Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 2413, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160571

RESUMO

Synapotagmin-1 (Syt1) interacts with both SNARE proteins and lipid membranes to synchronize neurotransmitter release to calcium (Ca2+) influx. Here we report the cryo-electron microscopy structure of the Syt1-SNARE complex on anionic-lipid containing membranes. Under resting conditions, the Syt1 C2 domains bind the membrane with a magnesium (Mg2+)-mediated partial insertion of the aliphatic loops, alongside weak interactions with the anionic lipid headgroups. The C2B domain concurrently interacts the SNARE bundle via the 'primary' interface and is positioned between the SNAREpins and the membrane. In this configuration, Syt1 is projected to sterically delay the complete assembly of the associated SNAREpins and thus, contribute to clamping fusion. This Syt1-SNARE organization is disrupted upon Ca2+-influx as Syt1 reorients into the membrane, likely displacing the attached SNAREpins and reversing the fusion clamp. We thus conclude that the cation (Mg2+/Ca2+) dependent membrane interaction is a key determinant of the dual clamp/activator function of Synaptotagmin-1.


Assuntos
Membrana Celular/ultraestrutura , Lipídeos de Membrana/metabolismo , Proteínas SNARE/ultraestrutura , Sinaptotagmina I/ultraestrutura , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Magnésio/metabolismo , Fusão de Membrana , Neurotransmissores/metabolismo , Ligação Proteica , Ratos , Proteínas SNARE/metabolismo , Transmissão Sináptica , Sinaptotagmina I/metabolismo
2.
Methods Mol Biol ; 1860: 361-377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30317518

RESUMO

SNARE-mediated membrane fusion is required for membrane trafficking as well as organelle biogenesis and homeostasis. The membrane fusion reaction involves sequential formation of hemifusion intermediates, whereby lipid monolayers partially mix on route to complete bilayer merger. Studies of the Saccharomyces cerevisiae lysosomal vacuole have revealed many of the fundamental mechanisms that drive the membrane fusion process, as well as features unique to organelle fusion. However, until recently, it has not been amenable to electron microscopy methods that have been invaluable for studying hemifusion in other model systems. Herein, we describe a method to visualize hemifusion intermediates during homotypic vacuole membrane fusion in vitro by transmission electron microscopy (TEM), electron tomography, and cryogenic electron microscopy (cryoEM). This method facilitates acquisition of invaluable ultrastructural data needed to comprehensively understand how fusogenic lipids and proteins contribute to SNARE-mediated membrane fusion-by-hemifusion and the unique features of organelle versus small-vesicle fusion.


Assuntos
Microscopia Eletrônica/métodos , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/ultraestrutura , Bicamadas Lipídicas/metabolismo , Fusão de Membrana , Microscopia Eletrônica/instrumentação , Ligação Proteica , Proteínas SNARE/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Vacúolos/metabolismo
3.
Nature ; 518(7537): 61-7, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25581794

RESUMO

Evolutionarily conserved SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors) proteins form a complex that drives membrane fusion in eukaryotes. The ATPase NSF (N-ethylmaleimide sensitive factor), together with SNAPs (soluble NSF attachment protein), disassembles the SNARE complex into its protein components, making individual SNAREs available for subsequent rounds of fusion. Here we report structures of ATP- and ADP-bound NSF, and the NSF/SNAP/SNARE (20S) supercomplex determined by single-particle electron cryomicroscopy at near-atomic to sub-nanometre resolution without imposing symmetry. Large, potentially force-generating, conformational differences exist between ATP- and ADP-bound NSF. The 20S supercomplex exhibits broken symmetry, transitioning from six-fold symmetry of the NSF ATPase domains to pseudo four-fold symmetry of the SNARE complex. SNAPs interact with the SNARE complex with an opposite structural twist, suggesting an unwinding mechanism. The interfaces between NSF, SNAPs, and SNAREs exhibit characteristic electrostatic patterns, suggesting how one NSF/SNAP species can act on many different SNARE complexes.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cricetulus , Microscopia Crioeletrônica , Modelos Moleculares , Complexos Multiproteicos/ultraestrutura , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas SNARE/ultraestrutura , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/ultraestrutura
4.
Nat Struct Mol Biol ; 19(3): 268-75, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22307055

RESUMO

The 20S particle, which is composed of the N-ethylmaleimide-sensitive factor (NSF), soluble NSF attachment proteins (SNAPs) and the SNAP receptor (SNARE) complex, has an essential role in intracellular vesicle fusion events. Using single-particle cryo-EM and negative stain EM, we reconstructed four related three-dimensional structures: Chinese hamster NSF hexamer in the ATPγS, ADP-AlFx and ADP states, and the 20S particle. These structures reveal a parallel arrangement between the D1 and D2 domains of the hexameric NSF and characterize the nucleotide-dependent conformational changes in NSF. The structure of the 20S particle shows that it holds the SNARE complex at two interaction interfaces around the C terminus and N-terminal half of the SNARE complex, respectively. These findings provide insight into the molecular mechanism underlying disassembly of the SNARE complex by NSF.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas SNARE/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/ultraestrutura , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Animais , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Modelos Moleculares , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas SNARE/metabolismo , Proteínas SNARE/ultraestrutura , Homologia Estrutural de Proteína , Especificidade por Substrato
5.
J Cell Mol Med ; 15(1): 31-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20716122

RESUMO

Since the discovery and implication of N-ethylmaleimide-sensitive factor (NSF)-attachment protein receptor (SNARE) proteins in membrane fusion almost two decades ago, there have been significant efforts to understand their involvement at the molecular level. In the current study, we report for the first time the molecular interaction between full-length recombinant t-SNAREs and v-SNARE present in opposing liposomes, leading to the assembly of a t-/v-SNARE ring complex. Using high-resolution electron microscopy, the electron density maps and 3D topography of the membrane-directed SNARE ring complex was determined at nanometre resolution. Similar to the t-/v-SNARE ring complex formed when 50 nm v-SNARE liposomes meet a t-SNARE-reconstituted planer membrane, SNARE rings are also formed when 50 nm diameter isolated synaptic vesicles (SVs) meet a t-SNARE-reconstituted planer lipid membrane. Furthermore, the mathematical prediction of the SNARE ring complex size with reasonable accuracy, and the possible mechanism of membrane-directed t-/v-SNARE ring complex assembly, was determined from the study. Therefore in the present study, using both lipososome-reconstituted recombinant t-/v-SNARE proteins, and native v-SNARE present in isolated SV membrane, the membrane-directed molecular assembly of the neuronal SNARE complex was determined for the first time and its size mathematically predicted. These results provide a new molecular understanding of the universal machinery and mechanism of membrane fusion in cells, having fundamental implications in human health and disease.


Assuntos
Membrana Celular/metabolismo , Neurônios/metabolismo , Proteínas SNARE/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Bicamadas Lipídicas , Lipossomos , Fusão de Membrana , Microscopia de Força Atômica , Neurônios/ultraestrutura , Proteolipídeos/metabolismo , Proteolipídeos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Proteínas SNARE/química , Proteínas SNARE/ultraestrutura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura
6.
J Immunol ; 186(2): 816-25, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21149599

RESUMO

FcγR-mediated phagocytosis is a cellular event that is evolutionary conserved to digest IgG-opsonized pathogens. Pseudopod formation during phagocytosis is a limiting step in managing the uptake of particles, and in this paper, we show that the conventional kinesin is involved in both receptor and membrane delivery to the phagocytic cup. Expression of a mutant kinesin isoform (GFP dominant negative mutant of kinesin H chain [EGFP-Kif5B-DN]) in RAW264.7 cells significantly reduced binding of IgG-sheep RBCs when macrophages were faced with multiple encounters with opsonized particles. Scanning electron microscopy analysis of EGFP-Kif5B-DN-expressing cells challenged with two rounds of IgG-sheep RBCs showed sparse, extremely thin pseudopods. We saw disrupted Rab11 trafficking to the phagocytic cup in EGFP-Kif5B-DN-transfected cells. Our particle overload assays also implicated phagosome membrane recycling in pseudopod formation. We observed reduced phagosome fission and trafficking in mutant kinesin-expressing cells, as well as reduced cell surface expression of FcγRs and Mac-1 receptors. In conclusion, anterograde trafficking via kinesin is essential for both receptor recycling from the phagosome and delivery of Rab11-containing membrane stores to effect broad and functional pseudopods during FcγR-mediated phagocytosis.


Assuntos
Membranas Intracelulares/enzimologia , Membranas Intracelulares/imunologia , Cinesinas/fisiologia , Fagocitose/imunologia , Receptores de IgG/metabolismo , Proteínas SNARE/metabolismo , Animais , Linhagem Celular , Polaridade Celular/genética , Polaridade Celular/imunologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Exocitose/genética , Exocitose/imunologia , Membranas Intracelulares/ultraestrutura , Cinesinas/genética , Cinesinas/ultraestrutura , Camundongos , Fagocitose/genética , Fagossomos/enzimologia , Fagossomos/imunologia , Fagossomos/ultraestrutura , Ligação Proteica/genética , Ligação Proteica/imunologia , Transporte Proteico/genética , Transporte Proteico/imunologia , Pseudópodes/enzimologia , Pseudópodes/imunologia , Pseudópodes/ultraestrutura , Receptores de IgG/fisiologia , Receptores de IgG/ultraestrutura , Proteínas SNARE/ultraestrutura , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transfecção , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/ultraestrutura
7.
Biophys J ; 99(2): 553-60, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20643074

RESUMO

Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE)-mediated lipid mixing can be efficiently recapitulated in vitro by the incorporation of purified vesicle membrane (-v) SNARE and target membrane (t-) SNARE proteins into separate liposome populations. Despite the strong correlation between the observed activities in this system and the known SNARE physiology, some recent works have suggested that SNARE-mediated lipid mixing may be limited to circumstances where membrane defects arise from artifactual reconstitution conditions (such as nonphysiological high-protein concentrations or unrealistically small liposome populations). Here, we show that the previously published strategies used to reconstitute SNAREs into liposomes do not significantly affect either the physical parameters of the proteoliposomes or the ability of SNAREs to drive lipid mixing in vitro. The surface density of SNARE proteins turns out to be the most critical parameter, which controls both the rate and the extent of SNARE-mediated liposome fusion. In addition, the specific activity of the t-SNARE complex is significantly influenced by expression and reconstitution protocols, such that we only observe optimal lipid mixing when the t-SNARE proteins are coexpressed before purification.


Assuntos
Lipídeos/química , Proteínas SNARE/metabolismo , Animais , Microscopia Crioeletrônica , Cinética , Fusão de Membrana , Camundongos , Peso Molecular , Proteolipídeos/metabolismo , Proteolipídeos/ultraestrutura , Ratos , Proteínas SNARE/ultraestrutura , Propriedades de Superfície
8.
Biophys J ; 98(1): 158-63, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20074516

RESUMO

We show far-field fluorescence nanoscopy of different structural elements labeled with an organic dye within living mammalian cells. The diffraction barrier limiting far-field light microscopy is outperformed by using stimulated emission depletion. We used the tagging protein hAGT (SNAP-tag), which covalently binds benzylguanine-substituted organic dyes, for labeling. Tetramethylrhodamine was used to image the cytoskeleton (vimentin and microtubule-associated protein 2) as well as structures located at the cell membrane (caveolin and connexin-43) with a resolution down to 40 nm. Comparison with structures labeled with the yellow fluorescent protein Citrine validates this labeling approach. Nanoscopic movies showing the movement of connexin-43 clusters across the cell membrane evidence the capability of this technique to observe structural changes on the nanoscale over time. Pulsed or continuous-wave lasers for excitation and stimulated emission depletion yield images of similar resolution in living cells. Hence fusion proteins that bind modified organic dyes expand widely the application range of far-field fluorescence nanoscopy of living cells.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Aumento da Imagem/métodos , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Proteínas SNARE/metabolismo , Proteínas SNARE/ultraestrutura , Proteínas Recombinantes de Fusão , Coloração e Rotulagem/métodos
9.
J Cell Mol Med ; 13(10): 4161-5, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19737333

RESUMO

To enable fusion between biological membranes, t-SNAREs and v-SNARE present in opposing bilayers, interact and assemble in a circular configuration forming ring-complexes, which establish continuity between the opposing membranes, in presence of calcium ions. The size of a t-/v-SNARE ring complex is dictated by the curvature of the opposing membrane. Hence smaller vesicles form small SNARE-ring complexes, as opposed to large vesicles. Neuronal communication depends on the fusion of 40-50 nm in diameter membrane-bound synaptic vesicles containing neurotransmitters at the nerve terminal. At the presynaptic membrane, 12-17 nm in diameter cup-shaped neuronal porosomes are present where synaptic vesicles transiently dock and fuse. Studies demonstrate the presence of SNAREs at the porosome base. Atomic force microscopy (AFM), electron microscopy (EM), and electron density measurement studies demonstrate that at the porosome base, where synaptic vesicles dock and transiently fuse, proteins, possibly comprised of t-SNAREs, are found assembled in a ring conformation. To further determine the structure and arrangement of the neuronal t-/v-SNARE complex, 50 nm t-and v-SNARE proteoliposomes were mixed, allowing t-SNARE-vesicles to interact with v-SNARE vesicles, followed by detergent solubilization and imaging of the resultant t-/v-SNARE complexes formed using both AFM and EM. Our results demonstrate formation of 6-7 nm membrane-directed self-assembled t-/v-SNARE ring complexes, similar to, but twice as large as the ring structures present at the base of neuronal porosomes. The smaller SNARE ring at the porosome base may reflect the 3-4 nm base diameter, where 40-50 nm in diameter v-SNARE-associated synaptic vesicle transiently dock and fuse to release neurotransmitters.


Assuntos
Membrana Celular/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Proteínas SNARE/química , Microscopia de Força Atômica , Neurônios/ultraestrutura , Proteolipídeos/metabolismo , Proteolipídeos/ultraestrutura , Proteínas SNARE/ultraestrutura
10.
Biochemistry ; 48(19): 4009-18, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19364126

RESUMO

Porosomes are supramolecular, cup-shaped lipoprotein structures at the cell plasma membrane, where membrane-bound secretory vesicles dock and fuse to release intravesicular contents to the outside during cell secretion. The porosome opening to the outside ranges from 150 nm in diameter in acinar cells of the exocrine pancreas to 12 nm in neurons. In the past decade, the composition of the porosome, its structure and dynamics at nanometer resolution in real time, and its functional reconstitution into an artificial lipid membrane have been described. Discovery of the universal secretory machinery in cells, the porosome, came as no surprise since porosome-like "canaliculi" structures for secretion from human platelets, the secretory machinery in single-cell organisms like the secretion apparatus in bacteria and Toxoplasma gondii, and the contractile vacuole in paramecium have been demonstrated. In this review, the discovery of the porosome complex and the molecular mechanism of its function and how this information provides a new understanding of cell secretion are discussed.


Assuntos
Membrana Celular/fisiologia , Células/metabolismo , Animais , Membrana Celular/ultraestrutura , Humanos , Bicamadas Lipídicas/metabolismo , Organelas/fisiologia , Pâncreas Exócrino/metabolismo , Proteínas SNARE/metabolismo , Proteínas SNARE/ultraestrutura , Vesículas Secretórias/fisiologia , Vesículas Secretórias/ultraestrutura , Sinaptossomos/fisiologia , Sinaptossomos/ultraestrutura
11.
J Cell Biol ; 184(5): 751-64, 2009 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-19255244

RESUMO

Munc18-1 and soluble NSF attachment protein receptors (SNAREs) are critical for synaptic vesicle fusion. Munc18-1 binds to the SNARE syntaxin-1 folded into a closed conformation and to SNARE complexes containing open syntaxin-1. Understanding which steps in fusion depend on the latter interaction and whether Munc18-1 competes with other factors such as complexins for SNARE complex binding is critical to elucidate the mechanisms involved. In this study, we show that lentiviral expression of Munc18-1 rescues abrogation of release in Munc18-1 knockout mice. We describe point mutations in Munc18-1 that preserve tight binding to closed syntaxin-1 but markedly disrupt Munc18-1 binding to SNARE complexes containing open syntaxin-1. Lentiviral rescue experiments reveal that such disruption selectively impairs synaptic vesicle priming but not Ca(2+)-triggered fusion of primed vesicles. We also find that Munc18-1 and complexin-1 bind simultaneously to SNARE complexes. These results suggest that Munc18-1 binding to SNARE complexes mediates synaptic vesicle priming and that the resulting primed state involves a Munc18-1-SNARE-complexin macromolecular assembly that is poised for Ca(2+) triggering of fusion.


Assuntos
Encéfalo/metabolismo , Proteínas Munc18/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas SNARE/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Encéfalo/ultraestrutura , Células Cultivadas , Vetores Genéticos/genética , Substâncias Macromoleculares/metabolismo , Fusão de Membrana/fisiologia , Camundongos , Camundongos Knockout , Proteínas Munc18/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Mutação Puntual/genética , Terminações Pré-Sinápticas/ultraestrutura , Ligação Proteica/genética , Ratos , Proteínas SNARE/ultraestrutura , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/genética , Vesículas Sinápticas/ultraestrutura , Sintaxina 1/genética , Sintaxina 1/metabolismo , Transfecção
12.
J Physiol ; 587(Pt 9): 1943-60, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19273577

RESUMO

Regulated exocytosis is a crucial event for intercellular communication between neurons and astrocytes within the CNS. The soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex, composed of synaptobrevin 2, syntaxin and synaptosome-associated protein of 25 kDa or 23 kDa (SNAP25 or SNAP23), is essential in this process. It was reported that SNAP25 and SNAP23 have distinct roles in exocytotic release, where SNAP25, but not SNAP23, supports an exocytotic burst. It is not clear, however, whether this is due to the intrinsic properties of the ternary SNARE complex, containing either SNAP25 or SNAP23, or perhaps due to the differential association of these proteins with ancillary proteins to the complex. Here, using force spectroscopy, we show from single molecule investigations of the SNARE complex, that SNAP23A created a local interaction at the ionic layer by cuffing syntaxin 1A and synaptobrevin 2, similar to the action of SNAP25B; thus either of the ternary complexes would allow positioning of vesicles at a maximal distance of approximately 13 nm from the plasma membrane. However, the stability of the ternary SNARE complex containing SNAP23A is less than half of that for the complex containing SNAP25B. Thus, differences in the stability of the two different ternary complexes could underlie some of the SNAP25/23 differential ability to control the exocytotic burst.


Assuntos
Microscopia de Força Atômica/métodos , Modelos Químicos , Modelos Moleculares , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/ultraestrutura , Sítios de Ligação , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Proteínas SNARE/química , Proteínas SNARE/ultraestrutura , Estresse Mecânico
13.
Mol Cells ; 26(6): 517-29, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19011361

RESUMO

Porosomes are supramolecular, lipoprotein structures at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to release inravesicular contents to the outside during cell secretion. The mouth of the porosome opening to the outside, range in size from 150 nm in diameter in acinar cells of the exocrine pancreas, to 12 nm in neurons, which dilates during cell secretion, returning to its resting size following completion of the process. In the past decade, the composition of the porosome, its structure and dynamics at nm resolution and in real time, and its functional reconstitution into artificial lipid membrane, have all been elucidated. In this mini review, the discovery of the porosome, its structure, function, isolation, chemistry, and reconstitution into lipid membrane, the molecular mechanism of secretory vesicle swelling and fusion at the base of porosomes, and how this new information provides a paradigm shift in our understanding of cell secretion, is discussed.


Assuntos
Membrana Celular/fisiologia , Células/metabolismo , Animais , Humanos , Bicamadas Lipídicas/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/fisiologia , Organelas/fisiologia , Pâncreas Exócrino/metabolismo , Proteínas SNARE/metabolismo , Proteínas SNARE/ultraestrutura , Vesículas Secretórias/fisiologia , Vesículas Secretórias/ultraestrutura , Sinaptossomos/fisiologia , Sinaptossomos/ultraestrutura
14.
J Cell Biol ; 183(2): 323-37, 2008 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-18936251

RESUMO

Neurotransmitter release from presynaptic nerve terminals is regulated by soluble NSF attachment protein receptor (SNARE) complex-mediated synaptic vesicle fusion. Tomosyn inhibits SNARE complex formation and neurotransmitter release by sequestering syntaxin-1 through its C-terminal vesicle-associated membrane protein (VAMP)-like domain (VLD). However, in tomosyn-deficient mice, the SNARE complex formation is unexpectedly decreased. In this study, we demonstrate that the N-terminal WD-40 repeat domain of tomosyn catalyzes the oligomerization of the SNARE complex. Microinjection of the tomosyn N-terminal WD-40 repeat domain into neurons prevented stimulated acetylcholine release. Thus, tomosyn inhibits neurotransmitter release by catalyzing oligomerization of the SNARE complex through the N-terminal WD-40 repeat domain in addition to the inhibitory activity of the C-terminal VLD.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Animais , Masculino , Camundongos , Fibras Musgosas Hipocampais/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/deficiência , Plasticidade Neuronal , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas R-SNARE/química , Proteínas R-SNARE/deficiência , Ratos , Ratos Wistar , Sequências Repetitivas de Aminoácidos , Proteínas SNARE/química , Proteínas SNARE/ultraestrutura , Relação Estrutura-Atividade , Sinapses/metabolismo , Transmissão Sináptica , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo
15.
Biophys J ; 95(3): 1326-35, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18456822

RESUMO

SNARE proteins mediate fusion of intracellular eukaryotic membranes and their alpha-helical transmembrane domains are known to contribute to lipid bilayer mixing. Synthetic transmembrane domain peptides were previously shown to mimic the function of SNARE proteins in that they trigger liposome fusion in a sequence-specific fashion. Here, we performed a detailed investigation of the conformational dynamics of the transmembrane helices of the presynaptic SNAREs synaptobrevin II and syntaxin 1a. To this end, we recorded deuterium/hydrogen-exchange kinetics in isotropic solution as well as in the membrane-embedded state. In solution, the exchange kinetics of each peptide can be described by three different classes of amide deuteriums that exchange with different rate constants. These are likely to originate from exchange at different domains of the helices. Interestingly, the rate constants of each class vary with the TMD sequence. Thus, the exchange rate is position-specific and sequence-specific. Further, the rate constants correlate with the previously determined membrane fusogenicities. In membranes, exchange is retarded and a significant proportion of amide hydrogens are protected from exchange. We conclude that the conformational dynamics of SNARE TMD helices is mechanistically linked to their ability to drive lipid mixing.


Assuntos
Membrana Celular/química , Medição da Troca de Deutério , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Modelos Químicos , Modelos Moleculares , Proteínas SNARE/química , Proteínas SNARE/ultraestrutura , Sequência de Aminoácidos , Simulação por Computador , Dados de Sequência Molecular , Conformação Proteica
16.
Proc Natl Acad Sci U S A ; 105(7): 2380-5, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18268324

RESUMO

Exocytic vesicle fusion requires both the SNARE family of fusion proteins and a closely associated regulatory subunit of the Sec1/Munc18 (SM) family. In principle, SM proteins could act at an early SNARE assembly step to promote vesicle-plasma membrane adhesion or at a late step to overcome the energetic barrier for fusion. Here, we use the neuronal cognates of each of these protein families to recapitulate, and distinguish, membrane adhesion and fusion on a novel lipidic platform suitable for imaging by fluorescence microscopy. Vesicle SNARE (v-SNARE) proteins reconstituted into giant vesicles ( approximately 10 mum) are fully mobile and functional. Through confocal microscopy, we observe that large vesicles ( approximately 100 nm) carrying target membrane SNAREs (t-SNAREs) both adhere to and freely move on the surface of the v-SNARE giant vesicle. Under conditions where the intrinsic ability of SNAREs to drive fusion is minimized, Munc18 stimulates both SNARE-dependent stable adhesion and fusion. Furthermore, mutation of a critical Munc18-binding residue on the N terminus of the t-SNARE syntaxin uncouples Munc18-stimulated vesicle adhesion from membrane fusion. We expect that the study of SNARE-mediated fusion with giant membranes will find wide applicability in distinguishing adhesion- and fusion-directed SNARE regulatory factors.


Assuntos
Lipossomos/química , Lipossomos/metabolismo , Proteínas Munc18/química , Proteínas SNARE/química , Adesividade , Microscopia Crioeletrônica , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas Munc18/ultraestrutura , Ligação Proteica , Proteínas SNARE/ultraestrutura , Sensibilidade e Especificidade
17.
Biophys J ; 94(2): 648-55, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17872963

RESUMO

This study investigated the effect of soluble N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptors (SNAREs) on the fusion of egg L-alpha-phosphatidylcholine bilayers using atomic force microscope (AFM) spectroscopy. AFM measurements of the fusion force under compression were acquired to reveal the energy landscape of the fusion process. A single main energy barrier governing the fusion process was identified in the absence and presence of SNAREs in the bilayers. Under compression, a significant downward shift in the fusion dynamic force spectrum was observed when cognate v- and t-SNAREs were present in the opposite bilayers. The presence of vesicle-associated membrane protein (VAMP) and binary syntaxin and SNAP 25 in the apposed bilayers resulted in a reduction in the height of the activation potential by approximately 1.3 k(B)T and a >2-fold increase in the width of the energy barrier. The widening of the energy barrier in the presence SNAREs is interpreted as an increase in the compressibility of the membranes, which translates to a greater ease in the bilayer deformation and subsequently the fusion of the membranes under compression. Facilitation of membrane fusion was observed only when SNAREs were present in both bilayers. Moreover, addition of the soluble cytoplasmic domain of VAMP, which interferes with the interaction between opposing v- and t-SNAREs, prevented such facilitation. These observations implicated the interaction between the cytoplasmic domains of opposing SNAREs in the observed fusion facilitation, possibly by destabilizing the bilayers through pulling on their transmembrane segments. Our AFM compression measurements revealed that SNARE-mediated membrane fusion proceeded through a sequence of two approximately 5 nm collapses of the membrane, an observation that is consistent with the existence of a hemifused state during the fusion process.


Assuntos
Fusão de Membrana , Microscopia de Força Atômica , Proteínas SNARE/metabolismo , Proteínas SNARE/ultraestrutura , Animais , Proteínas SNARE/química , Solubilidade , Termodinâmica
18.
Cell Biol Int ; 31(11): 1301-1308, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17703958

RESUMO

Cholesterol has been proposed to play a critical role in regulating neurotransmitter release and synaptic plasticity. The neuronal porosome/fusion pore, the secretory machinery at the nerve terminal, is a 12-17 nm cup-shaped lipoprotein structure composed of cholesterol and a number of proteins, among them calcium channels, and the t-SNARE proteins Syntaxin-1 and SNAP-25. During neurotransmission, synaptic vesicles dock and fuse at the porosome via interaction of their v-SNARE protein with t-SNAREs at the porosome base. Membrane-associated neuronal t-SNAREs interact in a circular array with liposome-associated neuronal v-SNARE to form the t-/v-SNARE ring complex. The SNARE complex along with calcium is required for the establishment of continuity between opposing bilayers. Here we show that although cholesterol is an integral component of the neuronal porosome and is required for maintaining its physical integrity and function, it has no influence on the conformation of the SNARE ring complex.


Assuntos
Membrana Celular/química , Colesterol/metabolismo , Porinas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Proteínas SNARE/metabolismo , Animais , Membrana Celular/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Porinas/ultraestrutura , Terminações Pré-Sinápticas/química , Ratos , Proteínas SNARE/ultraestrutura , Sinaptossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...