Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.017
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000390

RESUMO

The motor protein prestin, found in the inner ear's outer hair cells (OHCs), is responsible for high sensitivity and sharp frequency selectivity in mammalian hearing. Some studies have suggested that prestin could be a serological biomarker for cochlear damage, as OHCs are highly vulnerable to damage from various sources. However, the reported data are inconsistent and lack appropriate negative controls. To investigate whether prestin can be used as a serological biomarker for cochlear damage or stress, we measured prestin quantities in the bloodstreams of mice using ELISA kits from different companies. Wildtype (WT) mice were exposed to different ototoxic treatments, including noise exposure and ototoxic reagents that rapidly kill OHCs. Prestin-knockout (KO) mice were used as a negative control. Our data show that some ELISA kits were not able to detect prestin specifically. The ELISA kit that could detect the prestin protein from cochlear homogenates failed to detect prestin in the bloodstream, despite there being significant damage to OHCs in the cochleae. Furthermore, the optical densities of the serum samples, which correlate to prestin quantities, were significantly influenced by hemolysis in the samples. In conclusion, Prestin from OHCs is not a sensitive and reliable serological biomarker for detecting cochlear damage in mice using ELISA.


Assuntos
Biomarcadores , Células Ciliadas Auditivas Externas , Proteínas Motores Moleculares , Animais , Biomarcadores/sangue , Camundongos , Células Ciliadas Auditivas Externas/patologia , Células Ciliadas Auditivas Externas/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/genética , Camundongos Knockout , Cóclea/patologia , Cóclea/metabolismo , Ensaio de Imunoadsorção Enzimática , Camundongos Endogâmicos C57BL
2.
Biointerphases ; 19(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38994898

RESUMO

Magnetic motors are a class of out-of-equilibrium particles that exhibit controlled and fast motion overcoming Brownian fluctuations by harnessing external magnetic fields. The advances in this field resulted in motors that have been used for different applications, such as biomedicine or environmental remediation. In this Perspective, an overview of the recent advancements of magnetic motors is provided, with a special focus on controlled motion. This aspect extends from trapping, steering, and guidance to organized motor grouping and degrouping, which is known as swarm control. Further, the integration of magnetic motors in soft robots to actuate their motion is also discussed. Finally, some remarks and perspectives of the field are outlined.


Assuntos
Robótica , Robótica/métodos , Movimento (Física) , Campos Magnéticos , Magnetismo , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Fenômenos Magnéticos
3.
Proc Natl Acad Sci U S A ; 121(28): e2407077121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954553

RESUMO

An array of motor proteins consumes chemical energy in setting up the architectures of chromosomes. Here, we explore how the structure of ideal polymer chains is influenced by two classes of motors. The first class which we call "swimming motors" acts to propel the chromatin fiber through three-dimensional space. They represent a caricature of motors such as RNA polymerases. Previously, they have often been described by adding a persistent flow onto Brownian diffusion of the chain. The second class of motors, which we call "grappling motors" caricatures the loop extrusion processes in which segments of chromatin fibers some distance apart are brought together. We analyze these models using a self-consistent variational phonon approximation to a many-body Master equation incorporating motor activities. We show that whether the swimming motors lead to contraction or expansion depends on the susceptibility of the motors, that is, how their activity depends on the forces they must exert. Grappling motors in contrast to swimming motors lead to long-ranged correlations that resemble those first suggested for fractal globules and that are consistent with the effective interactions inferred by energy landscape analyses of Hi-C data on the interphase chromosome.


Assuntos
Cromossomos , Cromatina/química , Cromatina/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/química
4.
Adv Protein Chem Struct Biol ; 141: 563-650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38960486

RESUMO

Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.


Assuntos
Simulação por Computador , Proteínas Motores Moleculares , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/química , Humanos , Animais , Modelos Biológicos
5.
Adv Protein Chem Struct Biol ; 141: 381-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38960481

RESUMO

The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.


Assuntos
Espermatogênese , Testículo , Humanos , Masculino , Testículo/metabolismo , Animais , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/genética
6.
Proc Natl Acad Sci U S A ; 121(29): e2407330121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980901

RESUMO

Kinesin-1 ensembles maneuver vesicular cargoes through the three-dimensional (3D) intracellular microtubule (MT) network. To define how such cargoes navigate MT intersections, we first determined how many kinesins from an ensemble on a lipid-based cargo simultaneously engage a MT, and then determined the directional outcomes (straight, turn, terminate) for liposome cargoes at perpendicular MT intersections. Run lengths of 350-nm diameter liposomes decorated with up to 20, constitutively active, truncated kinesin-1 KIF5B (K543) were longer than single motor transported cargo, suggesting multiple motor engagement. However, detachment forces of lipid-coated beads with ~20 kinesins, measured using an optical trap, showed no more than three simultaneously engaged motors, with a single engaged kinesin predominating, indicating anticooperative MT binding. At two-dimensional (2D) and 3D in vitro MT intersections, liposomes frequently paused (~2 s), suggesting kinesins simultaneously bind both MTs and engage in a tug-of-war. Liposomes showed no directional outcome bias in 2D (1.1 straight:turn ratio) but preferentially went straight (1.8 straight:turn ratio) in 3D intersections. To explain these data, we developed a mathematical model of liposome transport incorporating the known mechanochemistry of kinesins, which diffuse on the liposome surface, and have stiff tails in both compression and extension that impact how motors engage the intersecting MTs. Our model predicts the ~3 engaged motor limit observed in the optical trap and the bias toward going straight in 3D intersections. The striking similarity of these results to our previous study of liposome transport by myosin Va suggests a "universal" mechanism by which cargoes navigate 3D intersections.


Assuntos
Cinesinas , Lipossomos , Microtúbulos , Cinesinas/metabolismo , Cinesinas/química , Lipossomos/química , Lipossomos/metabolismo , Microtúbulos/metabolismo , Transporte Biológico , Animais , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/química , Pinças Ópticas
7.
Nat Commun ; 15(1): 5411, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926336

RESUMO

Most rod-shaped bacteria elongate by inserting new cell wall material into the inner surface of the cell sidewall. This is performed by class A penicillin binding proteins (PBPs) and a highly conserved protein complex, the elongasome, which moves processively around the cell circumference and inserts long glycan strands that act as barrel-hoop-like reinforcing structures, thereby giving rise to a rod-shaped cell. However, it remains unclear how elongasome synthesis dynamics and termination events are regulated to determine the length of these critical cell-reinforcing structures. To address this, we developed a method to track individual elongasome complexes around the entire circumference of Bacillus subtilis cells for minutes-long periods using single-molecule fluorescence microscopy. We found that the B. subtilis elongasome is highly processive and that processive synthesis events are frequently terminated by rapid reversal or extended pauses. We found that cellular levels of RodA regulate elongasome processivity, reversal and pausing. Our single-molecule data, together with stochastic simulations, show that elongasome dynamics and processivity are regulated by molecular motor tug-of-war competition between several, likely two, oppositely oriented peptidoglycan synthesis complexes associated with the MreB filament. Altogether these results demonstrate that molecular motor tug-of-war is a key regulator of elongasome dynamics in B. subtilis, which likely also regulates the cell shape via modulation of elongasome processivity.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Parede Celular , Proteínas de Ligação às Penicilinas , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/metabolismo , Peptidoglicano/biossíntese , Microscopia de Fluorescência , Imagem Individual de Molécula , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/genética
8.
Q Rev Biophys ; 57: e7, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715547

RESUMO

Molecular motors are machines essential for life since they convert chemical energy into mechanical work. However, the precise mechanism by which nucleotide binding, catalysis, or release of products is coupled to the work performed by the molecular motor is still not entirely clear. This is due, in part, to a lack of understanding of the role of force in the mechanical-structural processes involved in enzyme catalysis. From a mechanical perspective, one promising hypothesis is the Haldane-Pauling hypothesis which considers the idea that part of the enzymatic catalysis is strain-induced. It suggests that enzymes cannot be efficient catalysts if they are fully complementary to the substrates. Instead, they must exert strain on the substrate upon binding, using enzyme-substrate energy interaction (binding energy) to accelerate the reaction rate. A novel idea suggests that during catalysis, significant strain energy is built up, which is then released by a local unfolding/refolding event known as 'cracking'. Recent evidence has also shown that in catalytic reactions involving conformational changes, part of the heat released results in a center-of-mass acceleration of the enzyme, raising the possibility that the heat released by the reaction itself could affect the enzyme's integrity. Thus, it has been suggested that this released heat could promote or be linked to the cracking seen in proteins such as adenylate kinase (AK). We propose that the energy released as a consequence of ligand binding/catalysis is associated with the local unfolding/refolding events (cracking), and that this energy is capable of driving the mechanical work.


Assuntos
Proteínas Motores Moleculares , Animais , Humanos , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/química , Desdobramento de Proteína , Enzimas/metabolismo , Metabolismo Energético
9.
Curr Opin Cell Biol ; 88: 102367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735207

RESUMO

Microtubule motors play key roles in cellular functions, such as transport, mitosis and cell motility. Fueled by ATP hydrolysis, they convert chemical energy into mechanical work, which enables their movement on microtubules. While their motion along the long axis of microtubules has been studied extensively, some motors display an off-axis component, which results in helical motion around microtubules and the generation of torque in addition to linear forces. Understanding these nuanced movements expands our comprehension of motor protein dynamics and their impact on cellular processes.


Assuntos
Microtúbulos , Proteínas Motores Moleculares , Torque , Microtúbulos/metabolismo , Microtúbulos/química , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/química , Humanos , Animais
10.
Sci Adv ; 10(22): eadn4490, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820146

RESUMO

In recent years, there has been a growing interest in engineering dynamic and autonomous systems with robotic functionalities using biomolecules. Specifically, the ability of molecular motors to convert chemical energy to mechanical forces and the programmability of DNA are regarded as promising components for these systems. However, current systems rely on the manual addition of external stimuli, limiting the potential for autonomous molecular systems. Here, we show that DNA-based cascade reactions can act as a molecular controller that drives the autonomous assembly and disassembly of DNA-functionalized microtubules propelled by kinesins. The DNA controller is designed to produce two different DNA strands that program the interaction between the microtubules. The gliding microtubules integrated with the controller autonomously assemble to bundle-like structures and disassemble into discrete filaments without external stimuli, which is observable by fluorescence microscopy. We believe this approach to be a starting point toward more autonomous behavior of motor protein-based multicomponent systems with robotic functionalities.


Assuntos
DNA , Cinesinas , Microtúbulos , Robótica , DNA/química , DNA/metabolismo , Microtúbulos/metabolismo , Microtúbulos/química , Cinesinas/metabolismo , Cinesinas/química , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/química
11.
PLoS One ; 19(4): e0300634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669243

RESUMO

The flagellar motor proteins, MotA and MotB, form a complex that rotates the flagella by utilizing the proton motive force (PMF) at the bacterial cell membrane. Although PMF affects the susceptibility to aminoglycosides, the effect of flagellar motor proteins on the susceptibility to aminoglycosides has not been investigated. Here, we found that MotB overexpression increased susceptibility to aminoglycosides, such as kanamycin and gentamicin, in Bacillus subtilis without affecting swimming motility. MotB overexpression did not affect susceptibility to ribosome-targeting antibiotics other than aminoglycosides, cell wall-targeting antibiotics, DNA synthesis-inhibiting antibiotics, or antibiotics inhibiting RNA synthesis. Meanwhile, MotB overexpression increased the susceptibility to aminoglycosides even in the motA-deletion mutant, which lacks swimming motility. Overexpression of the MotB mutant protein carrying an amino acid substitution at the proton-binding site (D24A) resulted in the loss of the enhanced aminoglycoside-sensitive phenotype. These results suggested that MotB overexpression sensitizes B. subtilis to aminoglycosides in a motility-independent manner. Notably, the aminoglycoside-sensitive phenotype induced by MotB requires the proton-binding site but not the MotA/MotB complex formation.


Assuntos
Aminoglicosídeos , Antibacterianos , Bacillus subtilis , Proteínas de Bactérias , Flagelos , Bacillus subtilis/genética , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Flagelos/metabolismo , Flagelos/efeitos dos fármacos , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/genética
12.
J Bacteriol ; 206(4): e0006824, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38517170

RESUMO

Flavobacterium columnare causes columnaris disease in fish. Columnaris disease is incompletely understood, and adequate control measures are lacking. The type IX secretion system (T9SS) is required for F. columnare gliding motility and virulence. The T9SS and gliding motility machineries share some, but not all, components. GldN (required for gliding and for secretion) and PorV (involved in secretion but not required for gliding) are both needed for virulence, implicating T9SS-mediated secretion in virulence. The role of motility in virulence is uncertain. We constructed and analyzed sprB, sprF, and gldJ mutants that were defective for motility but that maintained T9SS function to understand the role of motility in virulence. Wild-type cells moved rapidly and formed spreading colonies. In contrast, sprB and sprF deletion mutants were partially defective in gliding and formed nonspreading colonies. Both mutants exhibited reduced virulence in rainbow trout fry. A gldJ deletion mutant was nonmotile, secretion deficient, and avirulent in rainbow trout fry. To separate the roles of GldJ in secretion and in motility, we generated gldJ truncation mutants that produce nearly full-length GldJ. Mutant gldJ563, which produces GldJ truncated at amino acid 563, was defective for gliding but was competent for secretion as measured by extracellular proteolytic activity. This mutant displayed reduced virulence in rainbow trout fry, suggesting that motility contributes to virulence. Fish that survived exposure to the sprB deletion mutant or the gldJ563 mutant exhibited partial resistance to later challenge with wild-type cells. The results aid our understanding of columnaris disease and may suggest control strategies.IMPORTANCEFlavobacterium columnare causes columnaris disease in many species of freshwater fish in the wild and in aquaculture systems. Fish mortalities resulting from columnaris disease are a major problem for aquaculture. F. columnare virulence is incompletely understood, and control measures are inadequate. Gliding motility and protein secretion have been suggested to contribute to columnaris disease, but evidence directly linking motility to disease was lacking. We isolated and analyzed mutants that were competent for secretion but defective for motility. Some of these mutants exhibited decreased virulence. Fish that had been exposed to these mutants were partially protected from later exposure to the wild type. The results contribute to our understanding of columnaris disease and may aid development of control strategies.


Assuntos
Proteínas de Bactérias , Doenças dos Peixes , Animais , Proteínas de Bactérias/metabolismo , Virulência , Proteínas Motores Moleculares/metabolismo , Flavobacterium , Doenças dos Peixes/microbiologia
13.
J Physiol ; 602(6): 1199-1210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431907

RESUMO

DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5, the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes (SLC26A5W70X/R130S ). Our recent study showed that mice homozygous for p.R130S (Slc26a5R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5R130S/- mice were used as a model for human SLC26A5W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study defines the pathogenic roles of p.R130S prestin and identifies a limited time window for potential clinical intervention. KEY POINTS: The voltage-driven motor protein, prestin, is encoded by SLC26A5 and expressed abundantly in cochlear outer hair cells (OHCs). The importance of prestin for normal hearing was demonstrated in mice lacking prestin; however, none of the specific SLC26A5 variants identified to date in human patients has been experimentally demonstrated to be pathogenic. In this study we used both cell lines and a mouse model to define the pathogenic role of compound heterozygous p.W70X (c.209G>A) and p.R130S (c.390A>C) SLC26A5 variants identified in patients with moderate to profound hearing loss. As in patients, mice carrying one copy of p.R130S Slc26a5 showed OHC dysfunction and progressive degeneration, which results in congenital progressive hearing loss. This is the first functional study reporting pathogenic SLC26A5 variants and pointing to the presence of a therapeutic time window for potential clinical interventions targeting the affected OHCs before they are lost.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Células Ciliadas Auditivas Externas/fisiologia , Perda Auditiva/genética , Perda Auditiva/metabolismo , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutação , Proteínas/genética
14.
Genes Cells ; 29(4): 282-289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351850

RESUMO

The flagellar components of Vibrio spp., PomA and PomB, form a complex that transduces sodium ion and contributes to rotate flagella. The transmembrane protein PomB is attached to the basal body T-ring by its periplasmic region and has a plug segment following the transmembrane helix to prevent ion flux. Previously we showed that PomB deleted from E41 to R120 (Δ41-120) was functionally comparable to the full-length PomB. In this study, three deletions after the plug region, PomB (Δ61-120), PomB (Δ61-140), and PomB (Δ71-150), were generated. PomB (Δ61-120) conferred motility, whereas the other two mutants showed almost no motility in soft agar plate; however, we observed some swimming cells with speed comparable for the wild-type cells. When the two PomB mutants were introduced into a wild-type strain, the swimming ability was not affected by the mutant PomBs. Then, we purified the mutant PomAB complexes to confirm the stator formation. When plug mutations were introduced into the PomB mutants, the reduced motility by the deletion was rescued, suggesting that the stator was activated. Our results indicate that the deletions prevent the stator activation and the linker and plug regions, from E41 to S150, are not essential for the motor function of PomB but are important for its regulation.


Assuntos
Proteínas de Bactérias , Peptidoglicano , Proteínas de Bactérias/metabolismo , Peptidoglicano/análise , Peptidoglicano/genética , Peptidoglicano/metabolismo , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Flagelos/metabolismo , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo
15.
Angew Chem Int Ed Engl ; 63(13): e202316851, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38214887

RESUMO

DNA motors that consume chemical energy to generate processive mechanical motion mimic natural motor proteins and have garnered interest due to their potential applications in dynamic nanotechnology, biosensing, and drug delivery. Such motors translocate by a catalytic cycle of binding, cleavage, and rebinding between DNA "legs" on the motor body and RNA "footholds" on a track. Herein, we address the well-documented trade-off between motor speed and processivity and investigate how these parameters are controlled by the affinity between DNA legs and their complementary footholds. Specifically, we explore the role of DNA leg length and GC content in tuning motor performance by dictating the rate of leg-foothold dissociation. Our investigations reveal that motors with 0 % GC content exhibit increased instantaneous velocities of up to 150 nm/sec, three-fold greater than previously reported DNA motors and comparable to the speeds of biological motor proteins. We also demonstrate that the faster speed and weaker forces generated by 0 % GC motors can be leveraged for enhanced capabilities in sensing. We observe single-molecule sensitivity when programming the motors to stall in response to the binding of nucleic acid targets. These findings offer insights for the design of high-performance DNA motors with promising real-world biosensing applications.


Assuntos
Ácidos Nucleicos , Proteínas Motores Moleculares/metabolismo , DNA/química , Nanotecnologia , Miosinas
16.
J Theor Biol ; 578: 111685, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38061488

RESUMO

Kinesin is a motor protein that can convert chemical energy of ATP hydrolysis into mechanical energy of moving processively on microtubules. Apart from the load and ATP concentration affecting the dynamics of the motor such as velocity, run length, dissociation rate, etc., the increase of solution viscosity by supplementing crowding agents of low molecular weight into the buffer can also affect the dynamics. Here, based on our proposed model for the chemomechanical coupling of the kinesin motor, a systematically theoretical study of the motor dynamics under the variation of the viscosity and load is presented. Both the load on the motor's stalk and that on one of the two heads are considered. The theoretical results provide a consistent explanation of the available contradictory experimental results, with some showing that increasing viscosity decreases sensitively the velocity whereas others showing that increasing viscosity has little effect on the velocity. The theoretical results reproduce quantitatively the puzzling experimental data showing that under different directions of the load on the stalk, increasing viscosity has very different effects on the change of run length or dissociation rate. The theoretical results predict that in both the pure and crowded buffers the dependence of the run length on the load acting one of the two heads has very different feature from that on the load acting on the stalk.


Assuntos
Cinesinas , Modelos Teóricos , Cinesinas/metabolismo , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo
17.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445779

RESUMO

Molecular motors are found in many living organisms. One such molecular machine, the ion-powered rotary motor (IRM), requires the movement of ions across a membrane against a concentration gradient to drive rotational movement. The bacterial flagellar motor (BFM) is an example of an IRM which relies on ion movement through the stator proteins to generate the rotation of the flagella. There are many ions which can be used by the BFM stators to power motility and different ions can be used by a single bacterium expressing multiple stator variants. The use of ancestral sequence reconstruction (ASR) and functional analysis of reconstructed stators shows promise for understanding how these proteins evolved and when the divergence in ion use may have occurred. In this review, we discuss extant BFM stators and the ions that power them as well as recent examples of the use of ASR to study ion-channel selectivity and how this might be applied to further study of the BFM stator complex.


Assuntos
Proteínas de Escherichia coli , Proteínas Motores Moleculares , Proteínas Motores Moleculares/metabolismo , Íons/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Flagelos/metabolismo
18.
Nat Commun ; 14(1): 4411, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500658

RESUMO

Bacteria swim using a flagellar motor that is powered by stator units. Vibrio spp. are highly motile bacteria responsible for various human diseases, the polar flagella of which are exclusively driven by sodium-dependent stator units (PomAB). However, how ion selectivity is attained, how ion transport triggers the directional rotation of the stator unit, and how the stator unit is incorporated into the flagellar rotor remained largely unclear. Here, we have determined by cryo-electron microscopy the structure of Vibrio PomAB. The electrostatic potential map uncovers sodium binding sites, which together with functional experiments and molecular dynamics simulations, reveal a mechanism for ion translocation and selectivity. Bulky hydrophobic residues from PomA prime PomA for clockwise rotation. We propose that a dynamic helical motif in PomA regulates the distance between PomA subunit cytoplasmic domains, stator unit activation, and torque transmission. Together, our study provides mechanistic insights for understanding ion selectivity and rotor incorporation of the stator unit of the bacterial flagellum.


Assuntos
Proteínas de Bactérias , Sódio , Humanos , Proteínas de Bactérias/metabolismo , Sódio/metabolismo , Microscopia Crioeletrônica , Vibrio alginolyticus/química , Vibrio alginolyticus/metabolismo , Flagelos/metabolismo , Proteínas Motores Moleculares/metabolismo
19.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176000

RESUMO

Proteus mirabilis is a Gram-negative Gammaproteobacterium and a major causative agent of urinary tract infections in humans. It is characterized by its ability to switch between swimming motility in liquid media and swarming on solid surfaces. Here, we used cryo-electron tomography and subtomogram averaging to reveal the structure of the flagellar motor of P. mirabilis at nanometer resolution in intact cells. We found that P. mirabilis has a motor that is structurally similar to those of Escherichia coli and Salmonella enterica, lacking the periplasmic elaborations that characterize other more specialized gammaproteobacterial motors. In addition, no density corresponding to stators was present in the subtomogram average suggesting that the stators are dynamic. Finally, several assembly intermediates of the motor were seen that support the inside-out assembly pathway.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Flagelos , Proteínas Motores Moleculares , Proteus mirabilis , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Escherichia coli/química , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Proteus mirabilis/química , Proteus mirabilis/citologia , Proteus mirabilis/ultraestrutura , Salmonella enterica/química , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/ultraestrutura
20.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37093124

RESUMO

Kinesins are microtubule-dependent motor proteins, some of which moonlight as microtubule polymerases, such as the yeast protein Kip2. Here, we show that the CLIP-170 ortholog Bik1 stabilizes Kip2 at microtubule ends where the motor domain of Kip2 promotes microtubule polymerization. Live-cell imaging and mathematical estimation of Kip2 dynamics reveal that disrupting the Kip2-Bik1 interaction aborts Kip2 dwelling at microtubule ends and abrogates its microtubule polymerization activity. Structural modeling and biochemical experiments identify a patch of positively charged residues that enables the motor domain to bind free tubulin dimers alternatively to the microtubule shaft. Neutralizing this patch abolished the ability of Kip2 to promote microtubule growth both in vivo and in vitro without affecting its ability to walk along microtubules. Our studies suggest that Kip2 utilizes Bik1 as a cofactor to track microtubule tips, where its motor domain then recruits free tubulin and catalyzes microtubule assembly.


Assuntos
Cinesinas , Proteínas Associadas aos Microtúbulos , Proteínas Motores Moleculares , Proteínas de Saccharomyces cerevisiae , Tubulina (Proteína) , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Polimerização , Tubulina (Proteína)/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Motores Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...