Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 108(6): 1964-1972, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30684538

RESUMO

Deamidation is an important degradation pathway for proteins. Estimating deamidation propensities is essential for predicting their long-term stability. However, predicting deamidation rates in folded proteins is challenging because higher-order structure has a significant and unpredictable effect on deamidation. Here, we investigated the correlation between amide hydrogen exchange (HX) and deamidation to assess the potential of using hydrogen exchange-mass spectrometry (HX-MS) to rapidly predict deamidation propensity. Maltose-binding protein and a structurally less stable mutant, W169G, were stored in the dark at pH 7.0 at 23 ± 2°C for 1 year. Deamidation at each asparagine site was measured using liquid chromatography-mass spectrometry after trypsin digestion. Deamidation rates at each deamidation site were determined based on first-order kinetics. HX rates at the deamidation sites were determined before storage using the shortest peptic peptide containing each site using conventional bottom-up HX-MS at pD 7.0 at 25°C. We observed a power law correlation between deamidation half-life and HX half-life for the NG sites with measurable kinetics. For NA sites, slow deamidation was only observed at 2 sites located in rapidly exchanging regions. Our findings demonstrate that HX-MS can be used to reliably and rapidly rank deamidation propensity in folded proteins.


Assuntos
Amidas/química , Asparagina/química , Espectrometria de Massa com Troca Hidrogênio-Deutério , Proteínas Ligantes de Maltose/química , Modelos Químicos , Química Farmacêutica , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Estudos de Viabilidade , Meia-Vida , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/farmacocinética , Estabilidade Proteica , Reprodutibilidade dos Testes
2.
Biochemistry ; 51(5): 974-85, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22239664

RESUMO

We report the characterization of the diheme cytochrome c peroxidase (CcP) from Shewanella oneidensis (So) using UV-visible absorbance, electron paramagnetic resonance spectroscopy, and Michaelis-Menten kinetics. While sequence alignment with other bacterial diheme cytochrome c peroxidases suggests that So CcP may be active in the as-isolated state, we find that So CcP requires reductive activation for full activity, similar to the case for the canonical Pseudomonas type of bacterial CcP enzyme. Peroxide turnover initiated with oxidized So CcP shows a distinct lag phase, which we interpret as reductive activation in situ. A simple kinetic model is sufficient to recapitulate the lag-phase behavior of the progress curves and separate the contributions of reductive activation and peroxide turnover. The rates of catalysis and activation differ between MBP fusion and tag-free So CcP and also depend on the identity of the electron donor. Combined with Michaelis-Menten analysis, these data suggest that So CcP can accommodate electron donor binding in several possible orientations and that the presence of the MBP tag affects the availability of certain binding sites. To further investigate the structural basis of reductive activation in So CcP, we introduced mutations into two different regions of the protein that have been suggested to be important for reductive activation in homologous bacterial CcPs. Mutations in a flexible loop region neighboring the low-potential heme significantly increased the activation rate, confirming the importance of flexible loop regions of the protein in converting the inactive, as-isolated enzyme into the activated form.


Assuntos
Citocromo-c Peroxidase/química , Oxirredutases/química , Shewanella/enzimologia , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/farmacocinética , Ativação Enzimática/genética , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/farmacocinética , Oxirredução , Oxirredutases/genética , Oxirredutases/farmacocinética , Shewanella/genética
3.
Biochemistry ; 50(48): 10530-9, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22050600

RESUMO

A full characterization of the thermodynamic forces underlying ligand-associated conformational changes in proteins is essential for understanding and manipulating diverse biological processes, including transport, signaling, and enzymatic activity. Recent experiments on the maltose binding protein (MBP) have provided valuable data about the different conformational states implicated in the ligand recognition process; however, a complete picture of the accessible pathways and the associated changes in free energy remains elusive. Here we describe results from advanced accelerated molecular dynamics (aMD) simulations, coupled with adaptively biased force (ABF) and thermodynamic integration (TI) free energy methods. The combination of approaches allows us to track the ligand recognition process on the microsecond time scale and provides a detailed characterization of the protein's dynamic and the relative energy of stable states. We find that an induced-fit (IF) mechanism is most likely and that a mechanism involving both a conformational selection (CS) step and an IF step is also possible. The complete recognition process is best viewed as a "Pac Man" type action where the ligand is initially localized to one domain and naturally occurring hinge-bending vibrations in the protein are able to assist the recognition process by increasing the chances of a favorable encounter with side chains on the other domain, leading to a population shift. This interpretation is consistent with experiments and provides new insight into the complex recognition mechanism. The methods employed here are able to describe IF and CS effects and provide formally rigorous means of computing free energy changes. As such, they are superior to conventional MD and flexible docking alone and hold great promise for future development and applications to drug discovery.


Assuntos
Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/fisiologia , Conformação Proteica , Sítios de Ligação/fisiologia , Simulação por Computador , Ligantes , Proteínas Ligantes de Maltose/farmacocinética , Ligação Proteica/fisiologia , Termodinâmica , Trissacarídeos/química , Trissacarídeos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...