11/imunologia , Evasão da Resposta Imune , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/imunologia , Interferon beta/genética , Macrófagos/imunologia , Macrófagos/virologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Infecções Respiratórias/virologia , Infecções Respiratórias/imunologia
11.
J Immunother Cancer ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631709

RESUMO

BACKGROUND: Engineered arenavirus vectors have recently been developed to leverage the body's immune system in the fight against chronic viral infections and cancer. Vectors based on Pichinde virus (artPICV) and lymphocytic choriomeningitis virus (artLCMV) encoding a non-oncogenic fusion protein of human papillomavirus (HPV)16 E6 and E7 are currently being tested in patients with HPV16+ cancer, showing a favorable safety and tolerability profile and unprecedented expansion of tumor-specific CD8+ T cells. Although the strong antigen-specific immune response elicited by artLCMV vectors has been demonstrated in several preclinical models, PICV-based vectors are much less characterized. METHODS: To advance our understanding of the immunobiology of these two vectors, we analyzed and compared their individual properties in preclinical in vivo and in vitro systems. Immunogenicity and antitumor effect of intratumoral or intravenous administration of both vectors, as well as combination with NKG2A blockade, were evaluated in naïve or TC-1 mouse tumor models. Flow cytometry, Nanostring, and histology analysis were performed to characterize the tumor microenvironment (TME) and T-cell infiltrate following treatment. RESULTS: Despite being phylogenetically distant, both vectors shared many properties, including preferential infection and activation of professional antigen-presenting cells, and induction of potent tumor-specific CD8+ T-cell responses. Systemic as well as localized treatment induced a proinflammatory shift in the TME, promoting the infiltration of inducible T cell costimulator (ICOS)+CD8+ T cells capable of mediating tumor regression and prolonging survival in a TC-1 mouse tumor model. Still, there was evidence of immunosuppression built-up over time, and increased expression of H2-T23 (ligand for NKG2A T cell inhibitory receptor) following treatment was identified as a potential contributing factor. NKG2A blockade improved the antitumor efficacy of artARENA vectors, suggesting a promising new combination approach. This demonstrates how detailed characterization of arenavirus vector-induced immune responses and TME modulation can inform novel combination therapies. CONCLUSIONS: The artARENA platform represents a strong therapeutic vaccine approach for the treatment of cancer. The induced antitumor immune response builds the backbone for novel combination therapies, which warrant further investigation.


Assuntos
Arenavirus , Neoplasias , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Proteínas E7 de Papillomavirus , Arenavirus/metabolismo , Neoplasias/terapia , Modelos Animais de Doenças , Terapia de Imunossupressão , Microambiente Tumoral
12.
J Transl Med ; 22(1): 378, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649894

RESUMO

BACKGROUND: Bacteria-based cancer therapy have demonstrated innovative strategies to combat tumors. Recent studies have focused on gram-negative bacterial outer membrane vesicles (OMVs) as a novel cancer immunotherapy strategy due to its intrinsic properties as a versatile carrier. METHOD: Here, we developed an Human Papillomavirus (HPV)-associated E7 antigen displaying Salmonella-derived OMV vaccine, utilizing a Poly(L-arginine) cell penetrating peptide (CPP) to enhance HPV16 E7 (aa49-67) H-2 Db and OMV affinity, termed SOMV-9RE7. RESULTS: Due to OMV's intrinsic immunogenic properties, SOMV-9RE7 effectively activates adaptive immunity through antigen-presenting cell uptake and antigen cross-presentation. Vaccination of engineered OMVs shows immediate tumor suppression and recruitment of infiltrating tumor-reactive immune cells. CONCLUSION: The simplicity of the arginine coating strategy boasts the versatility of immuno-stimulating OMVs that can be broadly implemented to personalized bacterial immunotherapeutic applications.


Assuntos
Arginina , Vacinas Anticâncer , Proteínas E7 de Papillomavirus , Proteínas E7 de Papillomavirus/imunologia , Vacinas Anticâncer/imunologia , Humanos , Animais , Membrana Externa Bacteriana/imunologia , Camundongos Endogâmicos C57BL , Feminino
13.
Immunology ; 172(3): 375-391, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38471664

RESUMO

Persistent human papillomavirus (HPV) infection is associated with multiple malignancies. Developing therapeutic vaccines to eliminate HPV-infected and malignant cells holds significant value. In this study, we introduced a lipid nanoparticle encapsulated mRNA vaccine expressing tHA-mE7-mE6. Mutations were introduced into E6 and E7 of HPV to eliminate their tumourigenicity. A truncated influenza haemagglutinin protein (tHA), which binds to the CD209 receptor on the surface of dendritic cells (DCs), was fused with mE7-mE6 in order to allow efficient uptake of antigen by antigen presenting cells. The tHA-mE7-mE6 (mRNA) showed higher therapeutic efficacy than mE7-mE6 (mRNA) in an E6 and E7+ tumour model. The treatment resulted in complete tumour regression and prevented tumour formation. Strong CD8+ T-cell immune response was induced, contributing to preventing and curing of E6 and E7+ tumour. Antigen-specific CD8+ T were found in spleens, peripheral blood and in tumours. In addition, the tumour infiltration of DC and NK cells were increased post therapy. In conclusion, this study described a therapeutic mRNA vaccine inducing strong anti-tumour immunity in peripheral and in tumour microenvironment, holding promising potential to treat HPV-induced cancer and to prevent cancer recurrence.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de mRNA , Animais , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Proteínas E7 de Papillomavirus/imunologia , Vacinas Anticâncer/imunologia , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/genética , Vacinas contra Papillomavirus/imunologia , Células Dendríticas/imunologia , Humanos , Camundongos , Feminino , Linfócitos T CD8-Positivos/imunologia , Camundongos Endogâmicos C57BL , Nanopartículas , Células Apresentadoras de Antígenos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Células Matadoras Naturais/imunologia , Proteínas Repressoras/imunologia , Proteínas Repressoras/genética , Neoplasias/terapia , Neoplasias/imunologia , RNA Mensageiro/genética , Linhagem Celular Tumoral , Lipossomos
14.
Virology ; 594: 110058, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38520797

RESUMO

HPV16, with typical mutations that differ in geographical distribution and carcinogenic potency, has implications for cervical cancer screening, clinical diagnosis, and treatment. DNASTAR and MEGA were used to identify HPV16 variants and construct a phylogenetic tree. The most prevalent HPV genotypes were HPV16 (63.9%), HPV18 (26.7%), and other HPV (6.9%). HPV16 alterations were found in all E6, E7, and L1 genes, including 15 missense and 18 synonymous mutations. Missense mutations include R10G, Q14H, D25E, H78Y, L83V (E6); M29V, R35K, L78R, L95P (E7); H73Y, T176 N, N178T, T317P, T386S, L472F/I (L1). HPV16 sublineages include A1 (17.2%), A2 (0.9%), A3 (56.0%), A4 (19.0%), D1 (4.3%), and D3 (2.6%). Although several mutations in the oncoproteins E6, E7, and L1 have been detected, mutations known to be associated with cervical cancer risk, such as D25E and L83V, occur at a relatively low frequency. This suggests that HPV16 mutations are associated with cervical cancer through a complicated mechanism.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/epidemiologia , Papillomavirus Humano 16/genética , Papillomavirus Humano , Variação Genética , Proteínas Oncogênicas Virais/genética , Vietnã/epidemiologia , Filogenia , Detecção Precoce de Câncer/efeitos adversos , Proteínas E7 de Papillomavirus/genética
15.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514186

RESUMO

Human papillomavirus (HPV) infections account for several human cancers. There is an urgent need to develop therapeutic vaccines for targeting preexisting high-risk HPV (such as HPV 16 and 18) infections and lesions, which are insensitive to preventative vaccines. In this study, we developed a lipid nanoparticle-formulated mRNA-based HPV therapeutic vaccine (mHTV), mHTV-02, targeting the E6/E7 of HPV16 and HPV-18. mHTV-02 dramatically induced antigen-specific cellular immune response and robust memory T-cell immunity in mice, besides significant CD8+ T-cell infiltration and cytotoxicity in TC-1 tumors expressing HPV E6/E7, resulting in tumor regression and prolonged survival in mice. Moreover, evaluation of routes of administration found that intramuscular or intratumoral injection of mHTV-02 displayed significant therapeutic effects. In contrast, intravenous delivery of the vaccine barely showed any benefit in reducing tumor size or improving animal survival. These data together support mHTV-02 as a candidate therapeutic mRNA vaccine via specific administration routes for treating malignancies caused by HPV16 or HPV18 infections.


Assuntos
Neoplasias , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Camundongos , Animais , Humanos , Vacinas de mRNA , Infecções por Papillomavirus/prevenção & controle , Proteínas E7 de Papillomavirus/genética , Neoplasias/terapia , Vacinas contra Papillomavirus/genética
16.
Tumour Virus Res ; 17: 200279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485055

RESUMO

Multiple cellular pathways are affected by HPV E6 and E7 oncoproteins, including endocytic and cellular trafficking. HPV-16 E7 can target the adaptor protein (AP) complex, which contains proteins important during endocytosis transport. To further investigate the role of HPV E7 during this process, we analysed the expression of cell surface proteins in NIKS cells expressing HPV-16 E7. We show that different cell surface proteins are regulated by HPV-16 E7 via interaction with AP2. We observed that the expression of MET and CD109 membrane protein seems to be upregulated in cells expressing E7. Moreover, the interaction of MET and CD109 with AP2 proteins is disrupted by HPV-16 E7. In addition, in the absence of HPV-16 E7, there is a downregulation of the cell membrane expression of MET and CD109 in HPV-positive cell lines. These results expand our knowledge of the functions of E7 and open new potential cellular pathways affected by this oncoprotein.


Assuntos
Antígenos CD , Papillomavirus Humano 16 , Proteínas E7 de Papillomavirus , Proteínas Proto-Oncogênicas c-met , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Proteínas E7 de Papillomavirus/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Membrana Celular/metabolismo , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Endocitose , Proteínas Ligadas por GPI
17.
Exp Cell Res ; 437(2): 114018, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556072

RESUMO

The altered protein expression of inverted CCAAT box-binding protein of 90 kDa/ubiquitin-like with PHD and RING finger domains 1 (ICBP90/UHRF1), and Np95-like ring finger protein (NIRF)/UHRF2, which belong to the ubiquitin-like with PHD and RING finger domains (UHRF) family, is linked to tumor malignancy and the progression of various cancers. In this study, we analyzed the UHRF family expression in cervical cancers, and it's regulation by human papillomavirus (HPV). Western blotting was performed to analyze protein expression in cervical cancer cell lines. Immunohistochemical analysis were used to investigate the expression of UHRF family and MIB-1 in cervical cancer tissues. Transfection were done for analyze the relationship between UHRF family and HPVs. We showed that NIRF expression was decreased and ICBP90 expression was increased in cervical cancers compared to normal counterparts. Western blotting also showed that NIRF expression was quite low levels, but ICBP90 was high in human cervical cancer cell lines. Interestingly, ICBP90 was up regulated by high risk type HPV16 E6 and E7, but not low-risk type HPV11. On the other hand, NIRF was down regulated by high risk type HPV16 E6 but not by E7. Low risk type HPV11 E6 did not affect the NIRF expression at all. We propose that ICBP90 overexpression, and reduced NIRF expression, found in cervical cancers, is an important event of a cervical carcinogenesis, and especially ICBP90 may offer a proliferating marker and therapeutic target for treating uterine cervical cancers.


Assuntos
Proteínas Oncogênicas Virais , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/patologia , Papillomavirus Humano 16/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Ubiquitinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo
18.
Clin Epigenetics ; 16(1): 40, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461243

RESUMO

BACKGROUND: MAL (T-lymphocyte maturation-associated protein) is highly downregulated in most cancers, including cervical cancer (CaCx), attributable to promoter hypermethylation. Long noncoding RNA genes (lncGs) play pivotal roles in CaCx pathogenesis, by interacting with human papillomavirus (HPV)-encoded oncoproteins, and epigenetically regulating coding gene expression. Hence, we attempted to decipher the impact and underlying mechanisms of MAL downregulation in HPV16-related CaCx pathogenesis, by interrogating the interactive roles of MAL antisense lncRNA AC103563.8, E7 oncoprotein and PRC2 complex protein, EZH2. RESULTS: Employing strand-specific RNA-sequencing, we confirmed the downregulated expression of MAL in association with poor overall survival of CaCx patients bearing HPV16, along with its antisense long noncoding RNA (lncRNA) AC103563.8. The strength of positive correlation between MAL and AC103563.8 was significantly high among patients compared to normal individuals. While downregulated expression of MAL was significantly associated with poor overall survival of CaCx patients bearing HPV16, AC103563.8 did not reveal any such association. We confirmed the enrichment of chromatin suppressive mark, H3K27me3 at MAL promoter, using ChIP-qPCR in HPV16-positive SiHa cells. Subsequent E7 knockdown in such cells significantly increased MAL expression, concomitant with decreased EZH2 expression and H3K27me3 marks at MAL promoter. In silico analysis revealed that both E7 and EZH2 bear the potential of interacting with AC103563.8, at the same binding domain. RNA immunoprecipitation with anti-EZH2 and anti-E7 antibodies, respectively, and subsequent quantitative PCR analysis in E7-silenced and unperturbed SiHa cells confirmed the interaction of AC103563.8 with EZH2 and E7, respectively. Apparently, AC103563.8 seems to preclude EZH2 and bind with E7, failing to block EZH2 function in patients. Thereby, enhanced EZH2 expression in the presence of E7 could potentially inactivate the MAL promoter through H3K27me3 marks, corroborating our previous results of MAL expression downregulation in patients. CONCLUSION: AC103563.8-E7-EZH2 axis, therefore, appears to crucially regulate the expression of MAL, through chromatin inactivation in HPV16-CaCx pathogenesis, warranting therapeutic strategy development.


Assuntos
Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Proteínas Oncogênicas Virais , RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , Cromatina/metabolismo , Metilação de DNA , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Papillomavirus Humano 16/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/patologia , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo
19.
Mol Cancer ; 23(1): 46, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459592

RESUMO

Nucleic acid vaccines have shown promising potency and efficacy for cancer treatment with robust and specific T-cell responses. Improving the immunogenicity of delivered antigens helps to extend therapeutic efficacy and reduce dose-dependent toxicity. Here, we systematically evaluated chemokine-fused HPV16 E6/E7 antigen to improve the cellular and humoral immune responses induced by nucleotide vaccines in vivo. We found that fusion with different chemokines shifted the nature of the immune response against the antigens. Although a number of chemokines were able to amplify specific CD8 + T-cell or humoral response alone or simultaneously. CCL11 was identified as the most potent chemokine in improving immunogenicity, promoting specific CD8 + T-cell stemness and generating tumor rejection. Fusing CCL11 with E6/E7 antigen as a therapeutic DNA vaccine significantly improved treatment effectiveness and caused eradication of established large tumors in 92% tumor-bearing mice (n = 25). Fusion antigens with CCL11 expanded the TCR diversity of specific T cells and induced the infiltration of activated specific T cells, neutrophils, macrophages and dendritic cells (DCs) into the tumor, which created a comprehensive immune microenvironment lethal to tumor. Combination of the DNA vaccine with anti-CTLA4 treatment further enhanced the therapeutic effect. In addition, CCL11 could also be used for mRNA vaccine design. To summarize, CCL11 might be a potent T cell enhancer against cancer.


Assuntos
Vacinas Anticâncer , Neoplasias , Proteínas Oncogênicas Virais , Vacinas contra Papillomavirus , Vacinas de DNA , Animais , Camundongos , Vacinas Baseadas em Ácido Nucleico , Vacinas de DNA/genética , Vacinas contra Papillomavirus/genética , Neoplasias/genética , Neoplasias/terapia , Linfócitos T CD8-Positivos , Proteínas E7 de Papillomavirus/genética , Proteínas Oncogênicas Virais/genética , Camundongos Endogâmicos C57BL , Microambiente Tumoral
20.
Biol Cell ; 116(4): e202300072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514439

RESUMO

BACKGROUND INFORMATION: The precise etiology of breast cancer is not completely understood, although women with BRCA1 gene mutations have a significantly increased risk of developing the disease. In addition, sporadic breast cancer is frequently associated with decreased BRCA1 gene expression. Growing evidence of Human papillomaviruses (HPVs) infections in breast tumors has raised the possibility of the involvement of HPVs in the pathogenesis of breast cancer. We investigated whether the effects of HPV oncoproteins E6 and E7 were influenced by the expression levels of BRCA1. HPV16E6E7 (prototype or E6D25E/E7N29S Asian variant type) were stably expressed in MDA-MB231 breast cancer cells, wild type for BRCA1, or with BRCA1 knocked down. RESULTS: Expression of HPV16E6E7 oncogenes did not affect BRCA1 levels and the abundance of HPV16E6E7 was not altered by BRCA1 knockdown. BRCA1 levels did not alter HPV16E6E7-dependent degradation of G1-S cell cycle proteins p53 and pRb. However, we found that the expression of G2-M cell cycle protein cyclin B1 enhanced by HPV16E6E7 was impacted by BRCA1 levels. Especially, we found the correlation between BRCA1 and cyclin B1 expression and this was also confirmed in breast cancer samples from a Thai cohort. We further demonstrated that the combination of HPV oncoproteins and low levels of BRCA1 protein appears to enhance proliferation and invasion. Transactivation activities of HPV16E6E7 on genes regulating cell proliferation and invasion (TGF-ß and vimentin) were significantly increased in BRCA1-deficient cells. CONCLUSIONS: Our results indicate that a deficiency of BRCA1 promotes the transactivation activity of HPV16E6E7 leading to increase of cell proliferation and invasion. SIGNIFICANCE: HPV infection appears to have the potential to enhance the aggressiveness of breast cancers, especially those deficient in BRCA1.


Assuntos
Neoplasias da Mama , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Feminino , Humanos , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Ciclina B1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Infecções por Papillomavirus/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...