Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
J Med Virol ; 96(6): e29685, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38783790

RESUMO

Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses causally associated with 5% of human cancers, comprising both anogenital and upper aerodigestive tract carcinomas. Despite the availability of prophylactic vaccines, HPVs continue to pose a significant global health challenge, primarily due to inadequate vaccine access and coverage. These viruses can establish persistent infections by evading both the intrinsic defenses of infected tissues and the extrinsic defenses provided by professional innate immune cells. Crucial for their evasion strategies is their unique intraepithelial life cycle, which effectively shields them from host detection. Thus, strategies aimed at reactivating the innate immune response within infected or transformed epithelial cells, particularly through the production of type I interferons (IFNs) and lymphocyte-recruiting chemokines, are considered viable solutions to counteract the adverse effects of persistent infections by these oncogenic viruses. This review focuses on the complex interplay between the high-risk HPV oncoproteins E6 and E7 and the innate immune response in epithelial cells and HPV-associated cancers. In particular, it details the molecular mechanisms by which E6 and E7 modulate the innate immune response, highlighting significant progress in our comprehension of these processes. It also examines forward-looking strategies that exploit the innate immune system to ameliorate existing anticancer therapies, thereby providing crucial insights into future therapeutic developments.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/imunologia , Papillomaviridae/imunologia , Papillomaviridae/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Células Epiteliais/virologia , Células Epiteliais/imunologia
2.
BMC Genomics ; 25(1): 507, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778248

RESUMO

BACKGROUND: Alpha-papillomavirus 9 (α-9) is a member of the human papillomavirus (HPV) α genus, causing 75% invasive cervical cancers worldwide. The purpose of this study was to provide data for effective treatment of HPV-induced cervical lesions in Taizhou by analysing the genetic variation and antigenic epitopes of α-9 HPV E6 and E7. METHODS: Cervical exfoliated cells were collected for HPV genotyping. Positive samples of the α-9 HPV single type were selected for E6 and E7 gene sequencing. The obtained nucleotide sequences were translated into amino acid sequences (protein primary structure) using MEGA X, and positive selection sites of the amino acid sequences were evaluated using PAML. The secondary and tertiary structures of the E6 and E7 proteins were predicted using PSIPred, SWISS-MODEL, and PyMol. Potential T/B-cell epitopes were predicted by Industrial Engineering Database (IEDB). RESULTS: From 2012 to 2023, α-9 HPV accounted for 75.0% (7815/10423) of high-risk HPV-positive samples in Taizhou, both alone and in combination with other types. Among these, single-type-positive samples of α-9 HPV were selected, and the entire E6 and E7 genes were sequenced, including 298 HPV16, 149 HPV31, 185 HPV33, 123 HPV35, 325 HPV52, and 199 HPV58 samples. Compared with reference sequences, 34, 12, 10, 2, 17, and 17 nonsynonymous nucleotide mutations were detected in HPV16, 31, 33, 35, 52, and 58, respectively. Among all nonsynonymous nucleotide mutations, 19 positive selection sites were selected, which may have evolutionary significance in rendering α-9 HPV adaptive to its environment. Immunoinformatics predicted 57 potential linear and 59 conformational B-cell epitopes, many of which are also predicted as CTL epitopes. CONCLUSION: The present study provides almost comprehensive data on the genetic variations, phylogenetics, positive selection sites, and antigenic epitopes of α-9 HPV E6 and E7 in Taizhou, China, which will be helpful for local HPV therapeutic vaccine development.


Assuntos
Proteínas Oncogênicas Virais , Filogenia , China , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Feminino , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Alphapapillomavirus/genética , Alphapapillomavirus/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Epitopos/imunologia , Epitopos/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Infecções por Papillomavirus/virologia , Sequência de Aminoácidos
3.
Mol Immunol ; 171: 56-65, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795685

RESUMO

The oncogenic protein E7 of the Human Papillomavirus (HPV) is constitutionally expressed in HPV-associated tumors and has the potential to be targeted in T cell receptor (TCR)-based immunotherapy. Adoptive transfer of TCR-engineered T (TCR-T) cells has shown promise as a therapeutic approach for HPV-induced tumors. This study aimed to identify HPV-E7 specific TCRs from HLA-A11:01 transgenic mice through single-cell sorting and sequencing facilitated by E789-97/HLA-A11:01 tetramer. Two dominant TCRs were identified, which exhibited specific binding to E789-97 presented in the context of HLA-A*11:01. TCR-T cells were prepared by infecting primary T cells with lentiviruses containing the TCR genes, and the two TCRs demonstrated substantial responsiveness and showed CD8+ dependent cytokine secretion characteristics. Further analyses of the cytokine profiles revealed that the two TCRs were capable of exerting polyfunctional responses upon specific stimulation. These findings suggest that the two TCRs represent promising candidates for the development of future therapeutic drugs targeting HPV-E7 in the context of HLA-A*11:01 for tumor immunotherapy.


Assuntos
Camundongos Transgênicos , Proteínas E7 de Papillomavirus , Receptores de Antígenos de Linfócitos T , Animais , Camundongos , Proteínas E7 de Papillomavirus/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/terapia , Camundongos Endogâmicos C57BL , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Neoplasias/imunologia , Feminino
4.
Hum Vaccin Immunother ; 20(1): 2352908, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38780076

RESUMO

Cervical cancer, among the deadliest cancers affecting women globally, primarily arises from persistent infection with high-risk human papillomavirus (HPV). To effectively combat persistent infection and prevent the progression of precancerous lesions into malignancy, a therapeutic HPV vaccine is under development. This study utilized an immunoinformatics approach to predict epitopes of cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs) using the E6 and E7 oncoproteins of the HPV16 strain as target antigens. Subsequently, through meticulous selection of T-cell epitopes and other necessary elements, a multi-epitope vaccine was constructed, exhibiting good immunogenic, physicochemical, and structural characteristics. Furthermore, in silico simulations showed that the vaccine not only interacted well with toll-like receptors (TLR2/TLR3/TLR4), but also induced a strong innate and adaptive immune response characterized by elevated Th1-type cytokines, such as interferon-gamma (IFN-γ) and interleukin-2 (IL2). Additionally, our study investigated the effects of different immunization intervals on immune responses, aiming to optimize a time-efficient immunization program. In animal model experiments, the vaccine exhibited robust immunogenic, therapeutic, and prophylactic effects. Administered thrice, it consistently induced the expansion of specific CD4 and CD8 T cells, resulting in substantial cytokines release and increased proliferation of memory T cell subsets in splenic cells. Overall, our findings support the potential of this multi-epitope vaccine in combating HPV16 infection and signify its candidacy for future HPV vaccine development.


Through the stringent selection of T-cell epitopes and other necessary elements, a novel multi-epitope vaccine targeting HPV 16 E6 and E7 oncoproteins was constructed using an immunoinformatics approach.The vaccine designed can induce both cellular and humoral immune responses, encompassing all the required immunogenic, physicochemical, and structural characteristics for an ideal vaccine design. Moreover, it offers decent worldwide coverage.In animal studies, the vaccine demonstrated strong immune responses, including expansion of CD4 and CD8 T cells, cytokine release, and enhanced memory T cell proliferation, resulting in long-term anti-tumor effects, inhibition of tumor growth, and prolonged survival in tumor-bearing mice.The immunological evaluation of the designed vaccine suggests its potential as a novel vaccine candidate against HPV 16.


Assuntos
Epitopos de Linfócito T , Papillomavirus Humano 16 , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Vacinas de DNA , Feminino , Vacinas contra Papillomavirus/imunologia , Vacinas contra Papillomavirus/administração & dosagem , Papillomavirus Humano 16/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/imunologia , Epitopos de Linfócito T/imunologia , Animais , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/genética , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia , Proteínas E7 de Papillomavirus/imunologia , Camundongos , Humanos , Linfócitos T Citotóxicos/imunologia , Proteínas Repressoras/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Interferon gama/imunologia
5.
J Transl Med ; 22(1): 378, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649894

RESUMO

BACKGROUND: Bacteria-based cancer therapy have demonstrated innovative strategies to combat tumors. Recent studies have focused on gram-negative bacterial outer membrane vesicles (OMVs) as a novel cancer immunotherapy strategy due to its intrinsic properties as a versatile carrier. METHOD: Here, we developed an Human Papillomavirus (HPV)-associated E7 antigen displaying Salmonella-derived OMV vaccine, utilizing a Poly(L-arginine) cell penetrating peptide (CPP) to enhance HPV16 E7 (aa49-67) H-2 Db and OMV affinity, termed SOMV-9RE7. RESULTS: Due to OMV's intrinsic immunogenic properties, SOMV-9RE7 effectively activates adaptive immunity through antigen-presenting cell uptake and antigen cross-presentation. Vaccination of engineered OMVs shows immediate tumor suppression and recruitment of infiltrating tumor-reactive immune cells. CONCLUSION: The simplicity of the arginine coating strategy boasts the versatility of immuno-stimulating OMVs that can be broadly implemented to personalized bacterial immunotherapeutic applications.


Assuntos
Arginina , Vacinas Anticâncer , Proteínas E7 de Papillomavirus , Proteínas E7 de Papillomavirus/imunologia , Vacinas Anticâncer/imunologia , Humanos , Animais , Membrana Externa Bacteriana/imunologia , Camundongos Endogâmicos C57BL , Feminino
6.
J Virol ; 98(5): e0192523, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38624230

RESUMO

Recurrent respiratory papillomatosis (RRP) is a rare benign tumor caused mainly by the infection of the respiratory tract epithelial cells by the human papillomavirus (HPV) type 6/11. However, the specific mechanisms underlying the inhibition of the host's innate immune response by HPV remain unclear. For this purpose, we employed single-cell RNA sequencing to analyze the states of various immune cells in RRP samples post-HPV infection and utilized a cellular model of HPV infection to elucidate the mechanisms by which HPV evades the innate immune system in RRP. The results revealed distinct immune cell heterogeneity in RRP and demonstrated that HPV11 E7 can inhibit the phosphorylation of the stimulator of interferon genes protein, thereby circumventing the body's antiviral response. In vitro co-culture experiments demonstrated that stimulation of macrophages to produce interferon-beta induced the death of HPV-infected epithelial cells, also reducing HPV viral levels. In summary, our study preliminarily identifies the potential mechanisms by which HPV evades the host's antiviral immune response, as well as the latent antiviral functions exhibited by activated macrophages. This research serves as an initial exploration of antiviral immune evasion in RRP, laying a solid foundation for investigating immunotherapeutic approaches for the disease.IMPORTANCESurgical tumor reduction is the most common treatment for recurrent respiratory papillomatosis (RRP). One of the characteristics of RRP is its persistent recurrence, and multiple surgeries are usually required to control the symptoms. Recently, some adjuvant therapies have shown effectiveness, but none of them can completely clear human papillomavirus (HPV) infection, and thus, a localized antiviral immune response is significant for disease control; after all, HPV infection is limited to the epithelium. Inhibition of interferon-beta (IFN-ß) secretion by HPV11 E7 viral proteins in epithelial cells by affecting stimulator of interferon genes phosphorylation may account for the persistence of low-risk HPV replication in the RRP. Moreover, suppression of the IFN-I pathway in RRP cell types might provide clues regarding the hyporeactive function of local immune cells. However, activation of macrophage groups to produce IFN-ß can still destroy HPV-infected cells.


Assuntos
Papillomavirus Humano 11 , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Infecções Respiratórias , Adulto , Feminino , Humanos , Masculino , Células Epiteliais/virologia , Células Epiteliais/imunologia , Papillomavirus Humano 11/genética , Papillomavirus Humano 11/imunologia , Evasão da Resposta Imune , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/imunologia , Interferon beta/genética , Macrófagos/imunologia , Macrófagos/virologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Infecções Respiratórias/virologia , Infecções Respiratórias/imunologia
7.
Immunology ; 172(3): 375-391, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38471664

RESUMO

Persistent human papillomavirus (HPV) infection is associated with multiple malignancies. Developing therapeutic vaccines to eliminate HPV-infected and malignant cells holds significant value. In this study, we introduced a lipid nanoparticle encapsulated mRNA vaccine expressing tHA-mE7-mE6. Mutations were introduced into E6 and E7 of HPV to eliminate their tumourigenicity. A truncated influenza haemagglutinin protein (tHA), which binds to the CD209 receptor on the surface of dendritic cells (DCs), was fused with mE7-mE6 in order to allow efficient uptake of antigen by antigen presenting cells. The tHA-mE7-mE6 (mRNA) showed higher therapeutic efficacy than mE7-mE6 (mRNA) in an E6 and E7+ tumour model. The treatment resulted in complete tumour regression and prevented tumour formation. Strong CD8+ T-cell immune response was induced, contributing to preventing and curing of E6 and E7+ tumour. Antigen-specific CD8+ T were found in spleens, peripheral blood and in tumours. In addition, the tumour infiltration of DC and NK cells were increased post therapy. In conclusion, this study described a therapeutic mRNA vaccine inducing strong anti-tumour immunity in peripheral and in tumour microenvironment, holding promising potential to treat HPV-induced cancer and to prevent cancer recurrence.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de mRNA , Animais , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Proteínas E7 de Papillomavirus/imunologia , Vacinas Anticâncer/imunologia , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/genética , Vacinas contra Papillomavirus/imunologia , Células Dendríticas/imunologia , Humanos , Camundongos , Feminino , Linfócitos T CD8-Positivos/imunologia , Camundongos Endogâmicos C57BL , Nanopartículas , Células Apresentadoras de Antígenos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Células Matadoras Naturais/imunologia , Proteínas Repressoras/imunologia , Proteínas Repressoras/genética , Neoplasias/terapia , Neoplasias/imunologia , RNA Mensageiro/genética , Linhagem Celular Tumoral , Lipossomos
8.
Cancer Immunol Res ; 12(5): 530-543, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363296

RESUMO

Tools for genome-wide rapid identification of peptide-major histocompatibility complex targets of T-cell receptors (TCR) are not yet universally available. We present a new antigen screening method, the T-synapse (Tsyn) reporter system, which includes antigen-presenting cells (APC) with a Fas-inducible NF-κB reporter and T cells with a nuclear factor of activated T cells (NFAT) reporter. To functionally screen for target antigens from a cDNA library, productively interacting T cell-APC aggregates were detected by dual-reporter activity and enriched by flow sorting followed by antigen identification quantified by deep sequencing (Tsyn-seq). When applied to a previously characterized TCR specific for the E7 antigen derived from human papillomavirus type 16 (HPV16), Tsyn-seq successfully enriched the correct cognate antigen from a cDNA library derived from an HPV16-positive cervical cancer cell line. Tsyn-seq provides a method for rapidly identifying antigens recognized by TCRs of interest from a tumor cDNA library. See related Spotlight by Makani and Joglekar, p. 515.


Assuntos
Sinapses Imunológicas , Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 16/genética , Sinapses Imunológicas/imunologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/imunologia , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia
9.
Virology ; 567: 15-25, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942562

RESUMO

HPV68 is a common HR-HPV, its persistent infection is closely related with the occurrence of cervical cancer. In this study, 2939 (27.60%, 2939/10650) positive samples were detected, and 174 (5.92%, 174/2939) were HPV68. 150 HPV68 E6-E7 were successful sequenced, 4 non-synonymous mutations were detected in E6, and E7 were 12. N133S non-synonymous mutations of HPV 68 E6 and C67G, T68 A/M of HPV68 E7 are E6, E7 positive selection sites, they all located in the key domains and major motifs of E6/E7 protein, the above amino-acid substitutions changed the protein structure, disturbed the interaction with other protein or cellular factors and make a difference in epitopes affinity, may affect the pathogenicity and adaptability of HPV68 to the environment. The enrichment of HPV68 data is of great significance for understanding the inherent geographical and biological differences of HPV68 in China.


Assuntos
Alphapapillomavirus/genética , Mutação , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/epidemiologia , Alphapapillomavirus/química , Alphapapillomavirus/classificação , Alphapapillomavirus/imunologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Linfócitos B/imunologia , Linfócitos B/virologia , Sítios de Ligação , Colo do Útero/imunologia , Colo do Útero/virologia , China/epidemiologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Feminino , Genótipo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Modelos Moleculares , Tipagem Molecular , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Filogenia , Prevalência , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Linfócitos T/imunologia , Linfócitos T/virologia
10.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502053

RESUMO

In recent decades, recombinant antibodies against specific antigens have shown great promise for the therapy of infectious diseases and cancer. Human papillomaviruses (HPVs) are involved in the development of around 5% of all human cancers and HPV16 is the high-risk genotype with the highest prevalence worldwide, playing a dominant role in all HPV-associated cancers. Here, we describe the main biological activities of the HPV16 E6, E7, and E5 oncoproteins, which are involved in the subversion of important regulatory pathways directly associated with all known hallmarks of cancer. We then review the state of art of the recombinant antibodies targeted to HPV oncoproteins developed so far in different formats, and outline their mechanisms of action. We describe the advantages of a possible antibody-based therapy against the HPV-associated lesions and discuss the critical issue of delivery to tumour cells, which must be addressed in order to achieve the desired translation of the antibodies from the laboratory to the clinic.


Assuntos
Anticorpos Antivirais/uso terapêutico , Neoplasias/tratamento farmacológico , Anticorpos de Domínio Único/uso terapêutico , Animais , Anticorpos Antivirais/imunologia , Humanos , Neoplasias/virologia , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Proteínas Repressoras/imunologia , Anticorpos de Domínio Único/imunologia
11.
Life Sci ; 285: 119945, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34516991

RESUMO

AIMS: Human papillomavirus (HPV) L1, L2 and E7 proteins were used as target antigens for development of preventive and therapeutic vaccines. Moreover, linkage of antigens to heat shock proteins (HSPs) could enhance the potency of vaccines. Curcumin and nanocurcumin compounds were suggested as the chemopreventive and chemotherapeutic agents against cancer. In this study, two multiepitope DNA and peptide-based vaccine constructs (L1-L2-E7 and HSP70-L1-L2-E7) were used along with curcumin and nanocurcumin to evaluate immune responses, and protective/therapeutic effects in tumor mouse model. MAIN METHODS: At first, the multiepitope L1-L2-E7 and HSP70-L1-L2-E7 fusion genes were subcloned in eukaryotic and prokaryotic expression vectors. The recombinant multiepitope peptides were generated in E. coli strain. Then, the cytotoxic effects of curcumin and nanocurcumin were evaluated on HEK-293 T non-cancerous and C3 cancerous cells. Finally, mice vaccination was performed using different regimens. Curcumin and nanocurcumin compounds were administered alone or along with different vaccine constructs. KEY FINDINGS: Our data indicated that the use of nanocurcumin along with the multiepitope HSP70-L1-L2-E7 vaccine construct could completely protect mice against HPV-related C3 tumor cells, and eradicate tumors in a therapeutic test. Furthermore, nanocurcumin showed higher protection than curcumin alone. Generally, curcumin and nanocurcumin compounds could reduce tumor growth synergistically with the multiepitope vaccine constructs, but they did not influence the immune responses in different regimens. SIGNIFICANCE: These data demonstrated that the designed multiepitope vaccine constructs along with curcumin and nanocurcumin can be used as a promising method for HPV vaccine development.


Assuntos
Antineoplásicos/farmacologia , Vacinas Anticâncer/imunologia , Proteínas do Capsídeo/imunologia , Curcumina/farmacologia , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/imunologia , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/imunologia , Animais , Antineoplásicos/administração & dosagem , Vacinas Anticâncer/genética , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/genética , Clonagem Molecular , Curcumina/administração & dosagem , Citocinas/metabolismo , Epitopos de Linfócito T/administração & dosagem , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Escherichia coli , Feminino , Vetores Genéticos , Células HEK293 , Proteínas de Choque Térmico HSP70/administração & dosagem , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/imunologia , Humanos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Proteínas Oncogênicas Virais/administração & dosagem , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/administração & dosagem , Proteínas E7 de Papillomavirus/genética , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Neoplasias do Colo do Útero/terapia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
12.
Int J Biol Sci ; 17(11): 2944-2956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345218

RESUMO

The generation of successful anticancer vaccines relies on the ability to induce efficient and long-lasting immune responses to tumor antigens. In this scenario, dendritic cells (DCs) are essential cellular components in the generation of antitumor immune responses. Thus, delivery of tumor antigens to specific DC populations represents a promising approach to enhance the efficiency of antitumor immunotherapies. In the present study, we employed antibody-antigen conjugates targeting a specific DC C-type lectin receptor. For that purpose, we genetically fused the anti-DEC205 monoclonal antibody to the type 16 human papillomavirus (HPV-16) E7 oncoprotein to create a therapeutic vaccine to treat HPV-associated tumors in syngeneic mouse tumor models. The therapeutic efficacy of the αDEC205-E7 mAb was investigated in three distinct anatomical tumor models (subcutaneous, lingual and intravaginal). The immunization regimen comprised two doses of the αDEC205-E7 mAb coadministered with a DC maturation stimulus (Polyinosinic:polycytidylic acid, poly (I:C)) as an adjuvant. The combined immunotherapy produced robust antitumor effects on both the subcutaneous and orthotopic tumor models, stimulating rapid tumor regression and long-term survival. These outcomes were related to the activation of tumor antigen-specific CD8+ T cells in both systemic compartments and lymphoid tissues. The αDEC205-E7 antibody plus poly (I:C) administration induced long-lasting immunity and controlled tumor relapses. Our results highlight that the delivery of HPV tumor antigens to DCs, particularly via the DEC205 surface receptor, is a promising therapeutic approach, providing new opportunities for the development of alternative immunotherapies for patients with HPV-associated tumors at different anatomical sites.


Assuntos
Antígenos CD/imunologia , Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Lectinas Tipo C/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Neoplasias Experimentais/prevenção & controle , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Receptores de Superfície Celular/imunologia , Adjuvantes Imunológicos , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Feminino , Humanos , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/virologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Poli I-C/administração & dosagem
13.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341131

RESUMO

BACKGROUND: Usual vulvar intraepithelial neoplasia (uVIN) is a premalignancy caused by persistent infection with high-risk types of human papillomavirus (HPV), mainly type 16. Even though different treatment modalities are available (eg, surgical excision, laser evaporation or topical application of imiquimod), these treatments can be mutilating, patients often have recurrences and 2%-8% of patients develop vulvar carcinoma. Therefore, immunotherapeutic strategies targeting the pivotal oncogenic HPV proteins E6 and E7 are being explored to repress carcinogenesis. METHOD: In this phase I/II clinical trial, 14 patients with HPV16+ uVIN were treated with a genetically enhanced DNA vaccine targeting E6 and E7. Safety, clinical responses and immunogenicity were assessed. Patients received four intradermal HPV-16 E6/E7 DNA tattoo vaccinations, with a 2-week interval, alternating between both upper legs. Biopsies of the uVIN lesions were taken at screening and +3 months after last vaccination. Digital photography of the vulva was performed at every check-up until 12 months of follow-up for measurement of the lesions. HPV16-specific T-cell responses were measured in blood over time in ex vivo reactivity assays. RESULTS: Vaccinations were well tolerated, although one grade 3 suspected unexpected serious adverse reaction was observed. Clinical responses were observed in 6/14 (43%) patients, with 2 complete responses and 4 partial responses (PR). 5/14 patients showed HPV-specific T-cell responses in blood, measured in ex vivo reactivity assays. Notably, all five patients with HPV-specific T-cell responses had a clinical response. CONCLUSIONS: Our results indicate that HPV-16 E6/E7 DNA tattoo vaccination is a biologically active and safe treatment strategy in patients with uVIN, and suggest that T-cell reactivity against the HPV oncogenes is associated with clinical benefit. TRIAL REGISTRATION NUMBER: NTR4607.


Assuntos
Vacinas Anticâncer/uso terapêutico , Papillomavirus Humano 16/imunologia , Proteínas E7 de Papillomavirus/imunologia , Vacinas de DNA/uso terapêutico , Neoplasias Vulvares/imunologia , Neoplasias Vulvares/terapia , Adulto , Idoso , Vacinas Anticâncer/farmacologia , Feminino , Humanos , Pessoa de Meia-Idade , Vacinas de DNA/farmacologia
14.
J Immunother ; 44(8): 292-306, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432728

RESUMO

Next-generation T-cell therapies will likely continue to utilize T-cell receptors (TCRs) and chimeric antigen receptors (CARs) because each receptor type has advantages. TCRs often possess exceptional properties even when tested unmodified from patients' T cells. CARs are generally less sensitive, possibly because their ligand-binding domains are grafted from antibodies selected for binding affinity or avidity and not broadly optimized for a functional response. Because of the disconnect between binding and function among these receptor types, the ultimate potential of CARs optimized for sensitivity and selectivity is not clear. Here, we focus on a thoroughly studied immuno-oncology target, the HLA-A*02/HPV-E629-38 complex, and show that CARs can be optimized by a combination of high-throughput binding screens and low-throughput functional assays to have comparable activity to clinical TCRs in acute assays in vitro. These results provide a case study for the challenges and opportunities of optimizing high-performing CARs, especially in the context of targets utilized naturally by TCRs.


Assuntos
Imunoterapia Adotiva , Neoplasias/terapia , Infecções por Papillomavirus/terapia , Receptores de Antígenos Quiméricos/imunologia , Linhagem Celular , Proteínas de Fluorescência Verde , Antígeno HLA-A2/imunologia , Humanos , Interferon gama/imunologia , Luciferases de Vaga-Lume , Neoplasias/imunologia , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Peptídeos/imunologia , Proteínas Repressoras/imunologia , Anticorpos de Cadeia Única/imunologia
15.
Sci Rep ; 11(1): 13404, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183739

RESUMO

Cervical cancer continues to impose a heavy burden worldwide, and human papilloma virus (HPV) infection, especially persistent infection with type 16 (HPV-16), is known to be the primary etiological factor. Therapeutic vaccines are urgently needed because prophylactic vaccines are ineffective at clearing pre-existing HPV infection. Here, two recombinant Listeria strains (LMΔ-E6E7 & LIΔ-E6E7) with deletions of the actA and plcB genes, expressing the shuffled HPV-16 E6E7 protein were constructed. The strains were delivered into the spleen and liver by intravenous inoculation, induced antigen-specific cellular immunity and were eliminated completely from the internal organs several days later. Intravenously treating with single strain for three times, or with both strains alternately for three times significantly reduced the tumor size and prolonged the survival time of model mice. Combination immunotherapy with two strains seemed more effective than immunotherapy with single strain in that it enhanced the survival of the mice, and the LMΔ-E6E7-prime-LIΔ-E6E7-boost strategy showed significant stronger efficacy than single treatment with the LIΔ-E6E7 strain. The antitumor effect of this treatment might due to its ability to increase the proportion of CD8+ T cells and reduce the proportion of T regulatory cells (Tregs) in the intratumoral milieu. This is the first report regarding Listeria ivanovii-based therapeutic vaccine candidate against cervical cancer. Most importantly we are the first to confirm that combination therapy with two different recombinant Listeria strains has a more satisfactory antitumor effect than administration of a single strain. Thus, we propose a novel prime-boost treatment strategy.


Assuntos
Papillomavirus Humano 16/imunologia , Listeria/imunologia , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Proteínas Repressoras/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Vacinas Anticâncer/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular/imunologia , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/virologia , Vacinação/métodos
16.
Sci Rep ; 11(1): 12397, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117331

RESUMO

Cervical cancer, caused by human papillomavirus (HPV), is the fourth most common type of cancer among women worldwide. While HPV prophylactic vaccines are available, they have no therapeutic effects and do not clear up existing infections. This study aims to design a therapeutic vaccine against cervical cancer using reverse vaccinology. In this study, the E6 and E7 oncoproteins from HPV16 were chosen as the target antigens for epitope prediction. Cytotoxic T lymphocytes (CTL) and helper T lymphocytes (HTL) epitopes were predicted, and the best epitopes were selected based on antigenicity, allergenicity, and toxicity. The final vaccine construct was composed of the selected epitopes, along with the appropriate adjuvant and linkers. The multi-epitope vaccine was evaluated in terms of physicochemical properties, antigenicity, and allergenicity. The tertiary structure of the vaccine construct was predicted. Furthermore, several analyses were also carried out, including molecular docking, molecular dynamics (MD) simulation, and in silico cloning of the vaccine construct. The results showed that the final proposed vaccine could be considered an effective therapeutic vaccine for HPV; however, in vitro and in vivo experiments are required to validate the efficacy of this vaccine candidate.


Assuntos
Vacinas Anticâncer/imunologia , Epitopos/imunologia , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/prevenção & controle , Vacinas Anticâncer/química , Biologia Computacional , Epitopos/química , Feminino , Humanos , Imunogenicidade da Vacina , Simulação de Acoplamento Molecular , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/imunologia , Vacinas contra Papillomavirus/química , Proteínas Repressoras/química , Proteínas Repressoras/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia
17.
Cancer Med ; 10(12): 4075-4086, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949155

RESUMO

Human papillomavirus (HPV) is recognized as a major cause of oropharyngeal cancer (OPC) in Western countries. Less is known regarding its contribution to the OPC occurring in Asia. The current study aimed to investigate the association between antibody responses to HPV16 E7 and head and neck cancer (HNC) risk in a hospital-based case-control study conducted in Taiwan with 693 HNC cases and 1,035 controls. A positive association was observed between seropositivity to HPV16 E7 and OPC risk, whereas no significant association was found in the non-OPC cases. The increased OPC risk associated with seropositivity to HPV16 E7 was more significant among nonbetel quid or noncigarette users. Seropositivity to HPV16 E7 showed moderate agreement with P16 expression in OPC. OPC patients that were seropositive to HPV16 E7 or p16 positive were more highly educated and less likely to use alcohol, betel quids, and cigarettes compared to HPV16 E7 seronegative or p16 negative OPC patients. Furthermore, patients with p16 positive OPC were more likely to be women compared to patients with p16 negative OPC, likely owing to the low prevalence of alcohol, betel quid, and cigarette users among women. Overall, this study suggested that similar to Western countries, HPV may also be an important risk factor of OPC in Taiwan. With the declining consumption of betel quids and cigarettes in Taiwan, a higher percentage of OPC cases in Taiwan will be attributed to HPV in the future. Public health measures, including HPV vaccination, need to be implemented to prevent the occurrence of HPV-positive OPC.


Assuntos
Anticorpos Antivirais/sangue , Papillomavirus Humano 16/imunologia , Neoplasias Orofaríngeas/virologia , Proteínas E7 de Papillomavirus/imunologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Areca/efeitos adversos , Estudos de Casos e Controles , Feminino , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Orofaríngeas/imunologia , Fatores de Risco , Fatores Sexuais , Fumar/efeitos adversos , Fumar/epidemiologia , Taiwan
18.
Nat Commun ; 12(1): 2637, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976146

RESUMO

Checkpoint inhibitors and T-cell therapies have highlighted the critical role of T cells in anti-cancer immunity. However, limitations associated with these treatments drive the need for alternative approaches. Here, we engineer red blood cells into artificial antigen-presenting cells (aAPCs) presenting a peptide bound to the major histocompatibility complex I, the costimulatory ligand 4-1BBL, and interleukin (IL)-12. This leads to robust, antigen-specific T-cell expansion, memory formation, additional immune activation, tumor control, and antigen spreading in tumor models in vivo. The presence of 4-1BBL and IL-12 induces minimal toxicities due to restriction to the vasculature and spleen. The allogeneic aAPC, RTX-321, comprised of human leukocyte antigen-A*02:01 presenting the human papilloma virus (HPV) peptide HPV16 E711-19, 4-1BBL, and IL-12 on the surface, activates HPV-specific T cells and promotes effector function in vitro. Thus, RTX-321 is a potential 'off-the-shelf' in vivo cellular immunotherapy for treating HPV + cancers, including cervical and head/neck cancers.


Assuntos
Células Apresentadoras de Antígenos/transplante , Engenharia Celular/métodos , Eritrócitos/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Ligante 4-1BB/genética , Ligante 4-1BB/imunologia , Ligante 4-1BB/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Modelos Animais de Doenças , Eritrócitos/metabolismo , Feminino , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-12/metabolismo , Ativação Linfocitária , Neoplasias/imunologia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/metabolismo , Cultura Primária de Células , Linfócitos T/imunologia , Linfócitos T/transplante , Transplante Homólogo/métodos
19.
J Drug Target ; 29(10): 1102-1110, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33926356

RESUMO

It has been previously reported that targeting and retaining antigens in the endoplasmic reticulum (ER) can induce an ER stress response. In this study, we evaluated the antitumor effect of E7 antigen fused to an ERresident protein, cyclooxygenase-2, which possesses a 19-aminoacid cassette that directs it to the endoplasmic reticulum-associated protein degradation (ERAD) pathway. The featured DNA constructs, COX2-E7 and COX2-E7ΔERAD, with a deletion in the 19-aminoacid cassette, were used to evaluate the importance of this sequence. In vitro analysis of protein expression and ER localisation were verified. We observed that both constructs induced an ER stress response. This finding correlated with the antitumor effect in mice injected with TC-1 cells and treated with different DNA constructs by biolistic vaccination. Immunisation with COX2-E7 and COX2-E7ΔERAD DNA constructs induced a significant antitumor effect in mice, without a significant difference between them, although the COX2-E7 construct induced a significant E7-specific immune response. These results demonstrate that targeting the E7 antigen to the ERAD pathway promotes a potent therapeutic antitumor effect. This strategy could be useful for the design of other antigen-specific therapies.


Assuntos
Vacinas Anticâncer/administração & dosagem , Ciclo-Oxigenase 2/química , Estresse do Retículo Endoplasmático/imunologia , Proteínas E7 de Papillomavirus/imunologia , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/administração & dosagem , Retículo Endoplasmático/imunologia , Degradação Associada com o Retículo Endoplasmático/imunologia , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/prevenção & controle , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia
20.
J Immunother Cancer ; 9(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33879600

RESUMO

BACKGROUND: High serum interleukin (IL-6) levels may cause resistance to immunotherapy by modulation of myeloid cells in the tumor microenvironment. IL-6 signaling blockade is tested in cancer, but as this inflammatory cytokine has pleiotropic effects, this treatment is not always effective. METHODS: IL-6 and IL-6R blockade was applied in an IL-6-mediated immunotherapy-resistant TC-1 tumor model (TC-1.IL-6) and immunotherapy-sensitive TC-1. CONTROL: Effects on therapeutic vaccination-induced tumor regression, recurrence and survival as well on T cells and myeloid cells in the tumor microenvironment were studied. The effects of IL-6 signaling in macrophages under therapy conditions were studied in Il6rafl/fl×LysMcre+ mice. RESULTS: Our therapeutic vaccination protocol elicits a strong tumor-specific CD8+ T-cell response, leading to enhanced intratumoral T-cell infiltration and recruitment of tumoricidal macrophages. Blockade of IL-6 signaling exacerbated tumor outgrowth, reflected by fewer complete regressions and more recurrences after therapeutic vaccination, especially in TC-1.IL-6 tumor-bearing mice. Early IL-6 signaling blockade partly inhibited the development of the vaccine-induced CD8+ T-cell response. However, the main mechanism was the malfunction of macrophages during therapy-induced tumor regression. Therapy efficacy was impaired in Il6rafl/fl×LysMcre+ but not cre-negative control mice, while no differences in the vaccine-induced CD8+ T-cell response were found between these mice. IL-6 signaling blockade resulted in decreased expression of suppressor of cytokine signaling 3, essential for effective M1-type function in macrophages, and increased expression of the phagocytic checkpoint molecule signal-regulatory protein alpha by macrophages. CONCLUSION: IL-6 signaling is critical for macrophage function under circumstances of immunotherapy-induced tumor tissue destruction, in line with the acute inflammatory functions of IL-6 signaling described in infections.


Assuntos
Vacinas Anticâncer/administração & dosagem , Interleucina-6/metabolismo , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/administração & dosagem , Proteínas E7 de Papillomavirus/administração & dosagem , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Injeções Subcutâneas , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/metabolismo , Oligodesoxirribonucleotídeos/imunologia , Proteínas E7 de Papillomavirus/imunologia , Fenótipo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...