Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 73(6): 1482-1495, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32738448

RESUMO

BACKGROUND & AIMS: Chronic overconsumption of a high-carbohydrate diet leads to steatosis and its associated metabolic disorder and, eventually, to non-alcoholic fatty liver disease. Carbohydrate-responsive element binding protein (ChREBP) and insulin regulate de novo lipogenesis from glucose. Herein, we studied the effect of reticulon-4 (Nogo) expression on diet-induced metabolic disorders in mice. METHODS: Nogo-deficient (Nogo-/-) and littermate control [wild-type (WT)] mice were fed a high-glucose or high-fructose diet (HGD/HFrD) to induce metabolic disorders. The effects of Nogo small interfering (si) RNA (siRNA) on HFrD-induced metabolic disorders were investigated in C57BL/6J mice. RESULTS: HGD/HFrD induced steatosis and its associated metabolic disorders in WT mice by activating ChREBP and impairing insulin sensitivity. They also activated Nogo-B expression, which in turn inhibited insulin activity. In response to HGD/HFrD feeding, Nogo deficiency enhanced insulin sensitivity and energy metabolism to reduce the expression of ChREBP and lipogenic molecules, activated AMP-activated catalytic subunit α, peroxisome proliferator activated receptor α and fibroblast growth factor 21, and reduced endoplasmic reticulum (ER) stress and inflammation, thereby blocking HGD/HFrD-induced hepatic lipid accumulation, insulin resistance and other metabolic disorders. Injection of Nogo siRNA protected C57BL/6J mice against HFrD-induced metabolic disorders by ameliorating insulin sensitivity, ChREBP activity, ER stress and inflammation. CONCLUSIONS: Our study identified Nogo as an important mediator of insulin sensitivity and ChREBP activity. Reduction of Nogo expression is a potential strategy for the treatment of high-carbohydrate diet-induced metabolic complications. LAY SUMMARY: Nogo deficiency blocks high-carbohydrate diet-induced glucose intolerance and insulin resistance, while increasing glucose/lipid utilisation and energy expenditure. Thus, reduction of Nogo expression protects against high-carbohydrate diet-induced body-weight gain, hepatic lipid accumulation and the associated metabolic disorders, indicating that approaches inhibiting Nogo expression can be applied for the treatment of diseases associated with metabolic disorders.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carboidratos da Dieta/metabolismo , Intolerância à Glucose/metabolismo , Proteínas Nogo/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Descoberta de Drogas , Metabolismo Energético , Insulina/metabolismo , Resistência à Insulina , Lipogênese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nogo/deficiência , RNA Interferente Pequeno/metabolismo
2.
PLoS One ; 13(7): e0200896, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30040841

RESUMO

Recent investigations of Nogo-A, a well characterized protein inhibitor of neurite outgrowth in the brain, have revealed additional functions including a role in neuropsychiatric disorders such as schizophrenia. Here we examined Nogo-A functions in mouse CA3 hippocampal circuitry. Patch clamp recordings showed that the absence of Nogo-A results in a hyperactive network. In addition, mGlu3 metabotropic glutamate receptors, which exhibit mutations in certain forms of schizophrenia, were downregulated specifically in the CA3 area. Furthermore, Nogo-A-/- mice showed disordered theta oscillations with decreased incidence and frequency, similar to those observed in mGlu3-/- mice. As disruptions in theta rhythmicity are associated with impaired spatial navigation, we tested mice using modified Morris water maze tasks. Mice lacking Nogo-A exhibited altered search strategies, displaying greater dependence on global as opposed to local reference frames. This link between Nogo-A and mGlu3 receptors may provide new insights into mechanisms underlying schizophrenia.


Assuntos
Região CA3 Hipocampal/fisiopatologia , Regulação para Baixo/genética , Proteínas Nogo/deficiência , Proteínas Nogo/genética , Receptores de Glutamato Metabotrópico/genética , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Animais , Região CA3 Hipocampal/patologia , Deleção de Genes , Aprendizagem em Labirinto , Camundongos , Proteínas Nogo/metabolismo , Transporte Proteico , Esquizofrenia/patologia , Comportamento Espacial , Sinapses/genética , Sinapses/metabolismo
3.
Cell Death Dis ; 9(6): 612, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795235

RESUMO

Cardiac fibrosis is an independent risk factor for heart failure and even the leading cause of death in myocardial infarction patients. However, molecular mechanisms associated with the pathogenesis of cardiac fibrosis following myocardial infarction are not yet fully understood. Nogo-C protein ubiquitously expresses in tissues including in the heart. Our previous study found that Nogo-C regulated cardiomyocyte apoptosis during myocardial infarction. In the present study, we found that Nogo-C was upregulated in fibrotic hearts after myocardial infarction and in Ang II- or TGF-ß1-stimulated cardiac fibroblasts. Overexpression of Nogo-C in cardiac fibroblasts increased expression of pro-fibrogenic proteins, while knockdown of Nogo-C inhibited the fibrotic responses of cardiac fibroblasts to Ang II- or TGF-ß1 stimulation. Functionally, Nogo-C deficiency suppressed pro-fibrogenic proteins in post-myocardial infarction hearts and ameliorated post-myocardial infarction cardiac function. Mechanistically, we found that Nogo-C increased intracellular Ca2+ concentration and buffering Ca2+ totally abolished Nogo-C-induced fibrotic responses. Moreover, overexpression of Nogo-C caused increased Sec61α, the Ca2+ leakage channel on endoplasmic reticulum membrane. Nogo-C interacted with Sec61α on endoplasmic reticulum and stabilized Sec61α protein by inhibiting its ubiquitination. Inhibition or knockdown of Sec61α blocked Nogo-C-induced increase of cytosolic Ca2+ concentration and inhibited Nogo-C- and TGF-ß1-induced fibrotic responses in cardiac fibroblasts, suggesting that Nogo-C regulates cardiac fibrosis through interacting with Sec61α to mediate the Ca2+ leakage from endoplasmic reticulum. Thus, our results reveal a novel mechanism underlying cardiac fibrosis following myocardial infarction, and provide a therapeutic strategy for cardiac remodeling related heart diseases.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Proteínas Nogo/metabolismo , Canais de Translocação SEC/metabolismo , Angiotensina II/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Testes de Função Cardíaca , Camundongos Knockout , Modelos Biológicos , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Proteínas Nogo/deficiência , Ratos , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima
4.
Exp Neurol ; 283(Pt A): 73-84, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27264357

RESUMO

Although previous studies have identified several strategies to stimulate regeneration of CNS axons, extensive regeneration and functional recovery have remained a major challenge, particularly for large diameter myelinated axons. Within the CNS, myelin is thought to inhibit axon regeneration, while modulating activity of the mTOR pathway promotes regeneration of injured axons. In this study, we examined NT-3 mediated regeneration of sensory axons through the dorsal root entry zone in a triple knockout of myelin inhibitory proteins or after activation of mTOR using a constitutively active (ca) Rheb in DRG neurons to determine the influence of environmental inhibitory or activation of intrinsic growth pathways could enhance NT-3-mediate regeneration. Loss of myelin inhibitory proteins showed modest enhancement of sensory axon regeneration. In mTOR studies, we found a dramatic age related decrease in the mTOR activation as determined by phosphorylation of the downstream marker S6 ribosomal subunit. Expression of caRheb within adult DRG neurons in vitro increased S6 phosphorylation and doubled the overall length of neurite outgrowth, which was reversed in the presence of rapamycin. In adult female rats, combined expression of caRheb in DRG neurons and NT-3 within the spinal cord increased regeneration of sensory axons almost 3 fold when compared to NT-3 alone. Proprioceptive assessment using a grid runway indicates functionally significant regeneration of large-diameter myelinated sensory afferents. Our results indicate that caRheb-induced increase in mTOR activation enhances neurotrophin-3 induced regeneration of large-diameter myelinated axons.


Assuntos
Regulação da Expressão Gênica/fisiologia , Regeneração Nervosa/fisiologia , Neurotrofina 3/metabolismo , Transdução de Sinais/fisiologia , Distúrbios Somatossensoriais/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Associada a Mielina/deficiência , Glicoproteína Associada a Mielina/genética , Neurotrofina 3/genética , Neurotrofina 3/uso terapêutico , Proteínas Nogo/deficiência , Proteínas Nogo/genética , Ratos , Ratos Sprague-Dawley , Sirolimo/farmacologia , Distúrbios Somatossensoriais/patologia , Distúrbios Somatossensoriais/fisiopatologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...