Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884470

RESUMO

The PII protein is an evolutionary, highly conserved regulatory protein found in both bacteria and higher plants. In bacteria, it modulates the activity of several enzymes, transporters, and regulatory factors by interacting with them and thereby regulating important metabolic hubs, such as carbon/nitrogen homeostasis. More than two decades ago, the PII protein was characterized for the first time in plants, but its physiological role is still not sufficiently resolved. To gain more insights into the function of this protein, we investigated the interaction behavior of AtPII with candidate proteins by BiFC and FRET/FLIM in planta and with GFP/RFP traps in vitro. In the course of these studies, we found that AtPII interacts in chloroplasts with itself as well as with known interactors such as N-acetyl-L-glutamate kinase (NAGK) in dot-like aggregates, which we named PII foci. In these novel protein aggregates, AtPII also interacts with yet unknown partners, which are known to be involved in plastidic protein degradation. Further studies revealed that the C-terminal component of AtPII is crucial for the formation of PII foci. Altogether, the discovery and description of PII foci indicate a novel mode of interaction between PII proteins and other proteins in plants. These findings may represent a new starting point for the elucidation of physiological functions of PII proteins in plants.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Domínios Proteicos , Mapas de Interação de Proteínas , Proteólise
2.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445335

RESUMO

Protein inhibition is a natural regulatory process to control cellular metabolic fluxes. PII-family signal-transducing effectors are in this matter key regulators of the nitrogen metabolism. Their interaction with their various targets is governed by the cellular nitrogen level and the energy charge. Structural studies on GlnK, a PII-family inhibitor of the ammonium transporters (Amt), showed that the T-loops responsible for channel obstruction are displaced upon the binding of 2-oxoglutarate, magnesium and ATP in a conserved cleft. However, GlnK from Methanocaldococcus jannaschii was shown to bind 2-oxoglutarate on the tip of its T-loop, causing a moderate disruption to GlnK-Amt interaction, raising the question if methanogenic archaea use a singular adaptive strategy. Here we show that membrane fractions of Methanothermococcus thermolithotrophicus released GlnKs only in the presence of Mg-ATP and 2-oxoglutarate. This observation led us to structurally characterize the two GlnK isoforms apo or in complex with ligands. Together, our results show that the 2-oxoglutarate binding interface is conserved in GlnKs from Methanococcales, including Methanocaldococcus jannaschii, emphasizing the importance of a free carboxy-terminal group to facilitate ligand binding and to provoke the shift of the T-loop positions.


Assuntos
Compostos de Amônio/metabolismo , Ácidos Cetoglutáricos/metabolismo , Methanococcales/metabolismo , Proteínas PII Reguladoras de Nitrogênio , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Transporte de Íons , Redes e Vias Metabólicas , Modelos Moleculares , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Análise de Sequência de Proteína
3.
Sci Rep ; 11(1): 12535, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131190

RESUMO

PII proteins constitute a widespread signal transduction superfamily in the prokaryotic world. The canonical PII signal proteins sense metabolic state of the cells by binding the metabolite molecules ATP, ADP and 2-oxoglutarate. Depending on bound effector molecule, PII proteins interact with and modulate the activity of multiple target proteins. To investigate the complexity of interactions of PII with target proteins, analytical methods that do not disrupt the native cellular context are required. To this purpose, split luciferase proteins have been used to develop a novel complementation reporter called NanoLuc Binary Technology (NanoBiT). The luciferase NanoLuc is divided in two subunits: a 18 kDa polypeptide termed "Large BiT" and a 1.3 kDa peptide termed "Small BiT", which only weakly associate. When fused to proteins of interest, they reconstitute an active luciferase when the proteins of interest interact. Therefore, we set out to develop a new NanoBiT sensor based on the interaction of PII protein from Synechocystis sp. PCC6803 with PII-interacting protein X (PipX) and N-acetyl-L-glutamate kinase (NAGK). The novel NanoBiT sensor showed unprecedented sensitivity, which made it possible to detect even weak and transient interactions between PII variants and their interacting partners, thereby shedding new light in PII signalling processes.


Assuntos
Proteínas de Bactérias/química , Técnicas Biossensoriais , Proteínas PII Reguladoras de Nitrogênio/isolamento & purificação , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Ácidos Cetoglutáricos/química , Nanotecnologia , Proteínas PII Reguladoras de Nitrogênio/química , Synechococcus/química
4.
Acta Crystallogr D Struct Biol ; 77(Pt 3): 325-335, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645536

RESUMO

PII proteins are ubiquitous signaling proteins that are involved in the regulation of the nitrogen/carbon balance in bacteria, archaea, and some plants and algae. Signal transduction via PII proteins is modulated by effector molecules and post-translational modifications in the PII T-loop. Whereas the binding of ADP, ATP and the concomitant binding of ATP and 2-oxoglutarate (2OG) engender two distinct conformations of the T-loop that either favor or disfavor the interaction with partner proteins, the structural consequences of post-translational modifications such as phosphorylation, uridylylation and adenylylation are far less well understood. In the present study, crystal structures of the PII protein GlnK from Corynebacterium glutamicum have been determined, namely of adenylylated GlnK (adGlnK) and unmodified unadenylylated GlnK (unGlnK). AdGlnK has been proposed to act as an inducer of the transcription repressor AmtR, and the adenylylation of Tyr51 in GlnK has been proposed to be a prerequisite for this function. The structures of unGlnK and adGlnK allow the first atomic insights into the structural implications of the covalent attachment of an AMP moiety to the T-loop. The overall GlnK fold remains unaltered upon adenylylation, and T-loop adenylylation does not appear to interfere with the formation of the two major functionally important T-loop conformations, namely the extended T-loop in the canonical ADP-bound state and the compacted T-loop that is adopted upon the simultaneous binding of Mg-ATP and 2OG. Thus, the PII-typical conformational switching mechanism appears to be preserved in GlnK from C. glutamicum, while at the same time the functional repertoire becomes expanded through the accommodation of a peculiar post-translational modification.


Assuntos
Proteínas de Bactérias/química , Corynebacterium glutamicum , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína
5.
Mol Microbiol ; 115(4): 526-538, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33012071

RESUMO

Escherichia coli uses the C4-dicarboxylate transporter DcuA for L-aspartate/fumarate antiport, which results in the exploitation of L-aspartate for fumarate respiration under anaerobic conditions and for nitrogen assimilation under aerobic and anaerobic conditions. L-Aspartate represents a high-quality nitrogen source for assimilation. Nitrogen assimilation from L-aspartate required DcuA, and aspartase AspA to release ammonia. Ammonia is able to provide by established pathways the complete set of intracellular precursors (ammonia, L-aspartate, L-glutamate, and L-glutamine) for synthesizing amino acids, nucleotides, and amino sugars. AspA was regulated by a central regulator of nitrogen metabolism, GlnB. GlnB interacted with AspA and stimulated its L-aspartate deaminase activity (NH3 -forming), but not the reverse amination reaction. GlnB stimulation required 2-oxoglutarate and ATP, or uridylylated GlnB-UMP, consistent with the activation of nitrogen assimilation under nitrogen limitation. Binding to AspA was lost in the GlnB(Y51F) mutant of the uridylylation site. AspA, therefore, represents a new type of GlnB target that binds GlnB (with ATP and 2-oxoglutarate), or GlnB-UMP (with or without effectors), and both situations stimulate AspA deamination activity. Thus, AspA represents the central enzyme for nitrogen assimilation from L-aspartate, and AspA is integrated into the nitrogen assimilation network by the regulator GlnB.


Assuntos
Aspartato Amônia-Liase/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Bactérias/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/fisiologia , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Amônia/metabolismo , Ácido Aspártico/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Redes e Vias Metabólicas , Mutação , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/genética , Domínios e Motivos de Interação entre Proteínas
6.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32060028

RESUMO

PII signal transduction proteins are ubiquitous and highly conserved in bacteria, archaea, and plants and play key roles in controlling nitrogen metabolism. However, research on biological functions and regulatory targets of PII proteins remains limited. Here, we illustrated experimentally that the PII protein Corynebacterium glutamicum GlnK (CgGlnK) increased l-arginine yield when glnK was overexpressed in Corynebacterium glutamicum Data showed that CgGlnK regulated l-arginine biosynthesis by upregulating the expression of genes of the l-arginine metabolic pathway and interacting with N-acetyl-l-glutamate kinase (CgNAGK), the rate-limiting enzyme in l-arginine biosynthesis. Further assays indicated that CgGlnK contributed to alleviation of the feedback inhibition of CgNAGK caused by l-arginine. In silico analysis of the binding interface of CgGlnK-CgNAGK suggested that the B and T loops of CgGlnK mainly interacted with C and N domains of CgNAGK. Moreover, F11, R47, and K85 of CgGlnK were identified as crucial binding sites that interact with CgNAGK via hydrophobic interaction and H bonds, and these interactions probably had a positive effect on maintaining the stability of the complex. Collectively, this study reveals PII-NAGK interaction in nonphotosynthetic microorganisms and further provides insights into the regulatory mechanism of PII on amino acid biosynthesis in corynebacteria.IMPORTANCE Corynebacteria are safe industrial producers of diverse amino acids, including l-glutamic acid and l-arginine. In this study, we showed that PII protein GlnK played an important role in l-glutamic acid and l-arginine biosynthesis in C. glutamicum Through clarifying the molecular mechanism of CgGlnK in l-arginine biosynthesis, the novel interaction between CgGlnK and CgNAGK was revealed. The alleviation of l-arginine inhibition of CgNAGK reached approximately 48.21% by CgGlnK addition, and the semi-inhibition constant of CgNAGK increased 1.4-fold. Furthermore, overexpression of glnK in a high-yield l-arginine-producing strain and fermentation of the recombinant strain in a 5-liter bioreactor led to a remarkably increased production of l-arginine, 49.978 g/liter, which was about 22.61% higher than that of the initial strain. In conclusion, this study provides a new strategy for modifying amino acid biosynthesis in C. glutamicum.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Transdução de Sinais , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Alinhamento de Sequência
7.
FEBS J ; 287(3): 465-482, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31287617

RESUMO

During evolution, several algae and plants became heterotrophic and lost photosynthesis; however, in most cases, a nonphotosynthetic plastid was maintained. Among these organisms, the colourless alga Polytomella parva is a special case, as its plastid is devoid of any DNA, but is maintained for specific metabolic tasks carried out by nuclear encoded enzymes. This makes P. parva attractive to study molecular events underlying the transition from autotrophic to heterotrophic lifestyle. Here we characterize metabolic adaptation strategies of P. parva in comparison to the closely related photosynthetic alga Chlamydomonas reinhardtii with a focus on the role of plastid-localized PII signalling protein. Polytomella parva accumulates significantly higher amounts of most TCA cycle intermediates as well as glutamate, aspartate and arginine, the latter being specific for the colourless plastid. Correlating with the altered metabolite status, the carbon/nitrogen sensory PII signalling protein and its regulatory target N-acetyl-l-glutamate-kinase (NAGK; the controlling enzyme of arginine biosynthesis) show unique features: They have co-evolved into a stable hetero-oligomeric complex, irrespective of effector molecules. The PII signalling protein, so far known as a transiently interacting signalling protein, appears as a permanent subunit of the enzyme NAGK. NAGK requires PII to properly sense the feedback inhibitor arginine, and moreover, PII tunes arginine-inhibition in response to glutamine. No other PII effector molecules interfere, indicating that the PII-NAGK system in P. parva has lost the ability to estimate the cellular energy and carbon status but has specialized to provide an entirely glutamine-dependent arginine feedback control, highlighting the evolutionary plasticity of PII signalling system.


Assuntos
Clorofíceas/metabolismo , Evolução Molecular , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Proteínas de Plantas/metabolismo , Arginina/metabolismo , Chlamydomonas reinhardtii/metabolismo , Clorofíceas/genética , Retroalimentação Fisiológica , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Multimerização Proteica
8.
Biochim Biophys Acta Proteins Proteom ; 1868(3): 140348, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31866507

RESUMO

Herbaspirillum seropedicae is a plant growth promoting bacterium that is able to fix nitrogen and to colonize the surface and internal tissues of important crops. Nitrogen fixation in H. seropedicae is regulated at the transcriptional level by the prokaryotic enhancer binding protein NifA. The activity of NifA is negatively affected by oxygen and positively stimulated by interaction with GlnK, a PII signaling protein that monitors intracellular levels of the key metabolite 2-oxoglutarate (2-OG) and functions as an indirect sensor of the intracellular nitrogen status. GlnK is also subjected to a cycle of reversible uridylylation in response to intracellular levels of glutamine. Previous studies have established the role of the N-terminal GAF domain of NifA in intramolecular repression of NifA activity and the role of GlnK in relieving this inhibition under nitrogen-limiting conditions. However, the mechanism of this control of NifA activity is not fully understood. Here, we constructed a series of GlnK variants to elucidate the role of uridylylation and effector binding during the process of NifA activation. Our data support a model whereby GlnK uridylylation is not necessary to activate NifA. On the other hand, binding of 2-OG and MgATP to GlnK are very important for NifA activation and constitute the most important signal of cellular nitrogen status to NifA.


Assuntos
Proteínas de Bactérias/metabolismo , Herbaspirillum , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Sítio Alostérico , Escherichia coli/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutagênese , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/genética , Ligação Proteica
9.
Nat Commun ; 8(1): 2203, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259178

RESUMO

The diverse lipid environment of the biological membrane can modulate the structure and function of membrane proteins. However, little is known about the role that lipids play in modulating protein-protein interactions. Here we employed native mass spectrometry (MS) to determine how individual lipid-binding events to the ammonia channel (AmtB) modulate its interaction with the regulatory protein, GlnK. The thermodynamic signature of AmtB-GlnK in the absence of lipids indicates conformational dynamics. A small number of lipids bound to AmtB is sufficient to modulate the interaction with GlnK, and lipids with different headgroups display a range of allosteric modulation. We also find that lipid chain length and stereochemistry can affect the degree of allosteric modulation, indicating an unforeseen selectivity of membrane proteins toward the chemistry of lipid tails. These results demonstrate that individual lipid-binding events can allosterically modulate the interactions of integral membrane and soluble proteins.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Nucleotidiltransferases/química , Proteínas PII Reguladoras de Nitrogênio/química , Regulação Alostérica , Calorimetria/métodos , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas , Nucleotidiltransferases/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Ligação Proteica , Conformação Proteica , Ressonância de Plasmônio de Superfície/métodos , Termodinâmica
10.
Mar Drugs ; 15(10)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019908

RESUMO

The PII signaling protein is a key protein for controlling nitrogen assimilatory reactions in most organisms, but little information is reported on PII proteins of green microalga Haematococcus pluvialis. Since H. pluvialis cells can produce a large amount of astaxanthin upon nitrogen starvation, its PII protein may represent an important factor on elevated production of Haematococcus astaxanthin. This study identified and isolated the coding gene (HpGLB1) from this microalga. The full-length of HpGLB1 was 1222 bp, including 621 bp coding sequence (CDS), 103 bp 5' untranslated region (5' UTR), and 498 bp 3' untranslated region (3' UTR). The CDS could encode a protein with 206 amino acids (HpPII). Its calculated molecular weight (Mw) was 22.4 kDa and the theoretical isoelectric point was 9.53. When H. pluvialis cells were exposed to nitrogen starvation, the HpGLB1 expression was increased 2.46 times in 48 h, concomitant with the raise of astaxanthin content. This study also used phylogenetic analysis to prove that HpPII was homogeneous to the PII proteins of other green microalgae. The results formed a fundamental basis for the future study on HpPII, for its potential physiological function in Haematococcus astaxanthin biosysthesis.


Assuntos
Clorófitas/metabolismo , Microalgas/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Sequência de Aminoácidos , Clorófitas/genética , Ponto Isoelétrico , Microalgas/genética , Peso Molecular , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/química , Filogenia , Transdução de Sinais , Fatores de Tempo , Xantofilas/biossíntese
11.
FEBS Lett ; 591(20): 3431-3442, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28914444

RESUMO

The Synechococcus elongatus COG0325 gene pipY functionally interacts with the nitrogen regulatory gene pipX. As a first step toward a molecular understanding of such interactions, we characterized PipY. This 221-residue protein is monomeric and hosts pyridoxal phosphate (PLP), binding it with limited affinity and losing it upon incubation with D-cycloserine. PipY crystal structures with and without PLP reveal a single-domain monomer folded as the TIM barrel of type-III fold PLP enzymes, with PLP highly exposed, fitting a role for PipY in PLP homeostasis. The mobile PLP phosphate-anchoring C-terminal helix might act as a trigger for PLP exchange. Exploiting the universality of COG0325 functions, we used PipY in site-directed mutagenesis studies to shed light on disease causation by epilepsy-associated mutations in the human COG0325 gene PROSC.


Assuntos
Proteínas de Bactérias/química , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas/química , Fosfato de Piridoxal/química , Synechococcus/química , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Ciclosserina/química , Ciclosserina/metabolismo , Epilepsia/metabolismo , Epilepsia/patologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas/genética , Proteínas/metabolismo , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Synechococcus/metabolismo , Termodinâmica
12.
Biochemistry ; 56(25): 3211-3224, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28581722

RESUMO

PipX, an 89-residue protein, acts as a coactivator of the global nitrogen regulator NtcA in cyanobacteria. NtcA-PipX interactions are regulated by 2-oxoglutarate (2-OG), an inverse indicator of the ammonia abundance, and by PII, a protein that binds to PipX at low 2-OG concentrations. The structure of PipX, when bound to NtcA or PII, consists of an N-terminal, five-stranded ß-sheet (conforming a Tudor-like domain), and two long α-helices. These helices adopt either a flexed conformation, where they are in close contact and in an antiparallel mutual orientation, also packing against the ß-sheet, or an open conformation (observed only in the PII-PipX complex) where the last α-helix moves apart from the rest of the protein. The aim of this work was to study the structure and dynamics of isolated PipX in solution by NMR. The backbone chemical shifts, the hydrogen-exchange, and the NOE patterns indicated that the isolated, monomeric PipX structure was formed by an N-terminal five-stranded ß-sheet and two C-terminal α-helices. Furthermore, the observed NOEs between the two helices, and of α-helix2 with ß-strand2 suggested that PipX adopted a flexed conformation. The ß-strands 1 and 5 were highly flexible, as shown by the lack of interstrand backbone-backbone NOEs; in addition, the 15N-dynamics indicated that the C terminus of ß-strand4 and the following ß-turn (Phe42-Thr47), and the C-cap of α-helix1 (Arg70-Asn71) were particularly mobile. These two regions could act as hinges, allowing PipX to interact with its partners, including PlmA in the newly recognized PII-PipX-PlmA ternary complex.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Proteínas PII Reguladoras de Nitrogênio/química , Conformação Proteica , Transdução de Sinais , Synechococcus/metabolismo , Fatores de Transcrição/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 3): 146-151, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28291750

RESUMO

AmtR belongs to the TetR family of transcription regulators and is a global nitrogen regulator that is induced under nitrogen-starvation conditions in Corynebacterium glutamicum. AmtR regulates the expression of transporters and enzymes for the assimilation of ammonium and alternative nitrogen sources, for example urea, amino acids etc. The recognition of operator DNA by homodimeric AmtR is not regulated by small-molecule effectors as in other TetR-family members but by a trimeric adenylylated PII-type signal transduction protein named GlnK. The crystal structure of ligand-free AmtR (AmtRorth) has been solved at a resolution of 2.1 Šin space group P21212. Comparison of its quaternary assembly with the previously solved native AmtR structure (PDB entry 5dy1) in a trigonal crystal system (AmtRtri) not only shows how a solvent-content reduction triggers a space-group switch but also suggests a model for how dimeric AmtR might stoichiometrically interact with trimeric adenylylated GlnK.


Assuntos
Proteínas de Bactérias/química , Corynebacterium glutamicum/química , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas Repressoras/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Corynebacterium glutamicum/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
14.
FEBS J ; 283(6): 1039-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26744254

RESUMO

UNLABELLED: Corynebacterium glutamicum is a bacterium used for industrial amino acid production, and understanding its metabolic pathway regulation is of high biotechnological interest. Here, we report crystal structures of AmtR, the global nitrogen regulator of C. glutamicum, in apo (2.25-Å and 2.65-Å resolution) and DNA-bound (3-Å resolution) forms. These structures reveal an all-α homodimeric TetR family regulator composed of a helix-turn-helix-hosting N-terminal DNA-binding domain and a C-terminal dimerization domain. AmtR has several unique structural features that appear to be invariant among AmtR proteins, which may be related to its regulation by the nitrogen-sensing trimeric protein GlnK rather than by small-molecule effectors. As compared with other TetR family members, AmtR has an extra C-terminal helix, a large extended external loop that resembles the flexible tranducer T-loop of GlnK in sequence, and a large open cavity towards the intersubunit region that changes shape upon DNA binding. The marked kinking of helix 4 decreases in the DNA-bound form. The binding of one AmtR dimer to its DNA operator involves not only the insertion of helices 3 and 3' in adjacent turns of the double-helix major groove, but also the anchoring of 19-residue, arginine-rich and proline-rich N-terminal extensions to two external minor grooves. Electrophoretic mobility shift assays with a deletion mutant reveal that the 19-residue extension is crucial for AmtR binding to DNA. N-extension anchoring explains the flanking by AT sequences of the recognized target DNA sequence core. The significance of these findings for the entire TetR family of regulators and for GlnK regulation of AmtR is discussed. DATABASE: The atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.pdb.org [PDB ID codes 5DXZ (native AmtR), 5DY1 (SeMet-AmtR), and 5DY0 (AmtR·DNA)].


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Nitrogênio/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Corynebacterium/genética , Corynebacterium/metabolismo , Corynebacterium glutamicum/genética , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Repressoras/genética , Homologia de Sequência de Aminoácidos
15.
FEBS J ; 283(3): 425-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26527104

RESUMO

PII signalling proteins constitute one of the largest families of signalling proteins in nature. An even larger superfamily of trimeric sensory proteins with the same architectural principle as PII proteins appears in protein structure databases. Large surface-exposed flexible loops protrude from the intersubunit faces, where effector molecules are bound that tune the conformation of the loops. Via this mechanism, PII proteins control target proteins in response to cellular ATP/ADP levels and the 2-oxoglutarate status, thereby coordinating the cellular carbon/nitrogen balance. The antagonistic (ATP versus ADP) and synergistic (2-oxoglutarate and ATP) mode of effector molecule binding is further affected by PII -receptor interaction, leading to a highly sophisticated signalling network organized by PII . Altogether, it appears that PII is a multitasking information processor that, depending on its interaction environment, differentially transmits information on the energy status and the cellular 2-oxoglutarate level. In addition to the basic mode of PII function, several bacterial PII proteins may transmit a signal of the cellular glutamine status via covalent modification. Remarkably, during the evolution of plant chloroplasts, glutamine signalling by PII proteins was re-established by acquisition of a short sequence extension at the C-terminus. This plant-specific C-terminus makes the interaction of plant PII proteins with one of its targets, the arginine biosynthetic enzyme N-acetyl-glutamate kinase, glutamine-dependent.


Assuntos
Proteínas PII Reguladoras de Nitrogênio/metabolismo , Transdução de Sinais , Modelos Moleculares , Proteínas PII Reguladoras de Nitrogênio/química
16.
FEBS J ; 282(24): 4797-809, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433003

RESUMO

Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Herbaspirillum/enzimologia , Ácidos Cetoglutáricos/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Calorimetria , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Herbaspirillum/fisiologia , Cinética , Ligantes , Fixação de Nitrogênio , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estresse Fisiológico , Titulometria
17.
J Phys Chem B ; 119(39): 12561-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26322628

RESUMO

The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.


Assuntos
Proteínas de Bactérias/química , Eletricidade , Herbaspirillum/química , Proteínas PII Reguladoras de Nitrogênio/química , Microscopia de Força Atômica , Silicones/química
18.
PLoS One ; 10(8): e0137114, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317540

RESUMO

PII proteins constitute a superfamily of highly conserved signaling devices, common in all domains of life. Through binding of the metabolites ATP, ADP and 2-oxoglutarate (2-OG), they undergo conformational changes which allow them to regulate a variety of target proteins including enzymes, transport proteins and transcription factors. But, in reverse, these target proteins also modulate the metabolite sensing properties of PII, as has been recently shown. We used this effect to refine our PII based Förster resonance energy transfer (FRET) sensor and amplify its sensitivity towards ADP. With this enhanced sensor setup we addressed the question whether the PII protein from the model organism Synechococcus elongatus autonomously switches into the ADP conformation through ATPase activity as proposed in a recently published model. The present study disproves ATPase activity as a relevant mechanism for the transition of PII into the ADP state. In the absence of 2-OG, only the ATP/ADP ratio and concentration of ADP directs the competitive interaction of PII with two targets, one of which preferentially binds PII in the ATP-state, the other in the ADP-state.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Synechococcus/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Ácidos Cetoglutáricos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Conformação Proteica , Synechococcus/química
19.
Nat Commun ; 6: 7283, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26073186

RESUMO

Recent successes in simulating protein structure and folding dynamics have demonstrated the power of molecular dynamics to predict the long timescale behaviour of proteins. Here, we extend and improve these methods to predict molecular switches that characterize conformational change pathways between the active and inactive state of nitrogen regulatory protein C (NtrC). By employing unbiased Markov state model-based molecular dynamics simulations, we construct a dynamic picture of the activation pathways of this key bacterial signalling protein that is consistent with experimental observations and predicts new mutants that could be used for validation of the mechanism. Moreover, these results suggest a novel mechanistic paradigm for conformational switching.


Assuntos
Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Proteínas PII Reguladoras de Nitrogênio/química , Mapas de Interação de Proteínas , Proteínas de Bactérias/metabolismo , Cadeias de Markov , Modelos Moleculares , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Estrutura Terciária de Proteína
20.
Nat Commun ; 6: 7284, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26073309

RESUMO

The interconversion between inactive and active protein states, traditionally described by two static structures, is at the heart of signalling. However, how folded states interconvert is largely unknown due to the inability to experimentally observe transition pathways. Here we explore the free energy landscape of the bacterial response regulator NtrC by combining computation and nuclear magnetic resonance, and discover unexpected features underlying efficient signalling. We find that functional states are defined purely in kinetic and not structural terms. The need of a well-defined conformer, crucial to the active state, is absent in the inactive state, which comprises a heterogeneous collection of conformers. The transition between active and inactive states occurs through multiple pathways, facilitated by a number of nonnative transient hydrogen bonds, thus lowering the transition barrier through both entropic and enthalpic contributions. These findings may represent general features for functional conformational transitions within the folded state.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Proteínas de Bactérias/química , Entropia , Ligação de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Cadeias de Markov , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas PII Reguladoras de Nitrogênio/química , Estrutura Terciária de Proteína , Transdução de Sinais , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...