Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 21(1): 20, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123481

RESUMO

BACKGROUND: During the recombinant protein expression, most heterologous proteins expressed in E. coli cell factories are generated as insoluble and inactive aggregates, which prohibit E. coli from being employed as an expression host despite its numerous advantages and ease of use. The yeast mitochondrial aconitase protein, which has a tendency to aggregate when expressed in E. coli cells in the absence of heterologous chaperones GroEL/ES was utilised as a model to investigate how the modulation of physiological stimuli in the host cell can increase protein solubility. The presence of folding modulators such as exogenous molecular chaperones or osmolytes, as well as process variables such as incubation temperature, inducer concentrations, growth media are all important for cellular folding and are investigated in this study. This study also investigated how the cell's stress response system activates and protects the proteins from aggregation. RESULTS: The cells exposed to osmolytes plus a pre-induction heat shock showed a substantial increase in recombinant aconitase activity when combined with modulation of process conditions. The concomitant GroEL/ES expression further assists the folding of these soluble aggregates and increases the functional protein molecules in the cytoplasm of the recombinant E. coli cells. CONCLUSIONS: The recombinant E. coli cells enduring physiological stress provide a cytosolic environment for the enhancement in the solubility and activity of the recombinant proteins. GroEL/ES-expressing cells not only aided in the folding of recombinant proteins, but also had an effect on the physiology of the expression host. The improvement in the specific growth rate and aconitase production during chaperone GroEL/ES co-expression is attributed to the reduction in overall cellular stress caused by the expression host's aggregation-prone recombinant protein expression.


Assuntos
Aconitato Hidratase/química , Escherichia coli/metabolismo , Proteínas Reguladoras de Ferro/química , Dobramento de Proteína , Proteínas Recombinantes/química , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Biomolecules ; 11(9)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34572542

RESUMO

Maintaining iron homeostasis is fundamental for almost all living beings, and its deregulation correlates with severe and debilitating pathologies. The process is made more complicated by the omnipresence of iron and by its role as a fundamental component of a number of crucial metallo proteins. The response to modifications in the amount of the free-iron pool is performed via the inhibition of ferritin translation by sequestering consensus messenger RNA (mRNA) sequences. In turn, this is regulated by the iron-sensitive conformational equilibrium between cytosolic aconitase and IRP1, mediated by the presence of an iron-sulfur cluster. In this contribution, we analyze by full-atom molecular dynamics simulation, the factors leading to both the interaction with mRNA and the conformational transition. Furthermore, the role of the iron-sulfur cluster in driving the conformational transition is assessed by obtaining the related free energy profile via enhanced sampling molecular dynamics simulations.


Assuntos
Aconitato Hidratase/metabolismo , Citosol/enzimologia , Ferritinas/metabolismo , Hemostasia , Proteínas Reguladoras de Ferro/metabolismo , Ferro/metabolismo , Biossíntese de Proteínas , Aconitato Hidratase/química , Animais , Galinhas , Humanos , Proteínas Reguladoras de Ferro/química , Simulação de Dinâmica Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Termodinâmica , Fatores de Tempo
3.
Curr Opin Chem Biol ; 55: 34-44, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31918395

RESUMO

The recently solved crystal structures of the human cysteine desulfurase NFS1, in complex with the LYR protein ISD11, the acyl carrier protein ACP, and the main scaffold ISCU, have shed light on the molecular interactions that govern initial cluster assembly on ISCU. Here, we aim to highlight recent insights into iron-sulfur (Fe-S) cluster (ISC) biogenesis in mammalian cells that have arisen from the crystal structures of the core ISC assembly complex. We will also discuss how ISCs are delivered to recipient proteins and the challenges that remain in dissecting the pathways that deliver clusters to numerous Fe-S recipient proteins in both the mitochondrial matrix and cytosolic compartments of mammalian cells.


Assuntos
Proteína de Transporte de Acila/química , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação ao Ferro/química , Ferro/química , Enxofre/química , Proteína de Transporte de Acila/metabolismo , Sequência de Aminoácidos , Liases de Carbono-Enxofre/química , Biologia Computacional , Cristalização , Citosol/metabolismo , Citosol/ultraestrutura , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Reguladoras de Ferro/química , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Frataxina
4.
Biochemistry ; 58(46): 4596-4609, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31664822

RESUMO

In recent years, the mammalian mitochondrial protein complex for iron-sulfur cluster assembly has been the focus of important studies. This is partly because of its high degree of relevance in cell metabolism and because mutations of the involved proteins are the cause of several human diseases. Cysteine desulfurase NFS1 is the key enzyme of the complex. At present, it is well-known that the active form of NFS1 is stabilized by the small protein ISD11. In this work, the structure of the human mitochondrial ACP-ISD11 heterodimer was determined at 2.0 Å resolution. ACP-ISD11 forms a cooperative unit stabilized by several ionic interactions, hydrogen bonds, and apolar interactions. The 4'-phosphopantetheine-acyl chain, which is covalently bound to ACP, interacts with several residues of ISD11, modulating together with ACP the foldability of ISD11. Recombinant human ACP-ISD11 was able to interact with the NFS1 desulfurase, thus yielding an active enzyme, and the NFS1/ACP-ISD11 core complex was activated by frataxin and ISCU proteins. Internal motions of ACP-ISD11 were studied by molecular dynamics simulations, showing the persistence of the interactions between both protein chains. The conformation of the dimer is similar to that found in the context of the (NFS1/ACP-ISD11)2 supercomplex core, which contains the Escherichia coli ACP instead of the human variant. This fact suggests a sequential mechanism for supercomplex consolidation, in which the ACP-ISD11 complex may fold independently and, after that, the NFS1 dimer would be stabilized.


Assuntos
Complexo I de Transporte de Elétrons/química , Proteínas Reguladoras de Ferro/química , Cristalografia por Raios X , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Ligação de Hidrogênio , Proteínas Reguladoras de Ferro/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica
5.
PLoS Pathog ; 15(9): e1007651, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513674

RESUMO

Bacterial type IV secretion systems (T4SS) are a highly diversified but evolutionarily related family of macromolecule transporters that can secrete proteins and DNA into the extracellular medium or into target cells. It was recently shown that a subtype of T4SS harboured by the plant pathogen Xanthomonas citri transfers toxins into target cells. Here, we show that a similar T4SS from the multi-drug-resistant opportunistic pathogen Stenotrophomonas maltophilia is proficient in killing competitor bacterial species. T4SS-dependent duelling between S. maltophilia and X. citri was observed by time-lapse fluorescence microscopy. A bioinformatic search of the S. maltophilia K279a genome for proteins containing a C-terminal domain conserved in X. citri T4SS effectors (XVIPCD) identified twelve putative effectors and their cognate immunity proteins. We selected a putative S. maltophilia effector with unknown function (Smlt3024) for further characterization and confirmed that it is indeed secreted in a T4SS-dependent manner. Expression of Smlt3024 in the periplasm of E. coli or its contact-dependent delivery via T4SS into E. coli by X. citri resulted in reduced growth rates, which could be counteracted by expression of its cognate inhibitor Smlt3025 in the target cell. Furthermore, expression of the VirD4 coupling protein of X. citri can restore the function of S. maltophilia ΔvirD4, demonstrating that effectors from one species can be recognized for transfer by T4SSs from another species. Interestingly, Smlt3024 is homologous to the N-terminal domain of large Ca2+-binding RTX proteins and the crystal structure of Smlt3025 revealed a topology similar to the iron-regulated protein FrpD from Neisseria meningitidis which has been shown to interact with the RTX protein FrpC. This work expands our current knowledge about the function of bacteria-killing T4SSs and increases the panel of effectors known to be involved in T4SS-mediated interbacterial competition, which possibly contribute to the establishment of S. maltophilia in clinical and environmental settings.


Assuntos
Proteínas de Bactérias/fisiologia , Stenotrophomonas maltophilia/fisiologia , Stenotrophomonas maltophilia/patogenicidade , Sistemas de Secreção Tipo IV/fisiologia , Sequência de Aminoácidos , Antibiose/genética , Antibiose/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/fisiologia , Modelos Moleculares , Infecções Oportunistas/microbiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Stenotrophomonas maltophilia/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/genética , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento
6.
J Inorg Biochem ; 198: 110726, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31220756

RESUMO

Iron regulatory proteins (IRPs) control iron metabolism in mammalian cells by binding to the iron-responsive element (IRE) in the target mRNA. Heme regulatory motifs (HRMs) are conserved in the two IRP homologues IRP1 and IRP2 that specifically bind to two and three heme equivalents, respectively; however, only the heme binding to the iron-dependent degradation (IDD) domain of IRP2 causes heme-mediated oxidation, which does not occur in IRP1. Therefore, the functional significance of conserved HRMs outside the IDD domain is yet unclear. In this study, spectroscopic heme titration with IRP mutants confirmed heme binding to each HRM in IRPs, and the effect of heme binding to HRMs on IRE binding was examined. Native polyacrylamide gel electrophoresis analysis revealed that heme binding to HRMs near the IRE binding site inhibits complex formation between IRPs and IRE without oxidative modification, indicating that the function of HRMs varies outside and within the IDD domain. However, the formation of a typical reactive oxygen species (ROS), hydrogen peroxide, was spectroscopically detected in both heme-bound IRPs. Comparing the heme environmental structures surrounding HRMs, the flexible conformation and many amino acid residues sensitive to ROS of the IDD domain were suggested to promote specific oxidation by the generated hydrogen peroxide. Thus, heme binding to HRM near the IRE binding site sterically interferes with IRE binding, while HRM in the IDD domain facilitates specific heme-mediated oxidation of the protein moiety and the protein degradation via the ubiquitin-proteasome system, resulting in the inhibition of IRE binding.


Assuntos
Heme/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/genética , Lepidópteros/genética , Mutação , Ligação Proteica , Coelhos
7.
Fish Shellfish Immunol ; 89: 632-640, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30995542

RESUMO

Iron homeostasis is vital to organismal health; it is maintained by the iron regulatory protein (IRP)-iron-responsive element (IRE) signaling pathway. In the Chinese mitten crab Eriocheir sinensis, EsFer-1 and EsFer-2 reportedly have a putative IRE, but an IRP has not yet been identified. In this study, we successfully amplified the full-length cDNA of EsIRP using gene cloning and rapid amplification of cDNA ends techniques. The length of this cDNA was 4474 bp, and it included a 2682-bp open reading frame encoding 893 amino acids. Using quantitative real-time PCR, mRNA transcripts of EsIRP were detected in various tissues. The highest and lowest expression level was detected in the muscle and gills, respectively. In response to Staphylococcus aureus and Vibrio parahaemolyticus challenge, the transcription level of EsIRP was downregulated and that of EsFer-1 and EsFer-2 was upregulated in hemocytes. EsIRP knockdown resulted in increased expression of both EsFer-1 and EsFer-2. After EsFer-1 and EsFer-2 knockdown, the bacterial clearance ability of E. sinensis against S. aureus and V. parahaemolyticus was impaired. In conclusion, our results suggest that the IRP-IRE signaling pathway plays an important role in the innate immune system response in E. sinensis.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Proteínas Reguladoras de Ferro/química , Masculino , Filogenia , Alinhamento de Sequência , Staphylococcus aureus/fisiologia , Vibrio parahaemolyticus/fisiologia
8.
Int J Biol Macromol ; 125: 1156-1167, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30579900

RESUMO

Survival of the Acinetobacter baumannii inside host requires different micronutrients such as iron, but their bioavailability is limited because of nutritional immunity created by host. A. baumannii has to develop mechanisms to acquire nutrient iron during infection. The present study is an attempt to identify membrane proteins involved in iron sequestration mechanism of A. baumannii using two-dimensional electrophoresis and LC-MS/MS analysis. The identified iron-regulated membrane protein (IRMP) of A. baumannii was used for its interaction studies with different siderophores, and designing of the inhibitor against A. baumannii targeting this IRMP. Membrane proteomic results identified over-expression of four membrane proteins (Fhu-E receptor, ferric-acinetobactin receptor, ferrienterochelin receptor, and ferric siderophore receptor) under iron-limited condition. A. baumannii produces siderophores that have good interaction with the FhuE receptor. Result also showed that FhuE receptor has interaction with siderophores produced by other bacteria. Interaction of FhuE receptor and siderophores helps in iron sequestration and survival of Acinetobacter under nutritional immunity imposed by the host. Hence it becomes essential to find a potential inhibitor for the FhuE receptor that can inhibit the survival of A. baumannii in the host. In-silico screening, and molecular mechanics studies identified ZINC03794794 and ZINC01530652 as a likely lead to design inhibitor against the FhuE receptor of A. baumannii. The designed inhibitor is experimentally validated for its antibacterial activity on the A. baumannii. Therefore, designed inhibitor interferes with the iron acquisition mechanism of Acinetobacter hence may prove useful for preventing infection caused by A. baumannii by limiting nutrient availability.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Proteômica , Sideróforos/farmacologia , Carbapenêmicos/química , Carbapenêmicos/farmacologia , Cromatografia Líquida , Ferro/química , Proteínas Reguladoras de Ferro/química , Proteínas de Membrana/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Proteoma , Proteômica/métodos , Sideróforos/química , Espectrometria de Massas em Tandem
9.
Structure ; 26(8): 1127-1136.e4, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29983374

RESUMO

Cysteine desulfurase plays a central role in mitochondrial iron-sulfur cluster biogenesis by generating sulfur through the conversion of L-cysteine to L-alanine and by serving as the platform for assembling other components of the biosynthetic machinery, including ISCU, frataxin, and ferredoxin. The human mitochondrial cysteine desulfurase complex consists of two copies each of NFS1, ISD11, and acyl carrier protein. We describe results from chemical crosslinking coupled with tandem mass spectrometry and small-angle X-ray scattering studies that are consistent with a closed NFS1 dimer rather than an open one for both the cysteine desulfurase-ISCU and cysteine desulfurase-ISCU-frataxin complexes. We present a structural model for the cysteine desulfurase-ISCU-frataxin complex derived from chemical crosslinking restraints in conjunction with the recent crystal structure of the cysteine desulfurase-ISCU-zinc complex and distance constraints from nuclear magnetic resonance.


Assuntos
Proteína de Transporte de Acila/química , Liases de Carbono-Enxofre/química , Proteínas de Ligação ao Ferro/química , Proteínas Reguladoras de Ferro/química , Proteínas Ferro-Enxofre/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Sítios de Ligação , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Clonagem Molecular , Reagentes de Ligações Cruzadas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Maleimidas/química , Mitocôndrias/química , Mitocôndrias/enzimologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Espectrometria de Massas em Tandem , Difração de Raios X , Frataxina
10.
J Inorg Biochem ; 182: 238-248, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29449016

RESUMO

Iron regulatory proteins (IRPs), regulators of iron metabolism in mammalian cells, control the translation of proteins involved in iron uptake, storage and utilization by binding to specific iron-responsive element (IRE) sequences of mRNAs. Two homologs of IRPs (IRP1 and IRP2) have a typical heme regulatory motif (HRM), a consensus sequence found in "heme-regulated proteins". However, specific heme binding to HRM has been reported only for IRP2, which is essential for oxidative modification and loss of binding to target mRNAs. In this paper, we confirmed that IRP1 also specifically binds two molar equivalents of heme, and found that the absorption and resonance Raman spectra of heme-bound IRP1 were quite similar to those of heme-bound IRP2. This shows that the heme environmental structures in IRP1 are close to those of proteins using heme as a regulatory molecule. Pulse radiolysis experiments, however, clearly revealed an axial ligand exchange from Cys to His immediately after the reduction of the heme iron to form a 5-coordinate His-ligated heme in heme-bound IRP2, whereas the 5-coordinate His-ligated heme was not observed after the reduction of heme-bound IRP1. Considering that the oxidative modification is only observed in heme-bound IRP2, but not IRP1, probably owing to the structural flexibility of IRP2, we propose that the transient 5-coordinate His-ligated heme is a prerequisite for oxidative modification of heme-bound IRP2, which functionally differentiates heme binding of IRP2 from that of IRP1.


Assuntos
Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/metabolismo , Heme/química , Heme/metabolismo , Ferro/metabolismo , Ligação Proteica
11.
Nat Commun ; 8(1): 1287, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29097656

RESUMO

Iron-sulfur (Fe/S) clusters are essential protein cofactors crucial for many cellular functions including DNA maintenance, protein translation, and energy conversion. De novo Fe/S cluster synthesis occurs on the mitochondrial scaffold protein ISCU and requires cysteine desulfurase NFS1, ferredoxin, frataxin, and the small factors ISD11 and ACP (acyl carrier protein). Both the mechanism of Fe/S cluster synthesis and function of ISD11-ACP are poorly understood. Here, we present crystal structures of three different NFS1-ISD11-ACP complexes with and without ISCU, and we use SAXS analyses to define the 3D architecture of the complete mitochondrial Fe/S cluster biosynthetic complex. Our structural and biochemical studies provide mechanistic insights into Fe/S cluster synthesis at the catalytic center defined by the active-site Cys of NFS1 and conserved Cys, Asp, and His residues of ISCU. We assign specific regulatory rather than catalytic roles to ISD11-ACP that link Fe/S cluster synthesis with mitochondrial lipid synthesis and cellular energy status.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Chaetomium/química , Chaetomium/genética , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Difração de Raios X , Frataxina
12.
Methods Enzymol ; 595: 107-160, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28882199

RESUMO

Although Fe-S clusters may assemble spontaneously from elemental iron and sulfur in protein-free systems, the potential toxicity of free Fe2+, Fe3+, and S2- ions in aerobic environments underscores the requirement for specialized proteins to oversee the safe assembly of Fe-S clusters in living cells. Prokaryotes first developed multiprotein systems for Fe-S cluster assembly, from which mitochondria later derived their own system and became the main Fe-S cluster suppliers for eukaryotic cells. Early studies in yeast and human mitochondria indicated that Fe-S cluster assembly in eukaryotes is centered around highly conserved Fe-S proteins (human ISCU) that serve as scaffolds upon which new Fe-S clusters are assembled from (i) elemental sulfur, provided by a pyridoxal phosphate-dependent cysteine desulfurase (human NFS1) and its stabilizing-binding partner (human ISD11), and (ii) elemental iron, provided by an iron-binding protein of the frataxin family (human FXN). Further studies revealed that all of these proteins could form stable complexes that could reach molecular masses of megadaltons. However, the protein-protein interaction surfaces, catalytic mechanisms, and overall architecture of these macromolecular machines remained undefined for quite some time. The delay was due to difficulties inherent in reconstituting these very large multiprotein complexes in vitro or isolating them from cells in sufficient quantities to enable biochemical and structural studies. Here, we describe approaches we developed to reconstitute the human Fe-S cluster assembly machinery in Escherichia coli and to define its remarkable architecture.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Ferro/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Enxofre/química , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Escherichia coli/metabolismo , Humanos , Ferro/toxicidade , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/química , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Enxofre/toxicidade , Frataxina
13.
J Biol Chem ; 292(31): 12744-12753, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28615439

RESUMO

Fe-S cofactors are composed of iron and inorganic sulfur in various stoichiometries. A complex assembly pathway conducts their initial synthesis and subsequent binding to recipient proteins. In this minireview, we discuss how discovery of the role of the mammalian cytosolic aconitase, known as iron regulatory protein 1 (IRP1), led to the characterization of the function of its Fe-S cluster in sensing and regulating cellular iron homeostasis. Moreover, we present an overview of recent studies that have provided insights into the mechanism of Fe-S cluster transfer to recipient Fe-S proteins.


Assuntos
Homeostase , Proteína 1 Reguladora do Ferro/fisiologia , Ferro/fisiologia , Modelos Moleculares , Animais , Apoenzimas/química , Apoenzimas/metabolismo , Liases de Carbono-Enxofre/biossíntese , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/fisiologia , Transporte de Elétrons , Regulação Enzimológica da Expressão Gênica , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/fisiologia , Humanos , Proteína 1 Reguladora do Ferro/biossíntese , Proteína 1 Reguladora do Ferro/química , Proteínas de Ligação ao Ferro/biossíntese , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/fisiologia , Proteínas Reguladoras de Ferro/biossíntese , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/fisiologia , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/fisiologia , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/química , Proteínas Mitocondriais/fisiologia , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiologia , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Elementos de Resposta , Succinato Desidrogenase/biossíntese , Succinato Desidrogenase/química , Succinato Desidrogenase/fisiologia , Frataxina
14.
Proc Natl Acad Sci U S A ; 114(27): E5325-E5334, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28634302

RESUMO

In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic Fe-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes.


Assuntos
Proteína de Transporte de Acila/metabolismo , Liases de Carbono-Enxofre/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sítios de Ligação , Liases de Carbono-Enxofre/química , Domínio Catalítico , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas Reguladoras de Ferro/química , Cinética , Lipídeos/química , Mitocôndrias/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Frataxina
15.
Biochemistry ; 56(12): 1797-1808, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28271877

RESUMO

Assembly of iron-sulfur (FeS) clusters is an important process in living cells. The initial sulfur mobilization step for FeS cluster biosynthesis is catalyzed by l-cysteine desulfurase NFS1, a reaction that is localized in mitochondria in humans. In humans, the function of NFS1 depends on the ISD11 protein, which is required to stabilize its structure. The NFS1/ISD11 complex further interacts with scaffold protein ISCU and regulator protein frataxin, thereby forming a quaternary complex for FeS cluster formation. It has been suggested that the role of ISD11 is not restricted to its role in stabilizing the structure of NFS1, because studies of single-amino acid variants of ISD11 additionally demonstrated its importance for the correct assembly of the quaternary complex. In this study, we are focusing on the N-terminal region of ISD11 to determine the role of N-terminal amino acids in the formation of the complex with NFS1 and to reveal the mitochondrial targeting sequence for subcellular localization. Our in vitro studies with the purified proteins and in vivo studies in a cellular system show that the first 10 N-terminal amino acids of ISD11 are indispensable for the activity of NFS1 and especially the conserved "LYR" motif is essential for the role of ISD11 in forming a stable and active complex with NFS1.


Assuntos
Liases de Carbono-Enxofre/química , Proteínas de Ligação ao Ferro/química , Proteínas Reguladoras de Ferro/química , Proteínas Ferro-Enxofre/química , Ferro/química , Mitocôndrias/metabolismo , Enxofre/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mitocôndrias/genética , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Transdução de Sinais , Enxofre/metabolismo , Frataxina
16.
Arch Biochem Biophys ; 616: 30-39, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28131773

RESUMO

FBXL5 is a subunit of the SCFFBXL5 ubiquitin ligase complex that targets the proteasomal degradation of iron regulatory protein IRP2, which is an important regulator in iron metabolism. The degradation of FBXL5 itself is regulated in an iron- and oxygen-responsive manner through its diiron center containing Hr-like domain. Although the crystal structure of the Hr-like domain of FBXL5 and its degradation based on iron/oxygen sensing has been reported, the redox sensing molecular mechanism is still not clear. Herein the redox properties of FBXL5 were investigated via EPR, direct electrochemistry, SRCD, fluorescence emission spectroscopy, and redox kinetics. The results indicated that the conformation and function of FBXL5 are tuned by the redox states of the diiron center. The redox reactions of the diiron center are accompanied with conformational changes and iron release, which are associated with FBXL5 stability and degradation. These results provide insights into the redox sensing mechanism by which FBXL5 can serve as an iron metabolism regulator within mammalian cells.


Assuntos
Proteínas F-Box/química , Proteínas Reguladoras de Ferro/química , Oxirredução , Complexos Ubiquitina-Proteína Ligase/química , Dicroísmo Circular , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Humanos , Ferro/química , Cinética , Oxigênio/química , Domínios Proteicos , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Síncrotrons , Triptofano/química
17.
J Biol Chem ; 291(40): 21296-21321, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27519411

RESUMO

Fe-S clusters, essential cofactors needed for the activity of many different enzymes, are assembled by conserved protein machineries inside bacteria and mitochondria. As the architecture of the human machinery remains undefined, we co-expressed in Escherichia coli the following four proteins involved in the initial step of Fe-S cluster synthesis: FXN42-210 (iron donor); [NFS1]·[ISD11] (sulfur donor); and ISCU (scaffold upon which new clusters are assembled). We purified a stable, active complex consisting of all four proteins with 1:1:1:1 stoichiometry. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional model of the complex with ∼14 Å resolution. Molecular dynamics flexible fitting of protein structures docked into the EM map of the model revealed a [FXN42-210]24·[NFS1]24·[ISD11]24·[ISCU]24 complex, consistent with the measured 1:1:1:1 stoichiometry of its four components. The complex structure fulfills distance constraints obtained from chemical cross-linking of the complex at multiple recurring interfaces, involving hydrogen bonds, salt bridges, or hydrophobic interactions between conserved residues. The complex consists of a central roughly cubic [FXN42-210]24·[ISCU]24 sub-complex with one symmetric ISCU trimer bound on top of one symmetric FXN42-210 trimer at each of its eight vertices. Binding of 12 [NFS1]2·[ISD11]2 sub-complexes to the surface results in a globular macromolecule with a diameter of ∼15 nm and creates 24 Fe-S cluster assembly centers. The organization of each center recapitulates a previously proposed conserved mechanism for sulfur donation from NFS1 to ISCU and reveals, for the first time, a path for iron donation from FXN42-210 to ISCU.


Assuntos
Liases de Carbono-Enxofre/química , Proteínas de Ligação ao Ferro/química , Proteínas Reguladoras de Ferro/química , Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/química , Simulação de Dinâmica Molecular , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Frataxina
18.
PLoS One ; 11(7): e0157895, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27427956

RESUMO

The eukaryotic protein Isd11 is a chaperone that binds and stabilizes the central component of the essential metabolic pathway responsible for formation of iron-sulfur clusters in mitochondria, the desulfurase Nfs1. Little is known about the exact role of Isd11. Here, we show that human Isd11 (ISD11) is a helical protein which exists in solution as an equilibrium between monomer, dimeric and tetrameric species when in the absence of human Nfs1 (NFS1). We also show that, surprisingly, recombinant ISD11 expressed in E. coli co-purifies with the bacterial orthologue of NFS1, IscS. Binding is weak but specific suggesting that, despite the absence of Isd11 sequences in bacteria, there is enough conservation between the two desulfurases to retain a similar mode of interaction. This knowledge may inform us on the conservation of the mode of binding of Isd11 to the desulfurase. We used evolutionary evidence to suggest Isd11 residues involved in the interaction.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Escherichia coli/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Sequência de Aminoácidos , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/isolamento & purificação , Escherichia coli/química , Humanos , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/isolamento & purificação , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
19.
J Biol Chem ; 290(43): 25876-90, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26342079

RESUMO

Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.


Assuntos
Liases de Carbono-Enxofre/fisiologia , Proteínas Reguladoras de Ferro/fisiologia , Doenças Mitocondriais/fisiopatologia , Sequência de Aminoácidos , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Progressão da Doença , Células HeLa , Humanos , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Doenças Mitocondriais/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estabilidade Proteica , Homologia de Sequência de Aminoácidos
20.
Appl Environ Microbiol ; 81(23): 8044-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386052

RESUMO

Magnetotactic bacteria are capable of forming nanosized, membrane-enclosed magnetosomes under iron-rich and oxygen-limited conditions. The complete genomic sequence of Magnetospirillum gryphiswaldense strain MSR-1 has been analyzed and found to contain five fur homologue genes whose protein products are predicted to be involved in iron homeostasis and the response to oxidative stress. Of these, only the MGMSRv2_3149 gene (irrB) was significantly downregulated under high-iron and low-oxygen conditions, during the transition of cell growth from the logarithmic to the stationary phase. The encoded protein, IrrB, containing the conserved HHH motif, was identified as an iron response regulator (Irr) protein belonging to the Fur superfamily. To investigate the function of IrrB, we constructed an irrB deletion mutant (ΔirrB). The levels of cell growth and magnetosome formation were lower in the ΔirrB strain than in the wild type (WT) under both high-iron and low-iron conditions. The ΔirrB strain also showed lower levels of iron uptake and H2O2 tolerance than the WT. Quantitative real-time reverse transcription-PCR analysis indicated that the irrB mutation reduced the expression of numerous genes involved in iron transport, iron storage, heme biosynthesis, and Fe-S cluster assembly. Transcription studies of the other fur homologue genes in the ΔirrB strain indicated complementary functions of the Fur proteins in MSR-1. IrrB appears to be directly responsible for iron metabolism and homeostasis and to be indirectly involved in magnetosome formation. We propose two IrrB-regulated networks (under high- and low-iron conditions) in MSR-1 cells that control the balance of iron and oxygen metabolism and account for the coexistence of five Fur homologues.


Assuntos
Proteínas Reguladoras de Ferro/genética , Ferro/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/genética , Estresse Oxidativo , Oxigênio/metabolismo , Sequência de Aminoácidos , Regulação para Baixo , Óxido Ferroso-Férrico/metabolismo , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/metabolismo , Magnetospirillum/metabolismo , Alinhamento de Sequência , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...