Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Exp Dermatol ; 33(5): e15109, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38794812

RESUMO

Cornulin (CRNN) and repetin (RPTN) belong to the fused-type S100 protein family. Although these proteins have been reported to be expressed in the granular layer of the epidermis and have been suggested to be associated with barrier formation in the epidermis, their exact function remains unclear. This study examined the effects of ultraviolet B (UVB) irradiation on CRNN and RPTN expression in human skin xenotransplantation. The CRNN expression increased in the granular layer of UVB-irradiated skin 2 days after UVB irradiation compared to that in sham-irradiated skin. Interestingly, CRNN signals were observed not only in the cytoplasm, but also in the peripheral regions of granular keratinocytes. In contrast, RPTN was rarely expressed in sham-irradiated skin; however, RPTN signals were markedly increased in the granular layer of the UVB-irradiated skin. In addition, activation of ERK1/2 and STAT3 was observed in UVB-irradiated skin. Accordingly, the present study demonstrated that CRNN and RPTN are novel proteins whose expression can be increased by UVB irradiation. The activation of ERK1/2 and STAT3 may be associated with the regeneration of a UVB-damaged epidermis, and CRNN and RPTN may be induced to repair any dysfunction in the epidermal barrier during this regeneration process.


Assuntos
Fator de Transcrição STAT3 , Raios Ultravioleta , Humanos , Fator de Transcrição STAT3/metabolismo , Transplante Heterólogo , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Animais , Pele/metabolismo , Pele/efeitos da radiação , Epiderme/metabolismo , Epiderme/efeitos da radiação , Transplante de Pele , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/genética , Xenoenxertos , Proteínas S100/metabolismo , Proteínas S100/genética , Camundongos
2.
J Invest Dermatol ; 143(8): 1498-1508.e7, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36804407

RESUMO

Late cornified envelope (LCE) proteins are small cationic epidermal proteins with antimicrobial properties, and the combined deletion of LCE3B and LCE3C genes is a risk factor for psoriasis that affects skin microbiome composition. In a yeast two-hybrid screen, we identified CYSRT1 as an interacting partner of members of all LCE groups except LCE6. These interactions were confirmed in a mammalian cell system by coimmunoprecipitation. CYSRT1 is a protein of unknown function that is specifically expressed in cutaneous and oral epithelia and spatially colocalizes with LCE proteins in the upper layers of the suprabasal epidermis. Constitutive CYSRT1 expression is present in fully differentiated epidermis and can be further induced in vivo by disruption of the skin barrier upon stratum corneum removal. Transcriptional regulation correlates to keratinocyte terminal differentiation but not to skin bacteria exposure. Similar to LCEs, CYSRT1 was found to have antibacterial activity against Pseudomonas aeruginosa. Comparative gene sequence analysis and protein amino acid alignment indicate that CYSRT1 is highly conserved among vertebrates and has putative antimicrobial activity. To summarize, we identified CYSRT1 in the outer skin layer, where it colocalizes with LCE proteins and contributes to the constitutive epidermal antimicrobial host defense repertoire.


Assuntos
Anti-Infecciosos , Psoríase , Anti-Infecciosos/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/genética , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Proteínas/metabolismo , Psoríase/genética , Psoríase/metabolismo , Pele/metabolismo , Humanos
3.
Biomed Res Int ; 2023: 7518744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685674

RESUMO

Pancreatic cancer remains a deadly solid tumor with worst survival, and a better understanding of the mechanisms of carcinogenesis of pancreatic cancer is critical to promote the survival of patients with pancreatic cancer. qPCR and western blot assay were used to determine the expression of SPRR3 in pancreatic cancer. Anchorage-independent growth ability, BrdU labeling, Transwell assay, and in vivo experiment were used to examine the functions of SPRR3 in aggressiveness of pancreatic cancer. Luciferase reporter assay, nucleoplasmic-separation technique, qPCR, and western blot assay were used to investigate the mechanism of SPRR3 regulating aggressiveness of pancreatic cancer. Our results showed that SPRR3 was significantly increased in pancreatic cancer, which resulted in poor survival for patients with pancreatic cancer. Further analysis showed that overexpression of SPRR3 contributed to anchorage-independent growth ability, growth rate, and invasion ability of pancreatic cancer cells. While, knockdown of SPRR3 showed the reverse results. Mechanistically, overexpression of SPRR3 can promote the transcription of NF-κB pathway, nuclear accumulation of p65, and mRNA levels of NF-κB pathway downstream genes. But, knockdown of SPRR3 induced the reverse results. The above findings clarified the important roles of SPRR3 in the progression of pancreatic cancer through NF-κB pathway. And targeting SPRR3 might be an effective strategy to therapy pancreatic cancer.


Assuntos
NF-kappa B , Neoplasias Pancreáticas , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/genética , Neoplasias Pancreáticas/patologia , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Neoplasias Pancreáticas
4.
Trends Cell Biol ; 33(1): 5-8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057494

RESUMO

Small proline-rich proteins (SPRRPs) are traditionally known for their function in keratinocyte homeostasis. Recent evidence demonstrates their involvement in additional diverse physiological processes ranging from p53 signaling and direct prevention of DNA damage to bactericidal activities. We highlight these novel, intriguing roles of SPRRPs and discuss them in the context of relevant pathological conditions.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo , Prolina , Humanos , Prolina/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Proteínas/metabolismo , Queratinócitos , Biologia
5.
PLoS One ; 17(10): e0273807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36240204

RESUMO

Keratoconus (KC) is a multifactorial progressive ectatic disorder characterized by local thinning of the cornea, leading to decreased visual acuity due to irregular astigmatism and opacities. Despite the evolution of advanced imaging methods, the exact etiology of KC remains unknown. Our aim was to investigate the involvement of corneal epithelium in the pathophysiology of the disease. Corneal epithelial samples were collected from 23 controls and from 2 cohorts of patients with KC: 22 undergoing corneal crosslinking (early KC) and 6 patients before penetrating keratoplasty (advanced KC). The expression of genes involved in the epidermal terminal differentiation program and of the oxidative stress pathway was assessed by real time PCR analysis. Presence of some of the differentially expressed transcripts was confirmed at protein level using immunofluorescence on controls and advanced KC additional corneal samples. We found statistically significant under-expression in early KC samples of some genes known to be involved in the mechanical resistance of the epidermis (KRT16, KRT14, SPRR1A, SPRR2A, SPRR3, TGM1 and TGM5) and in oxidative stress pathways (NRF2, HMOX1 and HMOX2), as compared to controls. In advanced KC samples, expression of SPRR2A and HMOX1 was reduced. Decreased expression of keratin (KRT)16 and KRT14 proteins was observed. Moreover, differential localization was noted for involucrin, another protein involved in the epidermis mechanical properties. Finally, we observed an immunofluorescence staining for the active form of NRF2 in control epithelia that was reduced in KC epithelia. These results suggest a defect in the mechanical resistance and the oxidative stress defense possibly mediated via the NRF2 pathway in the corneal keratoconic epithelium.


Assuntos
Epitélio Corneano , Ceratocone , Córnea/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Epitélio Corneano/metabolismo , Humanos , Queratinas/metabolismo , Ceratocone/genética , Ceratocone/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética
6.
Eur J Dermatol ; 32(2): 171-180, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35866915

RESUMO

Background: Psoriasis is a chronic inflammatory disease of the skin with complex pathogenesis. Long non-coding RNAs (lncRNAs) play an important regulatory role in the occurrence and progression of many diseases, as well as psoriasis. Objectives: This study aimed to investigate the role and mechanism of the lncRNA, SPRR2C, in M5-induced psoriatic keratinocytes. Materials & Methods: SPRR2C expression and subcellular localization was detected using FISH and qRT-PCR. Ker-CT and HaCaT cells stimulated by M5 (IL-17A, tumour necrosis factor-α, IL-1α, IL-22, and oncostatin-M) were used to establish a psoriatic cell model. CCK-8 assay, CFSE proliferation assay, flow cytometry, western blotting and ELISA were used to examine the effects of SPRR2C in the keratinocyte model. Results: SPRR2C was highly expressed in psoriatic samples and M5-induced psoriatic keratinocytes, and SPRR2C was mainly localised to the cytoplasm. In keratinocytes, SPRR2C regulated proliferation, cell cycle and apoptosis, and induced the expression of IL-1ß, IL-6, IL-8, CXCL2 and CCL20. Moreover, SPRR2C cellular effects were shown to be mediated by the PI3K/AKT/mTOR signalling pathway, based on experiments with the AKT-specific inhibitor, MK-2206, which was also shown to suppress overexpression of SPRR2C. Conclusion: Our results indicate that SPRR2C plays a regulatory role and is involved in the PI3K/AKT/mTOR signalling pathway in psoriatic keratinocytes, which may provide a potential diagnostic and therapeutic target for psoriasis.


Assuntos
Psoríase , RNA Longo não Codificante , Proliferação de Células/genética , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Humanos , Queratinócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Psoríase/tratamento farmacológico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Serina-Treonina Quinases TOR/uso terapêutico
7.
BMC Cancer ; 22(1): 714, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768785

RESUMO

OBJECTIVES: To investigate prognostic-related gene signature based on DNA damage repair and tumor microenvironment statue in human papillomavirus 16 negative (HPV16-) head and neck squamous cell carcinoma (HNSCC). METHODS: For the RNA-sequence matrix in HPV16- HNSCC in the Cancer Genome Atlas (TCGA) cohort, the DNA damage response (DDR) and tumor microenvironment (TM) status of each patient sample was estimated by using the ssGSEA algorithm. Through bioinformatics analysis in DDR_high/TM_high (n = 311) and DDR_high/TM_low (n = 53) groups, a survival-related gene signature was selected in the TCGA cohort. Two independent external validation cohorts (GSE65858 (n = 210) and GSE41613 (n = 97)) with HPV16- HNSCC patients validated the gene signature. Correlations among the clinical-related hub differentially expressed genes (DEGs) and infiltrated immunocytes were explored with the TIMER2.0 server. Drug screening based on hub DEGs was performed using the CellMiner and GSCALite databases. The loss-of-function studies were used to evaluate the effect of screened survival-related gene on the motility of HPV- HNSCC cells in vitro. RESULTS: A high DDR level (P = 0.025) and low TM score (P = 0.012) were independent risk factors for HPV16- HNSCC. Downregulated expression of ALOX12B or SPRR1A was associated with poor survival rate and advanced cancer stages. The pathway enrichment analysis showed the DDR_high/TM_low samples were enriched in glycosphingolipid biosynthesis-lacto and neolacto series, glutathione metabolism, platinum drug resistance, and ferroptosis pathways, while the DDR_high/TM_low samples were enriched in Th17 cell differentiation, Neutrophil extracellular trap formation, PD - L1 expression and PD - 1 checkpoint pathway in cancer. Notably, the expression of ALOX12B and SPRR1A were negatively correlated with cancer-associated fibroblasts (CAFs) infiltration and CAFs downstream effectors. Sensitivity to specific chemotherapy regimens can be derived from gene expressions. In addition, ALOX12B and SPRR1A expression was associated with the mRNA expression of insulin like growth factor 1 receptor (IGF1R), AKT serine/threonine kinase 1 (AKT1), mammalian target of rapamycin (MTOR), and eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) in HPV negative HNSCC. Down-regulation of ALOX12B promoted HPV- HNSCC cells migration and invasion in vitro. CONCLUSIONS: ALOX12B and SPRR1A served as a gene signature for overall survival in HPV16- HNSCC patients, and correlated with the amount of infiltrated CAFs. The specific drug pattern was determined by the gene signature.


Assuntos
Araquidonato 12-Lipoxigenase , Proteínas Ricas em Prolina do Estrato Córneo , Reparo do DNA , Neoplasias de Cabeça e Pescoço , Papillomavirus Humano 16 , Infecções por Papillomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Dano ao DNA , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/virologia , Papillomavirus Humano 16/isolamento & purificação , Humanos , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Microambiente Tumoral/genética
8.
Dis Markers ; 2022: 7386895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35256894

RESUMO

Background: Oral lichen planus (OLP) is a chronic autoimmune oral mucosal disease that seriously affects the life quality of the patients. But till now, the exact etiology and pathogenesis of OLP remain unclear. Our study is aimed at finding the key molecules and pathways involved in the pathogenesis mechanisms of OLP, providing more effective therapeutic strategies for OLP. Methods: Data from GSE52130 were downloaded from GEO datasets for analysis. Then, we carried out enrichment analysis of the differentially expressed genes (DEGs) using Gene Ontology (GO) and KEGG pathway analyses. Next, the CIBERSORT algorithm was used to assess immune cell infiltration in OLP patients. Furthermore, we also constructed a protein-protein interaction network using STRING and Cytoscape and simultaneously sought potential transcription factors plug-in including MCODE CytoHubba and iRegulon. In addition, ROC analysis was employed to assess the diagnostic performance of these hub genes. Lastly, we identified 6 promising novel drugs to treat OLP through Connectivity Map. Results: We illustrated that 255 DEGs were mainly enriched in the focal adhesion pathway and metabolism pathways. Besides, Cibersort analysis showed that M1 macrophages, T follicular helper cells, and T regulatory cells are more infiltrated in OLP samples. In addition, ROC analysis demonstrated that these hub genes owned higher diagnostic value in OLP, in which SPRR1B had the highest diagnostic value. And we also predicted that SOX7 was the most relevant transcription factor of those hub genes. Lastly, through the CMap database, we identified 6 small molecules as possible treatment drugs of OLP. Conclusion: Our research identified that SPRR1B could be used as potential biomarkers for the early diagnosis of OLP. In addition, as a chronic autoimmune oral mucosal disease, OLP has different infiltration types of immune cells. Furthermore, 6 small molecules were proposed as promising novel treatment drugs for OLP patients. Therefore, our research may provide new impetus for the development of effective OLP biological treatment options.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Líquen Plano Bucal/diagnóstico , Líquen Plano Bucal/imunologia , Macrófagos/imunologia , Linfócitos T/imunologia , Biomarcadores/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/genética , Bases de Dados Genéticas , Diagnóstico Precoce , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Líquen Plano Bucal/genética , Líquen Plano Bucal/metabolismo , Mapas de Interação de Proteínas , Curva ROC
9.
Biochem Cell Biol ; 100(3): 199-212, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35263193

RESUMO

Small proline-rich protein 1A (SPRR1A) plays a critical role in regulating squamous cell differentiation. SPRR1A overexpression was reported to be closely related to the progression of some tumors, such as gastric cancer and colon cancer. However, the function of SPRR1A in lung adenocarcinoma (LUAD) has not been elucidated. Here, we first examined the expression pattern of SPRR1A in LUAD tissues, which indicated that the SPRR1A expression level was significantly elevated in LUAD tissues compared with normal lung tissues. High expression of SPRR1A was closely related to larger tumor size. LUAD patients with higher SPRR1A expression had poorer overall survival and SPRR1A was identified as an independent unfavorable prognosis factor. In addition, the effects of SPRR1A on lung cancer cells were tested through cellular experiments and the result demonstrated that knockdown of SPRR1A can suppress the proliferation and invasion capacities of tumor cells, while overexpressing SPRR1A exerted opposite effects. Finally, our findings were substantiated by the data obtained from in vivo xenografts using a mice model. In conclusion, LUAD patients with higher SPRR1A expression were more predisposed to poorer clinical outcomes and unfavorable prognoses, indicating the potential role of SPRR1A as a novel clinical biomarker and therapeutic target.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Ricas em Prolina do Estrato Córneo , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/metabolismo , Animais , Proliferação de Células , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Camundongos
10.
Biochem Biophys Res Commun ; 585: 177-184, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34808501

RESUMO

PURPOSE: Cervical squamous cell carcinoma (CESC) is the most common cancer type of cervical cancer, which threatens women's life seriously. LncRNA DGUOK-AS1has been reported to promote the biologic processes of CESC. We aim to figure out the role of DGUOK-AS1-miR-499a-5p-SPRR1B axis in modulating the CESC progression in vitro. METHODS: The levels of DGUOK-AS1, miR-499a-5p, and SPRR1B in CESC tissues and cells were examined by RT-qPCR. The interaction of DGUOK-AS1-miR-499a-5p-SPRR1B was verified by luciferase assay. Inhibition of DGUOK-AS1, miR-499a-5p, and SPRR1B was applied for exploring the biological function based on detection of cell viability, proliferation, migration, and apoptosis in CESC SiHa and HeLa cells. RESULTS: DGUOK-AS1 and SPRR1B expressions were obviously elevated, whereas the expression of miR-499a-5p was reduced in both CESC tissues and cells. Silencing of DGUOK-AS1 attenuated cell growth and boosted apoptosis of CESC cells. Notably, DGUOK-AS1 inhibited miR-499a-5p to release SPRR1B, which significantly accelerated the development of CESC. CONCLUSION: DGUOK-AS1sponging miR-499a-5p facilitated CESC cells progression by releasing SPRR1B in vitro. It provides a new sight for the treatment of CESC patients involving DGUOK-AS1-miR-499a-5p-SPRR1B.


Assuntos
Carcinoma de Células Escamosas/genética , Proteínas Ricas em Prolina do Estrato Córneo/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/genética , Apoptose/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Progressão da Doença , Feminino , Células HeLa , Humanos , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
11.
Science ; 374(6568): eabe6723, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735226

RESUMO

A diverse group of antimicrobial proteins (AMPs) helps protect the mammalian intestine from varied microbial challenges. We show that small proline-rich protein 2A (SPRR2A) is an intestinal antibacterial protein that is phylogenetically unrelated to previously discovered mammalian AMPs. In this study, SPRR2A was expressed in Paneth cells and goblet cells and selectively killed Gram-positive bacteria by disrupting their membranes. SPRR2A shaped intestinal microbiota composition, restricted bacterial association with the intestinal surface, and protected against Listeria monocytogenes infection. SPRR2A differed from other intestinal AMPs in that it was induced by type 2 cytokines produced during helminth infection. Moreover, SPRR2A protected against helminth-induced bacterial invasion of intestinal tissue. Thus, SPRR2A is a distinctive AMP triggered by type 2 immunity that protects the intestinal barrier during helminth infection.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Microbioma Gastrointestinal , Bactérias Gram-Positivas/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Nematospiroides dubius , Infecções por Strongylida/imunologia , Animais , Carga Bacteriana , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Proteínas Ricas em Prolina do Estrato Córneo/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Células Caliciformes/metabolismo , Humanos , Imunidade Inata , Mucosa Intestinal/microbiologia , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Camundongos , Viabilidade Microbiana , Celulas de Paneth/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Infecções por Strongylida/metabolismo , Infecções por Strongylida/microbiologia
12.
Aging (Albany NY) ; 13(15): 19127-19144, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34339392

RESUMO

The turnover of the epidermis beginning with the progenitor cells in the basal layer to the fully differentiated corneocytes is tightly regulated by calcium. Calcium more than anything else promotes the differentiation of keratinocytes which implies the need for a calcium gradient with low concentrations in the stratum basale and high concentrations in the stratum granulosum. One of the hallmarks of skin aging is a collapse of this gradient that has a direct impact on the epidermal fitness. The rise of calcium in the stratum basale reduces cell proliferation, whereas the drop of calcium in the stratum granulosum leads to a changed composition of the cornified envelope. We showed that keratinocytes respond to the calcium induced block of cell division by a large increase of the expression of several miRNAs (hsa-mir542-5p, hsa-mir125a, hsa-mir135a-5p, hsa-mir196a-5p, hsa-mir491-5p and hsa-mir552-5p). The pitfall of this rescue mechanism is a dramatic change in gene expression which causes a further impairment of the epidermal barrier. This effect is attenuated by a pseudogene (SPRR2C) that gives rise to a lncRNA. SPRR2C specifically resides in the stratum granulosum/corneum thus acting as a sponge for miRNAs.


Assuntos
Cálcio/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Envelhecimento da Pele/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Células Epidérmicas/metabolismo , Expressão Gênica , Humanos , Queratinócitos/citologia , MicroRNAs/metabolismo
13.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34403363

RESUMO

MicroRNA-150 (miR-150) is downregulated in patients with multiple cardiovascular diseases and in diverse mouse models of heart failure (HF). miR-150 is significantly associated with HF severity and outcome in humans. We previously reported that miR-150 is activated by ß-blocker carvedilol (Carv) and plays a protective role in the heart using a systemic miR-150 KO mouse model. However, mechanisms that regulate cell-specific miR-150 expression and function in HF are unknown. Here, we demonstrate that potentially novel conditional cardiomyocyte-specific (CM-specific) miR-150 KO (miR-150 cKO) in mice worsens maladaptive cardiac remodeling after myocardial infarction (MI). Genome-wide transcriptomic analysis in miR-150 cKO mouse hearts identifies small proline-rich protein 1a (Sprr1a) as a potentially novel target of miR-150. Our studies further reveal that Sprr1a expression is upregulated in CMs isolated from ischemic myocardium and subjected to simulated ischemia/reperfusion, while its expression is downregulated in hearts and CMs by Carv. We also show that left ventricular SPRR1A is upregulated in patients with HF and that Sprr1a knockdown in mice prevents maladaptive post-MI remodeling. Lastly, protective roles of CM miR-150 are, in part, attributed to the direct and functional repression of proapoptotic Sprr1a. Our findings suggest a crucial role for the miR-150/SPRR1A axis in regulating CM function post-MI.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/genética , Antagonistas Adrenérgicos beta/farmacologia , Animais , Apoptose/fisiologia , Carvedilol/farmacologia , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Regulação para Baixo , Feminino , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Regulação para Cima
14.
Cell Death Dis ; 12(3): 247, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664254

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is prevalent in the world, accounting for a huge part of non-melanoma skin cancer. Most cSCCs are associated with a distinct pre-cancerous lesion, the actinic keratosis (AK). However, the progression trajectory from normal skin to AK and cSCC has not been fully demonstrated yet. To identify genes involved in this progression trajectory and possible therapeutic targets for cSCC, here we constructed a UV-induced cSCC mouse model covering the progression from normal skin to AK to cSCC, which mimicked the solar UV radiation perfectly using the solar-like ratio of UVA and UVB, firstly. Then, transcriptome analysis and a series of bioinformatics analyses and cell experiments proved that Rorα is a key transcript factor during cSCC progression. Rorα could downregulate the expressions of S100a9 and Sprr2f in cSCC cells, which can inhibit the proliferation and migration in cSCC cells, but not the normal keratinocyte. Finally, further animal experiments confirmed the inhibitory effect of cSCC growth by Rorα in vivo. Our findings showed that Rorα would serve as a potential novel target for cSCC, which will facilitate the treatment of cSCC in the future.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Transformação Celular Neoplásica/metabolismo , Ceratose Actínica/metabolismo , Neoplasias Induzidas por Radiação/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência , Neoplasias Cutâneas/metabolismo , Animais , Calgranulina B/genética , Calgranulina B/metabolismo , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Proteínas Ricas em Prolina do Estrato Córneo/genética , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Ceratose Actínica/etiologia , Ceratose Actínica/genética , Ceratose Actínica/patologia , Camundongos Pelados , Invasividade Neoplásica , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Fatores de Transcrição de Octâmero/genética , Fatores de Transcrição de Octâmero/metabolismo , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma , Raios Ultravioleta
15.
Biol Pharm Bull ; 44(3): 453-457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642555

RESUMO

The aim of this study was to examine the effects of carba cyclic phosphatidic acid (ccPA) on cornified envelope (CE) formation and keratinocyte differentiation. ccPA-treated keratinocytes showed higher mRNA and protein levels of differentiation markers and CE components than untreated cells. These results suggest that ccPA could serve as therapeutic targets for treating skin barrier dysfunction because of their roles in upregulating genes and proteins associated with CE formation and keratinocyte differentiation.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Queratinócitos/efeitos dos fármacos , Ácidos Fosfatídicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proteínas Ricas em Prolina do Estrato Córneo/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo
16.
J Cancer Res Clin Oncol ; 147(6): 1659-1672, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33620575

RESUMO

PURPOSE: Transport and Golgi organization protein 1 (TANGO) promotes angiogenesis and lymphangiogenesis in oral squamous cell carcinoma (OSCC). To elucidate the underlying mechanisms, this study aims to identify and characterize elements downstream of TANGO that mediate its involvement in OSCC. METHODS: In this study, microarray analysis compared gene expression between control and TANGO-repressed HSC3 cells. Protein expression in 213 OSCC tissue samples was analyzed immunohistochemically. RESULTS: TANGO repression decreased or increased expression of Mucin 20 (MUC20) and small proline-rich protein 1B (SPRR1B), respectively. MUC20 increased the growth and invasiveness of OSCC cells via altered matrix metalloproteinase (MMP)-2 and E-cadherin expression and c-met phosphorylation. MUC20 induced angiogenesis and lymphangiogenesis by activating vascular endothelial growth factors A and C. In well-differentiated OSCC, SPRR1B expression was high (P = 0.0091) and correlated with keratinization markers and promoted proliferation by inducing mitogen-activated protein kinase p38 phosphorylation. MUC20 expression correlated significantly with clinical stage (P = 0.0024), lymph node metastasis (P = 0.0036), and number of blood and lymph vessels (P < 0.0001). MUC20-expressing cases had a significantly worse prognosis than non-expressing cases (P < 0.0001). CONCLUSION: MUC20 and SPRR1B located downstream of TANGO may be useful molecular markers for OSCC.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Biomarcadores Tumorais/isolamento & purificação , Proteínas Ricas em Prolina do Estrato Córneo , Mucinas , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas , Células Cultivadas , Proteínas Ricas em Prolina do Estrato Córneo/genética , Proteínas Ricas em Prolina do Estrato Córneo/isolamento & purificação , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Neoplasias Bucais , Mucina-2/genética , Mucina-2/isolamento & purificação , Mucina-2/metabolismo , Mucinas/genética , Mucinas/isolamento & purificação , Mucinas/metabolismo , Transdução de Sinais/genética
17.
Cell Death Dis ; 12(1): 86, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452236

RESUMO

Psoriasis is a chronic inflammatory disease of the skin with highly complex pathogenesis. In this study, we identified lncRNA SPRR2C (small proline-rich protein 2C) as a hub gene with a critical effect on the pathogenesis of psoriasis and response to treatment using both weighted gene coexpression network analysis (WGCNA) and differential expression analysis. SPRR2C expression was significantly upregulated in both psoriatic lesion samples and HaCaT cell lines in response to IL-22 treatment. After SPRR2C knockdown, IL-22-induced suppression of HaCaT proliferation, changes in the KRT5/14/1/10 protein levels, and suppression of the IL-1ß, IL-6, and TNF-α mRNA levels were dramatically reversed. In the coexpression network with SPRR2C based on GSE114286, miR-330 was significantly negatively correlated with SPRR2C, while STAT1 and S100A7 were positively correlated with SPRR2C. By binding to miR-330, SPRR2C competed with STAT1 and S100A7 to counteract miR-330-mediated suppression of STAT1 and S100A7. MiR-330 overexpression also reversed the IL-22-induced changes in HaCaT cell lines; in response to IL-22 treatment, miR-330 inhibition significantly attenuated the effects of SPRR2C knockdown. STAT1 and S100A7 expression was significantly upregulated in psoriatic lesion samples. The expression of miR-330 had a negative correlation with the expression of SPRR2C, while the expression of SPRR2C had a positive correlation with the expression of STAT1 and S100A7. Thus, SPRR2C modulates the IL-22-stimulated HaCaT cell phenotype through the miR-330/STAT1/S100A7 axis. WGCNA might uncover additional biological pathways that are crucial in the pathogenesis and response to the treatment of psoriasis.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/genética , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Interleucinas/farmacologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT1/metabolismo , Expressão Gênica , Redes Reguladoras de Genes , Células HaCaT , Humanos , MicroRNAs/genética , Fenótipo , Psoríase/genética , Psoríase/metabolismo , Psoríase/patologia , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , Fator de Transcrição STAT1/genética , Transfecção , Interleucina 22
18.
Thorac Cancer ; 12(6): 796-806, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33501784

RESUMO

BACKGROUND: With the ongoing development of targeted therapy and immunotherapy in recent years, the overall five-year survival rate of NSCLC patients has not improved, and the search for novel diagnostic and prognostic markers for lung adenocarcinoma continues. METHODS: Lung adenocarcinoma (LUAD) gene expression data and relevant clinical information were obtained from the TCGA. Hub genes were identified with weighted gene co-expression network analysis (WGCNA) and protein-protein interaction network (PPI). Survival analyses were also performed using GEPIA. The 536 LUAD patients were divided into two groups according to the SPRR1B expression level and analyzed by gene set enrichment analysis (GSEA) and verified by immunoblotting. The effects of SPRR1B on cell proliferation and cell metastasis and apoptosis were evaluated by 5-ethynyl-2'-deoxyuridine (EdU) staining, colony formation assay, transwell migration and invasion assay, and flow cytometry, respectively. RESULTS: A total of 2269 DEGs were analyzed by WGCNA and five hub genes (CCK, FETUB, PCSK9, SPRR1B, and SPRR2D) were identified. Among them, SPRR1B was selected as one of the most significant prognostic genes in LUAD. SPRR1B was found to be highly expressed in lung adenocarcinoma cells compared with that in normal bronchial epithelial cells. In addition, silencing of SPRR1B could inhibit the cell proliferation, invasion, and migration of lung adenocarcinoma cells, but induced cell apoptosis and G2/M phase arrest in vitro. The result of GSEA and immunoblotting revealed that SPRR1B activated the MAPK signaling pathway involved in the proliferation and metastasis of lung cancer. CONCLUSIONS: Our findings demonstrate that SPRR1B may function as a prognosis predictor in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Apoptose/fisiologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células/fisiologia , Biologia Computacional/métodos , Proteínas Ricas em Prolina do Estrato Córneo/genética , Feminino , Humanos , Masculino , Prognóstico
19.
Front Immunol ; 12: 758829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126350

RESUMO

Small proline-rich proteins (SPRRs), components of cornified cell envelope precursors, have recently been found to participate in airway diseases. However, their role in allergic airway inflammatory conditions remains unknown. Here, we explored the expression of SPRR3 in house dust mite (HDM)-sensitized/challenged mice and attempted to elucidate the regulatory role of SPRR3 in allergic airway inflammation. SPRR3 was identified via bioinformatics analysis of Gene Expression Omnibus (GEO) databases and further confirmed to be upregulated in the lungs of asthmatic mice. Knockdown of SPRR3 via the intratracheal route significantly inhibited eosinophils in bronchoalveolar lavage fluid (BALF) and suppressed the expressions of type 2 cytokines (IL-4, IL-5, and IL-13) in BALF and lung tissues. Further, SPRR3 knockdown reduced the expression of IL-33 and further attenuated the activation of the PI3K/AKT/NF-κB signaling pathway in the recruitment of group 2 innate lymphoid cells (ILC2s) to inhibit allergic airway inflammation. In vitro, SPRR3 siRNA could alleviate HDM-induced inflammatory responses in BEAS-2B cells. This study reveals the regulatory role of SPRR3 in allergic airway inflammation, identifying this protein as a potential novel therapeutic target for asthma.


Assuntos
Asma/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Hipersensibilidade/metabolismo , Inflamação/metabolismo , Interleucina-33/metabolismo , Pulmão/metabolismo , Animais , Asma/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Proteínas Ricas em Prolina do Estrato Córneo/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Feminino , Humanos , Hipersensibilidade/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Interleucina-33/imunologia , Pulmão/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Pyroglyphidae/imunologia , Transdução de Sinais/imunologia
20.
Am J Med Genet A ; 182(11): 2662-2665, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33200913

RESUMO

Dowling-Degos disease (DDD) is a rare autosomal-dominant genodermatosis and it has been associated with hidradenitis suppurativa (HS). Deregulation of NOTCH pathway has been linked to the development of HS in DDD context (DDD-HS). However, molecular alterations in DDD-HS, including altered gene expression of NOTCH and downstream effectors that are involved in the follicular differentiation and inflammatory response, are poorly defined. We report two cases of patients diagnosed with DDD-HS, one of those, under Adalimumab treatment. Our results have shown downregulation of NOTCH1/NCSTN pathway, distinct molecular profiles of inflammatory cytokines (IL23A and TNF), and a novel aberrant upregulation of genes involved in the cornified envelope (CE) formation (SPRR1B, SPRR2D, SPRR3, and IVL) in paired HS lesions of two DDD patients.


Assuntos
Citocinas/metabolismo , Regulação da Expressão Gênica , Hidradenite Supurativa/patologia , Hiperpigmentação/patologia , Mediadores da Inflamação/metabolismo , Receptor Notch1/metabolismo , Dermatopatias Genéticas/patologia , Dermatopatias Papuloescamosas/patologia , Adulto , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/genética , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Feminino , Hidradenite Supurativa/complicações , Hidradenite Supurativa/genética , Hidradenite Supurativa/metabolismo , Humanos , Hiperpigmentação/complicações , Hiperpigmentação/genética , Hiperpigmentação/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Prognóstico , Receptor Notch1/genética , Dermatopatias Genéticas/complicações , Dermatopatias Genéticas/genética , Dermatopatias Genéticas/metabolismo , Dermatopatias Papuloescamosas/complicações , Dermatopatias Papuloescamosas/genética , Dermatopatias Papuloescamosas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...