Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54.439
Filtrar
1.
Gene ; 932: 148880, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181273

RESUMO

It has been discovered that Trichorhinophalangeal Syndrome-1 (TRPS1), a novel member of the GATA transcription factor family, participates in both normal physiological processes and the development of numerous diseases. Recently, TRPS1 has been identified as a new biomarker to aid in cancer diagnosis and is very common in breast cancer (BC), especially in triple-negative breast cancer (TNBC). In this review, we discussed the structure and function of TRPS1 in various normal cells, focused on its role in tumorigenesis and tumor development, and summarize the research status of TRPS1 in the occurrence and development of BC. We also analyzed the potential use of TRPS1 in guiding clinically personalized precision treatment and the development of targeted drugs.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteínas de Ligação a DNA , Proteínas Repressoras , Fatores de Transcrição , Humanos , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinogênese/genética , Carcinogênese/metabolismo , Animais
2.
Redox Rep ; 29(1): 2404794, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39314036

RESUMO

OBJECTIVES: Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes and is the most common cause of end-stage renal disease. Tripartite motif-containing (TRIM) proteins are a large family of E3 ubiquitin ligases that contribute to protein quality control by regulating the ubiquitin - proteasome system. However, the detailed mechanisms through which various TRIM proteins regulate downstream events have not yet been fully elucidated. The current research aimed to determine the function and mechanism of TRIM22 in DN. METHODS: DN models were established by inducing HK-2 cells using high glucose (HG) and diabetic mice (db/db mice). Cell viability, apoptosis, mitochondrial reactive oxygen species, and mitochondrial membrane potential were detected by Cell Counting Kit-8 and flow cytometry, respectively. Pathological changes were evaluated using hematoxylin and eosin, periodic acid schiff and Masson staining. The binding between TRIM22 and optic atrophy 1 (OPA1) was analyzed using co-immunoprecipitation. The m6A level of TRIM22 5'UTR was detected using RNA immunoprecipitation. RESULTS: TRIM22 was highly expressed in patients with DN. TRIM22 silencing inhibited HG-induced apoptosis and mitochondrial dysfunction in HK-2 cells. Promoting mitochondrial fusion alleviated TRIM22 overexpression-induced cell apoptosis, mitochondrial dysfunction in HK-2 cells, and kidney damage in mice. Mechanistically, TRIM22 interacted with OPA1 and induced its ubiquitination. Wilms tumor 1-associating protein (WTAP) promoted m6A modification of TRIM22 through the m6A reader insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). DISCUSSION: TRIM22 silencing inhibited the progression of DN by interacting with OPA1 and inducing its ubiquitination. Furthermore, WTAP promoted m6A modification of TRIM22 via IGF2BP1.


Assuntos
Nefropatias Diabéticas , GTP Fosfo-Hidrolases , Antígenos de Histocompatibilidade Menor , Mitocôndrias , Proteínas com Motivo Tripartido , Ubiquitinação , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Animais , Humanos , Camundongos , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Mitocôndrias/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Masculino , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Apoptose , Diabetes Mellitus Experimental/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
J Cell Mol Med ; 28(18): e70114, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39317961

RESUMO

Nephrotoxicity is a major side effect of platinum-based antineoplastic drugs, and there is currently no available therapeutic intervention. Our study suggests that targeting histone deacetylase 8 could be a potential treatment for cisplatin-induced acute kidney injury (AKI). In a murine model of AKI induced by cisplatin, the administration of PCI-34051, a selective inhibitor of HDAC8, resulted in significant improvement in renal function and reduction in renal tubular damage and apoptosis. Pharmacological inhibition of HDAC8 also decreased caspase-3 and PARP1 cleavage, attenuated Bax expression and preserved Bcl-2 levels in the injured kidney. In cultured murine renal epithelial cells (mRTECs) exposed to cisplatin, treatment with PCI-34051 or transfection with HDAC8 siRNA reduced apoptotic cell numbers and diminished expression of cleaved caspase-3 and PARP1; conversely, overexpression of HDAC8 intensified these changes. Additionally, PCI-34051 reduced p53 expression levels along with those for p21, p-CDK2 and γ-H2AX while preserving MRE11 expression in the injured kidney. Similarly, pharmacological and genetic inhibition of HDAC8 reduced γ-H2AX and enhanced MRE11 expression; conversely, HDAC8 overexpression exacerbated these changes in mRTECs exposed to cisplatin. These results support that HDAC8 inhibition attenuates cisplatin-induced AKI through a mechanism associated with reducing DNA damage and promoting its repair.


Assuntos
Injúria Renal Aguda , Apoptose , Cisplatino , Dano ao DNA , Inibidores de Histona Desacetilases , Histona Desacetilases , Reparo de DNA por Recombinação , Proteína Supressora de Tumor p53 , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Camundongos , Reparo de DNA por Recombinação/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Masculino , Camundongos Endogâmicos C57BL , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Histonas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Caspase 3/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Modelos Animais de Doenças , Ácidos Hidroxâmicos/farmacologia , Indóis
4.
Nat Commun ; 15(1): 8232, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300069

RESUMO

In addition to the ubiquitous loss of the VHL gene in clear cell renal cell carcinoma (ccRCC), co-deletions of chromatin-regulating genes are common drivers of tumorigenesis, suggesting potential vulnerability to epigenetic manipulation. A library of chemical probes targeting a spectrum of epigenetic regulators is screened using a panel of ccRCC models. MS023, a type I protein arginine methyltransferase (PRMT) inhibitor, is identified as an antitumorigenic agent. Individual knockdowns indicate PRMT1 as the specific critical dependency for cancer growth. Further analyses demonstrate impairments to cell cycle and DNA damage repair pathways upon MS023 treatment or PRMT1 knockdown. PRMT1-specific proteomics reveals an interactome rich in RNA binding proteins and further investigation indicates significant widespread disruptions in mRNA metabolism with both MS023 treatment and PRMT1 knockdown, resulting in R-loop accumulation and DNA damage over time. Our data supports PRMT1 as a target in ccRCC and informs a mechanism-based strategy for translational development.


Assuntos
Carcinoma de Células Renais , Dano ao DNA , Neoplasias Renais , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Animais , Humanos , Camundongos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteômica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/antagonistas & inibidores , RNA/metabolismo , RNA/genética , Masculino
5.
Signal Transduct Target Ther ; 9(1): 247, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39307879

RESUMO

Liver metastasis remains the primary cause of mortality in patients with colon cancer. Identifying specific driver gene mutations that contribute to metastasis may offer viable therapeutic targets. To explore clonal evolution and genetic heterogeneity within the metastasis, we conducted single-cell exome sequencing on 150 single cells isolated from the primary tumor, liver metastasis, and lymphatic metastasis from a stage IV colon cancer patient. The genetic landscape of the tumor samples revealed that both lymphatic and liver metastases originated from the same region of the primary tumor. Notably, the liver metastasis was derived directly from the primary tumor, bypassing the lymph nodes. Comparative analysis of the sequencing data for individual cell pairs within different tumors demonstrated that the genetic heterogeneity of both liver and lymphatic metastases was also greater than that of the primary tumor. This finding indicates that liver and lymphatic metastases arose from clusters of circulating tumor cell (CTC) of a polyclonal origin, rather than from a single cell from the primary tumor. Single-cell transcriptome analysis suggested that higher EMT score and CNV scores were associated with more polyclonal metastasis. Additionally, a mutation in the TRPS1 (Transcriptional repressor GATA binding 1) gene, TRPS1 R544Q, was enriched in the single cells from the liver metastasis. The mutation significantly increased CRC invasion and migration both in vitro and in vivo through the TRPS1R544Q/ZEB1 axis. Further TRPS1 mutations were detected in additional colon cancer cases, correlating with advanced-stage disease and inferior prognosis. These results reveal polyclonal seeding and TRPS1 mutation as potential mechanisms driving the development of liver metastases in colon cancer.


Assuntos
Neoplasias do Colo , Sequenciamento do Exoma , Neoplasias Hepáticas , Proteínas Repressoras , Análise de Célula Única , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Proteínas Repressoras/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Mutação , Metástase Linfática/genética , Metástase Neoplásica , Masculino , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
6.
J Clin Immunol ; 45(1): 16, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320531

RESUMO

Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF), is a rare disease with autosomal recessive inheritance. ICF syndrome. It has been reported that ICF syndrome is caused by mutations in the DNMT3B (ICF1), ZBTB24 (ICF2), CDCA7 (ICF3), and HELLS (ICF4) genes. As a result of literature research, there are no studies on transcription factor and cytokine expressions of helper T cell subsets in ICF syndrome. In the study; Th1 (TBET, STAT1, STAT4), Th2 (GATA3, STAT6), Th17 (RORgt, STAT3), Treg (FoxP3, STAT5) transcription factors and the major cytokines of these cells (Th1; IFNG, Th2; IL4, Th17; IL17A-21-22, Treg; IL10, TGFß) expressions were aimed to be evaluated by qRT-PCR. Patients (ICF3: three patients; ICF2: two patients), six heterozygous individual and five healthy controls were included in the study. All patients had hypogammaglobulinemia. Except for the CD19 cells of P2 from patients diagnosed with ICF3, the CD3, CD4, CD8, and CD19 cells in the other ICF3 patients were normal. However, the rates of these cells were low in patients with ICF2 syndrome. Factors belonging to patients' Th1, Th17 and Treg cells were significantly lower than the control. Additionally, novel mutation was detected in ZBTB24 gene (c.1121-2 A > T). Our study is the first molecular study on Th cell subsets in patients with ICF syndrome and a new mutation that causes ICF2 syndrome has been identified.


Assuntos
Citocinas , Proteínas Repressoras , Fatores de Transcrição , Humanos , Masculino , Citocinas/metabolismo , Feminino , Fatores de Transcrição/genética , Proteínas Repressoras/genética , Turquia , Linfócitos T Auxiliares-Indutores/imunologia , Pré-Escolar , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/diagnóstico , Criança , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Mutação/genética , Lactente , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/genética , Regulação da Expressão Gênica
7.
Expert Rev Mol Med ; 26: e19, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320846

RESUMO

ATXN3 is a ubiquitin hydrolase (or deubiquitinase, DUB), product of the ATXN3 gene, ubiquitously expressed in various cell types including peripheral and neuronal tissues and involved in several cellular pathways. Importantly, the expansion of the CAG trinucleotides within the ATXN3 gene leads to an expanded polyglutamine domain in the encoded protein, which has been associated with the onset of the spinocerebellar ataxia type 3, also known as Machado-Joseph disease, the most common dominantly inherited ataxia worldwide. ATXN3 has therefore been under intensive investigation for decades. In this review, we summarize the main functions of ATXN3 in proteostasis, DNA repair and transcriptional regulation, as well as the emerging role in regulating chromatin structure. The mentioned molecular functions of ATXN3 are also reviewed in the context of the pathological expanded form of ATXN3.


Assuntos
Ataxina-3 , Doença de Machado-Joseph , Peptídeos , Humanos , Ataxina-3/metabolismo , Ataxina-3/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Peptídeos/metabolismo , Peptídeos/genética , Animais , Reparo do DNA , Regulação da Expressão Gênica , Proteostase , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Expansão das Repetições de Trinucleotídeos
8.
Cell Mol Biol Lett ; 29(1): 123, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277732

RESUMO

BACKGROUND: Loss-of-function mutations of ZBTB24 cause immunodeficiency, centromeric instability, and facial anomalies syndrome 2 (ICF2). ICF2 is a rare autosomal recessive disorder with immunological defects in serum antibodies and circulating memory B cells, resulting in recurrent and sometimes fatal respiratory and gastrointestinal infections. The genotype-phenotype correlation in patients with ICF2 indicates an essential role of ZBTB24 in the terminal differentiation of B cells. METHODS: We used the clustered regularly interspaced short palindromic repeats (CRISPER)/Cas9 technology to generate B cell specific Zbtb24-deficient mice and verified the deletion specificity and efficiency by quantitative polymerase chain reaction (Q-PCR) and western blotting analyses in fluorescence-activated cell sorting (FACS)-sorted cells. The development, phenotype of B cells and in vivo responses to T cell dependent or independent antigens post immunization were analyzed by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Adoptive transfer experiment in combination with in vitro cultures of FACS-purified B cells and RNA-Seq analysis were utilized to specifically determine the impact of Zbtb24 on B cell biology as well as the underlying mechanisms. RESULTS: Zbtb24 is dispensable for B cell development and maintenance in naive mice. Surprisingly, B cell specific deletion of Zbtb24 does not evidently compromise germinal center reactions and the resulting primary and secondary antibody responses induced by T cell dependent antigens (TD-Ags), but significantly inhibits T cell independent antigen-elicited antibody productions in vivo. At the cellular level, Zbtb24-deficiency specifically impedes the plasma cell differentiation of B1 cells without impairing their survival, activation and proliferation in vitro. Mechanistically, Zbtb24-ablation attenuates heme biosynthesis partially through mTORC1 in B1 cells, and addition of exogenous hemin abrogates the differentiation defects of Zbtb24-null B1 cells. CONCLUSIONS: Zbtb24 seems to regulate antibody responses against TD-Ags B cell extrinsically, but it specifically promotes the plasma cell differentiation of B1 cells via heme synthesis in mice. Our study also suggests that defected B1 functions contribute to recurrent infections in patients with ICF2.


Assuntos
Diferenciação Celular , Doenças da Imunodeficiência Primária , Fatores de Transcrição , Animais , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Face/anormalidades , Síndromes de Imunodeficiência/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças da Imunodeficiência Primária/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
9.
BMC Cancer ; 24(1): 1171, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304838

RESUMO

BACKGROUND: The risk of cervical cancer progression in high-risk human papillomavirus (HR-HPV)-positive women is associated with cervical lesion severity and molecular heterogeneity. Classification systems based on p16 and Ki67 expression cumulative scores (0-3 each)-p16/Ki67 collectively known as an immunoscore [IS]-are an accurate and reproducible method for grading cervical intraepithelial neoplasia (CIN) lesions. Meanwhile, DNA methylation is an early event in the development of cervical cancer. Hence, this study evaluated the relationship among CIN, p16/Ki-67 IS, and PAX1/ZNF582 methylation. METHODS: In this study, 414 HPV-positive paraffin-embedded specimens were collected, and PAX1/ZNF582 methylation and the p16/ki67 IS were determined. A total of 43 invalid samples were excluded and 371 were included in the statistical analyses. There were 103 cervicitis, 95 CIN1, 71 CIN2, 89 CIN3, and 13 squamous cell carcinoma (SCC) cases. The association between PAX1/ZNF582 methylation and p16/Ki6 immunohistochemical staining scores was analyzed. RESULTS: The ΔCp of PAX1m (PAX1 methylation) and ZNF582m (ZNF582 methylation) decreased with cervical lesion severity (Cuzick trend test, all P < 0.001). The severity of the cervical lesions and p16, Ki67, and p16/Ki67 IS showed an increasing trend (Multinomial Cochran-Armitage trend test, all P < 0.001). The prevalence of PAX1m/ZNF582m increased with an increase in the IS of p16, Ki67, and p16/Ki67 (Cochran-Armitage trend test, all P < 0.001). In cervical SCC, the IS was 5-6, and the PAX1m/ZNF582m was positive. Meanwhile, heterogeneity was observed in CIN lesions: 10 cases had an IS of 3-4 and were PAX1m/ZNF582m-positive in ≤ CIN1; 1 case had an IS of 0-2 and was PAX1m/ZNF582m-positive in CIN2/3. CONCLUSIONS: Significant heterogeneity was observed in CIN lesions for p16 and Ki67 immunohistochemical staining scores and PAX1/ZNF582 methylation. This may help clinicians personalize the management of CIN based on the predicted short-term risk of cancer progression, minimizing the rate of missed CIN1 diagnoses and incorrect treatment of CIN2/3.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Metilação de DNA , Antígeno Ki-67 , Fatores de Transcrição Box Pareados , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Antígeno Ki-67/metabolismo , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Displasia do Colo do Útero/virologia , Displasia do Colo do Útero/patologia , Displasia do Colo do Útero/metabolismo , Displasia do Colo do Útero/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Adulto , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/virologia , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/virologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Idoso , Fatores de Transcrição Kruppel-Like
10.
Theranostics ; 14(14): 5512-5527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310101

RESUMO

Rationale: COPD patients are largely asymptomatic until the late stages when prognosis is generally poor. In this study, we shifted the focus to pre-COPD and smoking stages, and found enrichment of hypoxia inducible factor (HIF)-3α is in pre-COPD samples. Smoking induced regional tissue hypoxia and emphysema have been found in COPD patients. However, the mechanisms underlying hypoxia especially HIF-3α and COPD have not been investigated. Methods: We performed bulk-RNA sequencing on 36 peripheral lung tissue specimens from non-smokers, smokers, pre-COPD and COPD patients, and using "Mfuzz" algorithm to analysis the dataset dynamically. GSE171541 and EpCAM co-localization analyses were used to explore HIF-3α localization. Further, SftpcCreert2/+R26LSL-Hif3a knock-in mice and small molecular inhibitors in vitro were used to explore the involvement of HIF-3α in the pathophysiology of COPD. Results: Reactive oxygen species (ROS) and hypoxia were enriched in pre-COPD samples, and HIF-3α was downregulated in alveolar epithelial cells in COPD. In vitro experiments using lentivirus transfection, bulk-RNA seq, and RSL3 showed that the activation of the HIF-3α-GPx4 axis inhibited alveolar epithelial cell ferroptosis when treated with cigarettes smoking extracts (CSE). Further results from SftpcCreert2/+R26LSL-Hif3a knock-in mice demonstrated overexpression of HIF-3α inhibited alveolar epithelial cells ferroptosis and prevented the decline of lung function. Conclusion: Hypoxia and oxidation-related damage begins years before the onset of COPD symptoms, suggesting the imbalance and impairment of intracellular homeostatic system. The activation of the HIF-3α-GPx4 axis is a promising treatment target. By leveraging this comprehensive analysis method, more potential targets could be found and enhancing our understanding of the pathogenesis.


Assuntos
Células Epiteliais Alveolares , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Ferroptose/efeitos dos fármacos , Animais , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Células Epiteliais Alveolares/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Espécies Reativas de Oxigênio/metabolismo , Masculino , Feminino , Fumar/efeitos adversos , Pessoa de Meia-Idade , Camundongos Endogâmicos C57BL , Proteínas Repressoras , Proteínas Reguladoras de Apoptose
11.
Aging (Albany NY) ; 16(17): 12239-12251, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39248711

RESUMO

The relationship between metastasis-associated protein 2 (MTA2) overexpression and tumor growth and metastasis has been extensively studied in a variety of tumor cells but not in human osteosarcoma cells. This study aims to elucidate the clinical significance, underlying molecular mechanisms, and biological functions of MTA2 in human osteosarcoma in vitro and in vivo. Our results show that MTA2 was elevated in osteosarcoma cell lines and osteosarcoma tissues and was associated with tumor stage and overall survival of osteosarcoma patients. Knockdown of MTA2 inhibited osteosarcoma cell migration and invasion by reducing the expression of urokinase-type plasminogen activator (uPA). Bioinformatic analysis demonstrated that high levels of uPA in human osteosarcoma tissues correlated positively with MTA2 expression. Furthermore, treatment with recombinant human uPA (Rh-uPA) caused significant restoration of OS cell migration and invasion in MTA2 knockdown osteosarcoma cells. We found that ERK1/2 depletion increased the expression of uPA, facilitating osteosarcoma cell migration and invasion. Finally, MTA2 depletion significantly reduced tumor metastasis and the formation of lung nodules in vivo. Overall, our study suggests that MTA2 knockdown suppresses osteosarcoma cell metastasis by decreasing uPA expression via ERK signaling. This finding provides new insight into potential treatment strategies against osteosarcoma metastasis by targeting MTA2.


Assuntos
Neoplasias Ósseas , Movimento Celular , Técnicas de Silenciamento de Genes , Histona Desacetilases , Osteossarcoma , Proteínas Repressoras , Ativador de Plasminogênio Tipo Uroquinase , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Humanos , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Linhagem Celular Tumoral , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Movimento Celular/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Animais , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Masculino , Feminino , Camundongos , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Metástase Neoplásica , Camundongos Nus , Sistema de Sinalização das MAP Quinases/genética
12.
Genes Dev ; 38(15-16): 772-783, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39266447

RESUMO

The distinct anatomic environment in which adipose tissues arise during organogenesis is a principle determinant of their adult expansion capacity. Metabolic disease results from a deficiency in hyperplastic adipose expansion within the dermal/subcutaneous depot; thus, understanding the embryonic origins of dermal adipose is imperative. Using single-cell transcriptomics throughout murine embryogenesis, we characterized cell populations, including Bcl11b + cells, that regulate the development of dermal white adipose tissue (dWAT). We discovered that BCL11b expression modulates the Wnt signaling microenvironment to enable adipogenic differentiation in the dermal compartment. Subcutaneous and visceral adipose arises from a distinct population of Nefl + cells during embryonic organogenesis, whereas Pi16 + /Dpp4 + fibroadipogenic progenitors support obesity-stimulated hypertrophic expansion in the adult. Together, these results highlight the unique regulatory pathways used by anatomically distinct adipose depots, with important implications for human metabolic disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras , Animais , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Adipogenia/genética , Tecido Adiposo Branco/embriologia , Tecido Adiposo Branco/metabolismo , Via de Sinalização Wnt/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/embriologia , Diferenciação Celular/genética , Humanos
13.
Microb Biotechnol ; 17(9): e70012, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39269439

RESUMO

Filamentous fungi with their diverse inventory of carbohydrate-active enzymes promise a holistic usage of lignocellulosic residues. A major challenge for application is the inherent repression of enzyme production by carbon catabolite repression (CCR). In the presence of preferred carbon sources, the transcription factor CreA/CRE-1 binds to specific but conserved motifs in promoters of genes involved in sugar metabolism, but the status of CCR is notoriously difficult to quantify. To allow for a real-time evaluation of CreA/CRE-1-mediated CCR at the transcriptional level, we developed a luciferase-based construct, representing a dynamic, highly responsive reporter system that is inhibited by monosaccharides in a quantitative fashion. Using this tool, CreA/CRE-1-dependent CCR triggered by several monosaccharides could be measured in Neurospora crassa, Aspergillus niger and Aspergillus nidulans over the course of hours, demonstrating distinct and dynamic regulatory processes. Furthermore, we used the reporter to visualize the direct impacts of multiple CreA truncations on CCR induction. Our reporter thus offers a widely applicable quantitative approach to evaluate CreA/CRE-1-mediated CCR across diverse fungal species and will help to elucidate the multifaceted effects of CCR on fungal physiology for both basic research and industrial strain engineering endeavours.


Assuntos
Repressão Catabólica , Genes Reporter , Luciferases , Neurospora crassa , Luciferases/genética , Luciferases/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Aspergillus niger/genética , Aspergillus niger/metabolismo , Regulação Fúngica da Expressão Gênica , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/metabolismo , Carbono/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Repressoras
14.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39273639

RESUMO

Uterine cancer is the most common gynecologic malignancy in the United States, with endometrioid endometrial adenocarcinoma (EC) being the most common histologic sub-type. Considering the molecular classifications of EC, efforts have been made to identify additional biomarkers that can assist in diagnosis, prognosis, and individualized therapy. We sought to explore the relationship of Repressor Element 1 (RE1) silencing transcription factor (REST), which downregulates neuronal genes in non-neuronal tissue, along with matrix metalloproteinase-24 (MMP24) and EC. We analyzed the expression of REST and MMP24 in 31 cases of endometrial cancer and 16 controls. We then explored the baseline expression of REST and MMP24 in two EC cell lines (Ishikawa and HEC-1-A) compared to a benign cell line (t-HESC) and subsequently evaluated proliferation, migration, and invasion in the setting of loss of REST gene expression. REST and MMP24 expression were significantly lower in human EC samples compared to control samples. REST was highly expressed in EC cell lines, but decreasing REST gene expression increased proliferation (FC: 1.13X, p < 0.0001), migration (1.72X, p < 0.0001), and invasion (FC: 7.77X, p < 0.05) in Ishikawa cells, which are hallmarks of cancer progression and metastasis. These findings elicit a potential role for REST as a putative tumor suppressor in EC.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias do Endométrio , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras , Humanos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Pessoa de Meia-Idade , Genes Supressores de Tumor , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Invasividade Neoplásica
15.
Clin Transl Med ; 14(9): e70024, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39285846

RESUMO

BACKGROUND: Renal ischaemia‒reperfusion injury (IRI) is the primary cause of acute kidney injury (AKI). To date, effective therapies for delaying renal IRI and postponing patient survival remain absent. Ankyrin repeat domain 1 (ANKRD1) has been implicated in some pathophysiologic processes, but its role in renal IRI has not been explored. METHODS: The mouse model of IRI-AKI and in vitro model were utilised to investigate the role of ANKRD1. Immunoprecipitation-mass spectrometry was performed to identify potential ANKRD1-interacting proteins. Protein‒protein interactions and protein ubiquitination were examined using immunoprecipitation and proximity ligation assay and immunoblotting, respectively. Cell viability, damage and lipid peroxidation were evaluated using biochemical and cellular techniques. RESULTS: First, we unveiled that ANKRD1 were significantly elevated in renal IRI models. Global knockdown of ANKRD1 in all cell types of mouse kidney by recombinant adeno-associated virus (rAAV9)-mitigated ischaemia/reperfusion-induced renal damage and failure. Silencing ANKRD1 enhanced cell viability and alleviated cell damage in human renal proximal tubule cells exposed to hypoxia reoxygenation or hydrogen peroxide, while ANKRD1 overexpression had the opposite effect. Second, we discovered that ANKRD1's detrimental function during renal IRI involves promoting lipid peroxidation and ferroptosis by directly binding to and decreasing levels of acyl-coenzyme A synthetase long-chain family member 3 (ACSL3), a key protein in lipid metabolism. Furthermore, attenuating ACSL3 in vivo through pharmaceutical approach and in vitro via RNA interference mitigated the anti-ferroptotic effect of ANKRD1 knockdown. Finally, we showed ANKRD1 facilitated post-translational degradation of ACSL3 by modulating E3 ligase tripartite motif containing 25 (TRIM25) to catalyse K63-linked ubiquitination of ACSL3, thereby amplifying lipid peroxidation and ferroptosis, exacerbating renal injury. CONCLUSIONS: Our study revealed a previously unknown function of ANKRD1 in renal IRI. By driving ACSL3 ubiquitination and degradation, ANKRD1 aggravates ferroptosis and ultimately exacerbates IRI-AKI, underlining ANKRD1's potential as a therapeutic target for kidney IRI. KEY POINTS/HIGHLIGHTS: Ankyrin repeat domain 1 (ANKRD1) is rapidly activated in renal ischaemia‒reperfusion injury (IRI) models in vivo and in vitro. ANKRD1 knockdown mitigates kidney damage and preserves renal function. Ferroptosis contributes to the deteriorating function of ANKRD1 in renal IRI. ANKRD1 promotes acyl-coenzyme A synthetase long-chain family member 3 (ACSL3) degradation via the ubiquitin‒proteasome pathway. The E3 ligase tripartite motif containing 25 (TRIM25) is responsible for ANKRD1-mediated ubiquitination of ACSL3.


Assuntos
Traumatismo por Reperfusão , Proteínas Repressoras , Ubiquitinação , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Humanos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Masculino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Modelos Animais de Doenças , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Camundongos Endogâmicos C57BL , Rim/metabolismo , Rim/irrigação sanguínea , Proteínas Nucleares
16.
Clin Transl Med ; 14(9): e1788, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39243148

RESUMO

BACKGROUND: Alternative splicing of pre-mRNA is a fundamental regulatory process in multicellular eukaryotes, significantly contributing to the diversification of the human proteome. RNA-binding fox-1 homologue 2 (RBFOX2), a member of the evolutionarily conserved RBFOX family, has emerged as a critical splicing regulator, playing a pivotal role in the alternative splicing of pre-mRNA. This review provides a comprehensive analysis of RBFOX2, elucidating its splicing activity through direct and indirect binding mechanisms. RBFOX2 exerts substantial influence over the alternative splicing of numerous transcripts, thereby shaping essential cellular processes such as differentiation and development. MAIN BODY OF THE ABSTRACT: Dysregulation of RBFOX2-mediated alternative splicing has been closely linked to a spectrum of cardiovascular diseases and malignant tumours, underscoring its potential as a therapeutic target. Despite significant progress, current research faces notable challenges. The complete structural characterisation of RBFOX2 remains elusive, limiting in-depth exploration beyond its RNA-recognition motif. Furthermore, the scarcity of studies focusing on RBFOX2-targeting drugs poses a hindrance to translating research findings into clinical applications. CONCLUSION: This review critically assesses the existing body of knowledge on RBFOX2, highlighting research gaps and limitations. By delineating these areas, this analysis not only serves as a foundational reference for future studies but also provides strategic insights for bridging these gaps. Addressing these challenges will be instrumental in unlocking the full therapeutic potential of RBFOX2, paving the way for innovative and effective treatments in various diseases.


Assuntos
Neoplasias , Fatores de Processamento de RNA , Humanos , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Progressão da Doença , Processamento Alternativo/genética , Splicing de RNA/genética
17.
BMC Nephrol ; 25(1): 297, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251943

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a common complication of diabetes mellitus, and Prolyl 4-Hydroxylase Subunit Beta (P4HB) expression is increased in high glucose (HG)-induced renal tubular epithelial cells (TECs). But it's role in HG-induced TECs remains to be elucidated. METHODS: The HK-2 cells were induced using HG and transfected with SiRNA-P4HB. DCFH-DA staining was utilized for the detection of cellular levels of ROS. WB and immunofluorescence were utilized to detect the expression of P4HB, epithelial-mesenchymal transition (EMT), fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. Online databases were utilized for predicting the interaction target of P4HB, and immunoprecipitation (IP) experiments were employed to validate the binding of P4HB with the target. SiRNA and overexpression vectors of target gene were used to verify the mechanism of action of P4HB. RESULTS: HG induced an increase in the expression of P4HB and TGFß, p-SMAD3, and ROS in HK-2 cells. Furthermore, HG downregulated the expression of E-cadherin and upregulated the expression of N-cadherin, Vimentin, α-SMA, Fibronectin, Collagen IV, SNAIL, and SLUG in HK-2 cells. Interfering with P4HB significantly reversed the expression of these proteins. Database predictions and IP experiments showed that P4HB interacts with PRMT1, and the expression of PRMT1 was increased in HG-induced HK-2 cells. Interfering with PRMT1 inhibited the changes in expression of EMT and fibrosis related proteins induced by HG. However, overexpression of PRMT1 weakened the regulatory effect of P4HB interference on the EMT, fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. CONCLUSION: P4HB regulated the TGFß/SMAD3 signaling pathway through PRMT1 and thus participates in HG-induced EMT and fibrosis in HK-2 cells.


Assuntos
Células Epiteliais , Transição Epitelial-Mesenquimal , Fibrose , Glucose , Túbulos Renais , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta , Humanos , Proteína Smad3/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glucose/farmacologia , Glucose/toxicidade , Glucose/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Fator de Crescimento Transformador beta/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Linhagem Celular , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Espécies Reativas de Oxigênio/metabolismo
19.
Mol Biol Rep ; 51(1): 985, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278886

RESUMO

OBJECTIVE: To evaluate the frequency and prognostic significance of DTA (DNMT3A、TET2、ASXL1) gene mutation and co-occurring mutations in patients with myelodysplastic syndrome (MDS). METHODS: The clinical data of 102 newly diagnosed MDS patients who accepted Next Generation Sequencing (NGS) was retrospectively analyzed. According to whether the patients had DTA gene mutation, the patients were divided into DTA mutated (DTA-mut) group and wild type (DTA-wt) group, and the relationship between gene mutation and clinical characteristics and prognosis was analyzed. RESULTS: Among the 102 MDS patients, 96% (98/102) presented with mutation, while the mean number of mutations was 3.04 mutations/patient. DTA-mut was detected in 56.9% (58/102) patients. The most frequent co-mutated genes in DTA-mut group were SF3B1 (25.8%), RUNX1 (24.1%), U2AF1 (18.9%), SRSF2, EZH2, SETBP1 (17.2%), STAG2 (15.5%), IDH2 (12.1%) and BCOR, CBL (10.3%). The two groups showed no significant differences in ages, blood parameters, bone marrow blasts, WHO 2022 classification, IPSS-R risk category and rate of conversion to leukemia. Compared with the DTA-wt group, the mutation frequency of RUNX1 was higher (P = 0.02), while mutation frequency of TP53 was lower (P = 0.001) and the mutation frequency of ≥ 3 co-mutated genes was higher in DTA-mut group (P = 0.00). Survival analysis showed that the overall survivals (OS) of DTA-mut patients was significantly inferior to that of DTA-wt patients (P = 0.0332). According to IPSS-R classification, a statistically significant difference in OS was only observed in higher risk (IPSS-R > 3.5) group (P = 0.0058). In the context of DTA mutation, the OS of patients with RUNX1 mutation was shorter than that of patients without RUNX1 mutation significantly (P = 0.0074). The OS of patients with SF3B1 mutation was longer than that of patients without SF3B1 mutation, but there was no statistical difference (P = 0.0827). DTA mutations were not independent prognostic factors when DTA and co-mutated genes with frequency > 10% were considered in Cox regression model (P = 0.329). However, multivariate analysis confirmed an independently adverse prognosis of RUNX1 co-mutation (P = 0.042, HR = 2.426, 95% CI:1.031-5.711) in DTA-mut cohort. Moreover, our multivariable analysis suggests that SRSF2-mut was an independent poor prognostic factor for all MDS patients (P = 0.047), but lost significance (P = 0.103) for DTA-mut patients. CONCLUSIONS: DTA mutations are frequently observed in patients with MDS, often accompanied by genes involved in RNA splicing and transcription factors like SF3B1 and RUNX1. DTA and concomitant mutations affect prognosis in MDS patients and RUNX1 was identified as an independent poor prognostic factor in patients with DTA mutations.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Proteínas de Ligação a DNA , Dioxigenases , Mutação , Síndromes Mielodisplásicas , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Humanos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Masculino , Feminino , Mutação/genética , Pessoa de Meia-Idade , Prognóstico , Idoso , Adulto , Proteínas Proto-Oncogênicas/genética , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas Repressoras/genética , Proteínas de Ligação a DNA/genética , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adolescente , Adulto Jovem
20.
Mol Cancer ; 23(1): 188, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243032

RESUMO

Triple negative breast cancer (TNBC) is a particularly lethal breast cancer (BC) subtype driven by cancer stem cells (CSCs) and an immunosuppressive microenvironment. Our study reveals that nucleus accumbens associated protein 1 (NAC1), a member of the BTB/POZ gene family, plays a crucial role in TNBC by maintaining tumor stemness and influencing myeloid-derived suppressor cells (MDSCs). High NAC1 expression correlates with worse TNBC prognosis. NAC1 knockdown reduced CSC markers and tumor cell proliferation, migration, and invasion. Additionally, NAC1 affects oncogenic pathways such as the CD44-JAK1-STAT3 axis and immunosuppressive signals (TGFß, IL-6). Intriguingly, the impact of NAC1 on tumor growth varies with the host immune status, showing diminished tumorigenicity in natural killer (NK) cell-competent mice but increased tumorigenicity in NK cell-deficient ones. This highlights the important role of the host immune system in TNBC progression. In addition, high NAC1 level in MDSCs also supports TNBC stemness. Together, this study implies NAC1 as a promising therapeutic target able to simultaneously eradicate CSCs and mitigate immune evasion.


Assuntos
Proliferação de Células , Células Supressoras Mieloides , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Humanos , Animais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Feminino , Camundongos , Células Supressoras Mieloides/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Prognóstico , Movimento Celular , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Proteínas de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA