Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Bioessays ; 44(10): e2200007, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900055

RESUMO

Reproductive diseases are a long-standing problem and have become more common in the world. Currently, 15% of the world's population suffers from infertility, and half of them are women. Maturation of oocytes, successful fertilization, and high-quality embryos are prerequisites for pregnancy. With the development of assisted reproductive technology and advanced genetic assays, we have found that infertility in many young female patients is caused by mutations in various developmental regulators. These pathogenic factors may result in impediment of oocyte maturation, failure of fertilization or early embryonic development arrest. In this review, we categorize these clinically-identified, mutated genetic factors by their molecular characteristics: nuclear factors (PALT2, TRIP13, WEE2, TBPL2, REC114, MEI1 and CDC20), cytoplasmic factors (TLE6, PADI6, NLRP2/5, FBXO43, MOS and BTG4), a factor unique to primates (TUBB8), cell membrane factor (PANX1), and zona pellucida factors (ZP1-3). We compared discrepancies observed in phenotypes between human and mouse models to provide clues for clinical diagnosis and treatment of related reproductive diseases.


Assuntos
Proteínas F-Box , Infertilidade Feminina , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Ciclo Celular , Conexinas/genética , Conexinas/metabolismo , Desenvolvimento Embrionário/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Feminino , Fertilização/genética , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Gravidez , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Tubulina (Proteína)
2.
Gene ; 833: 146581, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35597524

RESUMO

The assembly of transcription complexes on eukaryotic promoters involves a series of steps, including chromatin remodeling, recruitment of TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme, and additional basal transcription factors. This review describes the transcriptional regulation by TBP and its corresponding homologs that constitute the TBP family and their interactions with promoter DNA. The C-terminal core domain of TBP is highly conserved and contains two structural repeats that fold into a saddle-like structure, essential for the interaction with the TATA-box on DNA. Based on the TBP C-terminal core domain similarity, three TBP-related factors (TRFs) or TBP-like factors (TBPLs) have been discovered in metazoans, TRF1, TBPL1, and TBPL2. TBP is autoregulated, and once bound to DNA, repressors such as Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the active TBP/DNA complex into inactive, negatively regulating TBP. TFIIA antagonizes the TBP repressors but may be effective only in conjunction with the RNA polymerase II holoenzyme recruitment to the promoter by promoter-bound activators. TRF1 has been discovered inDrosophila melanogasterandAnophelesbut found absent in vertebrates and yeast. TBPL1 cannot bind to the TATA-box; instead, TBPL1 prefers binding to TATA-less promoters. However, TBPL1 shows a stronger association with TFIIA than TBP. The TCT core promoter element is present in most ribosomal protein genes inDrosophilaand humans, and TBPL1 is required for the transcription of these genes. TBP directly participates in the DNA repair mechanism, and TBPL1 mediates cell cycle arrest and apoptosis. TBPL2 is closely related to its TBP paralog, showing 95% sequence similarity with the TBP core domain. Like TBP, TBPL2 also binds to the TATA-box and shows interactions with TFIIA, TFIIB, and other basal transcription factors. Despite these advances, much remains to be explored in this family of transcription factors.


Assuntos
RNA Polimerase II , Proteína de Ligação a TATA-Box , Fatores de Transcrição , Transcrição Gênica , Adenosina Trifosfatases/genética , Animais , DNA/genética , Drosophila , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Proteínas Nucleares/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , TATA Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/química , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Fatores Associados à Proteína de Ligação a TATA , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIA/genética , Fator de Transcrição TFIIA/metabolismo , Fatores de Transcrição/genética
3.
Cell Signal ; 93: 110274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122989

RESUMO

We sought to pinpoint the potential role of C-MYC in pulmonary fibroblast proliferation in idiopathic pulmonary fibrosis (IPF) and its mechanism. A mouse model of IPF was established by injection of bleomycin. C-MYC and miR-9-5p expression was determined by RT-qPCR and Western blot analysis. The interaction among C-MYC, miR-9-5p, and TBPL1 was detected by ChIP assay and dual luciferase reporter gene assay. After alteration of C-MYC, miR-9-5p, and TBPL1, their roles in pulmonary fibrosis and collagen fiber deposition in mice as well as proliferation and differentiation of pulmonary fibroblasts were assessed. Upregulated C-MYC expression was seen in the lung tissues of IPF mice and its silencing retarded IPF in mice. C-MYC could activate miR-9-5p that negatively regulated TBPL1 expression. Up-regulated C-MYC promoted proliferation and differentiation of pulmonary fibroblasts by inhibiting TBPL1 via activation of miR-9-5p, thus triggering IPF. Moreover, in the lung tissues-derived cells of IPF mice, C-MYC inhibitor, 10,058-F4, was observed to inhibit miR-9-5p expression, thereby repressing pulmonary fibrosis by up-regulating TBPL1. Our data provided evidence pinpointed the aggravative role of C-MYC in IPF by activating miR-9-5p to regulate TBPL1 expression.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Bleomicina/metabolismo , Bleomicina/farmacologia , Proliferação de Células , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo
4.
Biochem Soc Trans ; 49(5): 2051-2062, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415300

RESUMO

In somatic cells, RNA polymerase II (Pol II) transcription initiation starts by the binding of the general transcription factor TFIID, containing the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs), to core promoters. However, in growing oocytes active Pol II transcription is TFIID/TBP-independent, as during oocyte growth TBP is replaced by its vertebrate-specific paralog TBPL2. TBPL2 does not interact with TAFs, but stably associates with TFIIA. The maternal transcriptome is the population of mRNAs produced and stored in the cytoplasm of growing oocytes. After fertilization, maternal mRNAs are inherited by the zygote from the oocyte. As transcription becomes silent after oocyte growth, these mRNAs are the sole source for active protein translation. They will participate to complete the protein pool required for oocyte terminal differentiation, fertilization and initiation of early development, until reactivation of transcription in the embryo, called zygotic genome activation (ZGA). All these events are controlled by an important reshaping of the maternal transcriptome. This procedure combines cytoplasmic readenylation of stored transcripts, allowing their translation, and different waves of mRNA degradation by deadenylation coupled to decapping, to eliminate transcripts coding for proteins that are no longer required. The reshaping ends after ZGA with an almost total clearance of the maternal transcripts. In the past, the murine maternal transcriptome has received little attention but recent progresses have brought new insights into the regulation of maternal mRNA dynamics in the mouse. This review will address past and recent data on the mechanisms associated with maternal transcriptome dynamic in the mouse.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética , Animais , Feminino , Camundongos , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Gravidez , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Estabilidade de RNA , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
5.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206148

RESUMO

Sea urchins are long-living marine invertebrates with a complex innate immune system, which includes expanded families of immune receptors. A central immune gene family in sea urchins encodes the Transformer (Trf) proteins. The Trf family has been studied mainly in the purple sea urchin Strongylocentrotus purpuratus. Here, we explore this protein family in the Mediterranean Sea urchin Paracentrotus lividus. The PlTrf genes and predicted proteins are highly diverse and show a typical Trf size range and structure. Coelomocytes and cell-free coelomic fluid from P. lividus contain different PlTrf protein repertoires with a shared subset, that bind specifically to E. coli. Using FACS, we identified five different P. lividus coelomocyte sub-populations with cell surface PlTrf protein expression. The relative abundance of the PlTrf-positive cells increases sharply following immune challenge with E. coli, but not following challenge with LPS or the sea urchin pathogen, Vibrio penaeicida. Phagocytosis of E. coli by P. lividus phagocytes is mediated through the cell-free coelomic fluid and is inhibited by blocking PlTrf activity with anti-SpTrf antibodies. Together, our results suggest a collaboration between cellular and humoral PlTrf-mediated effector arms in the P. lividus specific immune response to pathogens.


Assuntos
Imunidade Celular , Imunidade Humoral , Paracentrotus/imunologia , Fagocitose , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/imunologia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Sequência de Aminoácidos , Animais , Escherichia coli , Evolução Molecular , Paracentrotus/genética , Paracentrotus/microbiologia , Fagócitos/imunologia , Fagócitos/metabolismo , Fagócitos/microbiologia , Filogenia , Conformação Proteica , Elementos Estruturais de Proteínas , Alinhamento de Sequência , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/química , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Vibrio
6.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803178

RESUMO

Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2 (TBP2), is a major binding mediator in the thioredoxin (TXN) antioxidant system, which involves a reduction-oxidation (redox) signaling complex and is pivotal for the pathophysiology of some diseases. TXNIP increases reactive oxygen species production and oxidative stress and thereby contributes to apoptosis. Recent studies indicate an evolving role of TXNIP in the pathogenesis of complex diseases such as metabolic disorders, neurological disorders, and inflammatory illnesses. In addition, TXNIP has gained significant attention due to its wide range of functions in energy metabolism, insulin sensitivity, improved insulin secretion, and also in the regulation of glucose and tumor suppressor activities in various cancers. This review aims to highlight the roles of TXNIP in the field of diabetology, neurodegenerative diseases, and inflammation. TXNIP is found to be a promising novel therapeutic target in the current review, not only in the aforementioned diseases but also in prolonged microvascular and macrovascular diseases. Therefore, TXNIP inhibitors hold promise for preventing the growing incidence of complications in relevant diseases.


Assuntos
Proteínas de Transporte/metabolismo , Síndrome Metabólica , Neoplasias , Doenças do Sistema Nervoso , Proteínas Supressoras de Tumor/metabolismo , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/terapia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/terapia , Proteínas Nucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Tiorredoxinas/metabolismo
7.
Clin Transl Oncol ; 23(9): 1827-1837, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33774805

RESUMO

BACKGROUND: Poly-(ADP-Ribose)-Polymerase inhibitors (PARPi) were reported as radiosensitizers in non-small cell lung cancer (NSCLC) with wide-type epidermal growth factor receptor (EGFR), but the effects of radiation combined with PARPi were not investigated in EGFR-mutated NSCLC. Moreover, the underlying mechanisms were not well examined. This study aimed to study the efficacy of radiation combined with niraparib in EGFR-mutated NSCLC and explore their influence on the immune system. METHODS: Clone formation and apoptosis assay were conducted to explore the effects of niraparib and radiation. Immunofluorescence was conducted to detect the double-strand DNA breaks. Real-time PCR and immunoblotting were employed to evaluate the activation of STING/TBK1/TRF3 pathway and the expression levels of interferon ß, CCL5 and CXCL10. Immunocompetent mice model bearing with subcutaneous Lewis lung cancer was established to confirm the results in vivo. RESULTS: Niraparib and radiation were synergistic to inhibit tumor both in vitro and in vivo. Radiation plus niraparib could activate anti-tumor immunity, which appeared as increased CD8+ T lymphocytes and activated STING/TBK1/IRF3 pathway. CONCLUSION: PARPi not only as a radiosensitizer inhibited EGFR-mutated NSCLC tumor growth, but also cooperated with radiation to promote anti-tumor immune responses.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia/métodos , Genes erbB-1 , Indazóis/farmacologia , Neoplasias Pulmonares/terapia , Mutação , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Radiossensibilizantes/farmacologia , Animais , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Quebras de DNA de Cadeia Dupla , Feminino , Imunofluorescência , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/efeitos da radiação , Imunocompetência , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Linfócitos do Interstício Tumoral , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Ensaio Tumoral de Célula-Tronco
8.
Stem Cell Res Ther ; 11(1): 196, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448362

RESUMO

BACKGROUND: Mesendodermal formation during early gastrulation requires the expression of lineage-specific genes, while the regulatory mechanisms during this process have not yet been fully illustrated. TATA box-binding protein (TBP) and TBP-like factors are general transcription factors responsible for the transcription initiation by recruiting the preinitiation complex to promoter regions. However, the role of TBP family members in the regulation of mesendodermal specification remains largely unknown. METHODS: We used an in vitro mesendodermal differentiation system of human embryonic stem cells (hESCs), combining with the microarray and quantitative polymerase chain reaction (qRT-PCR) analysis, loss of function and gain of function to determine the function of the TBP family member TBP-related factor 3 (TRF3) during mesendodermal differentiation of hESCs. The chromatin immunoprecipitation (ChIP) and biochemistry analysis were used to determine the binding of TRF3 to the promoter region of key mesendodermal genes. RESULTS: The mesendodermal differentiation of hESCs was confirmed by the microarray gene expression profile, qRT-PCR, and immunocytochemical staining. The expression of TRF3 mRNA was enhanced during mesendodermal differentiation of hESCs. The TRF3 deficiency did not affect the pluripotent marker expression, alkaline phosphatase activity, and cell cycle distribution of undifferentiated hESCs or the expression of early neuroectodermal genes during neuroectodermal differentiation. During the mesendodermal differentiation, the expression of pluripotency markers decreased in both wild-type and TRF3 knockout (TRF3-/-) cells, while the TRF3 deficiency crippled the expression of the mesendodermal markers. The reintroduction of TRF3 into the TRF3-/- hESCs rescued inhibited mesendodermal differentiation. Mechanistically, the TRF3 binding profile was significantly shifted to the mesendodermal specification during mesendodermal differentiation of hESCs based on the ChIP-seq data. Moreover, ChIP and ChIP-qPCR analysis showed that TRF3 was enriched at core promoter regions of mesendodermal developmental genes, EOMESODERMIN, BRACHYURY, mix paired-like homeobox, and GOOSECOID homeobox, during mesendodermal differentiation of hESCs. CONCLUSIONS: These results reveal that the TBP family member TRF3 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation. However, it directs mesendodermal lineage commitment of hESCs via specifically promoting the transcription of key mesendodermal transcription factors. These findings provide new insights into the function and mechanisms of the TBP family member in hESC early lineage specification.


Assuntos
Células-Tronco Embrionárias Humanas , Proteínas Semelhantes à Proteína de Ligação a TATA-Box , Proteínas de Transporte , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteínas Nucleares , TATA Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(2): 1139-1147, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879343

RESUMO

Pulmonary inflammatory responses lie under circadian control; however, the importance of circadian mechanisms in the underlying fibrotic phenotype is not understood. Here, we identify a striking change to these mechanisms resulting in a gain of amplitude and lack of synchrony within pulmonary fibrotic tissue. These changes result from an infiltration of mesenchymal cells, an important cell type in the pathogenesis of pulmonary fibrosis. Mutation of the core clock protein REVERBα in these cells exacerbated the development of bleomycin-induced fibrosis, whereas mutation of REVERBα in club or myeloid cells had no effect on the bleomycin phenotype. Knockdown of REVERBα revealed regulation of the little-understood transcription factor TBPL1. Both REVERBα and TBPL1 altered integrinß1 focal-adhesion formation, resulting in increased myofibroblast activation. The translational importance of our findings was established through analysis of 2 human cohorts. In the UK Biobank, circadian strain markers (sleep length, chronotype, and shift work) are associated with pulmonary fibrosis, making them risk factors. In a separate cohort, REVERBα expression was increased in human idiopathic pulmonary fibrosis (IPF) lung tissue. Pharmacological targeting of REVERBα inhibited myofibroblast activation in IPF fibroblasts and collagen secretion in organotypic cultures from IPF patients, thus suggesting that targeting of REVERBα could be a viable therapeutic approach.


Assuntos
Proteínas CLOCK/antagonistas & inibidores , Relógios Circadianos/fisiologia , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina/efeitos adversos , Proteínas CLOCK/genética , Proteínas CLOCK/uso terapêutico , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fibrose Pulmonar Idiopática , Integrinas , Pulmão/patologia , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Knockout , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Transcriptoma
10.
Acta Biochim Biophys Sin (Shanghai) ; 51(8): 834-844, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31314053

RESUMO

Our previous finding demonstrated that chronic corticosterone (CORT) may be involved in mediating the pathophysiology of premature aging in rats. Frequent jet lag increases the risk for many diseases, including obesity and type 2 diabetes, and is associated with the aging processes. However, the effect of jet lag on CORT-induced depression and its association with aging phenotypes remain unclear. In this study, the rats were exposed to both CORT and jet lag treatment, and the differences were analyzed and compared to rats with single CORT treatment. Our results showed that jet lag treatment aggravated CORT-induced depression-like behavior evidenced by sucrose intake test, forced swimming test, and open field test. Additionally, this treatment aggravated the shortening of telomeres, which possibly resulted in decreased telomerase activity, and downregulated the expression of telomere-binding factor 2 (TRF2) and telomerase reverse transcriptase compared to that in CORT rats, as revealed by quantitative real-time-polymerase chain reaction and western blot analysis, respectively. The shortening of telomeres may have been caused by increased oxidative stress, which was associated with the inhibition of sirtuin 3. Exposure to jet lag also aggravated the degeneration of mitochondrial functions, as shown by the decreases in the mRNA expression of COX1, ND1, and Tfam. Our findings provide physiological evidence that jet lag exposure may worsen stress-induced depression and age-related abnormalities.


Assuntos
Envelhecimento , Corticosterona/efeitos adversos , Depressão/etiologia , Síndrome do Jet Lag , Animais , Comportamento Animal , Corticosterona/administração & dosagem , Ciclo-Oxigenase 1/metabolismo , Depressão/induzido quimicamente , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Proteínas de Membrana/metabolismo , NADH Desidrogenase/metabolismo , Estresse Oxidativo , Fenótipo , Ratos , Ratos Wistar , Sirtuína 3/antagonistas & inibidores , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Fatores de Transcrição/metabolismo
11.
Biochem Pharmacol ; 158: 45-59, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30236477

RESUMO

Neuroplin 1 (NRP1), a transmembrane protein interacting with Vascular Endothelial Growth Factor VEGF-A165 (called here VEGF165) and the tyrosine kinase Receptor 2 (VEGFR2) promote angiogenesis and vascular homeostasis. In a pathophysiological context, several studies suggested that VEGFR2 and NRP1 mediate tumor development and progression. Given the involvement of the VEGF165 network in promoting tumor angiogenesis, NRP1, VEGFR2 and VEGF165 have been identified as targets for anti-angiogenic therapy. No binding assay exists to monitor specifically the binding of VEGF165 to the VEGFR2/NRP1 complex in intact cells. We established a binding assay based on the homogenous time-resolved fluorescence (HTRF®) technology. This unique binding assay enables to assess the interaction of VEGF165 with VEGFR2 or NRP1 within the VEGFR2/NRP1 complex. Ligand binding saturation experiments revealed that VEGF165 binds the VEGFR2/NRP1 complex at the cell surface with a ten to twenty-fold higher affinity compared to SNAP-VEGFR2 or SNAP-NRP1 receptors alone not engaged in the heteromeric complex. The assay allows characterizing the impact of NRP1 ligands on VEGF165 to the complex. It shows high specificity, reproducibility and robustness, making it compatible with high throughput screening (HTS) applications for identifying new VEGF165 antagonists selective for NRP1 or the VEGFR2/NRP1 complex.


Assuntos
Neuropilina-1/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
12.
Lasers Med Sci ; 33(7): 1513-1519, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29696446

RESUMO

Muscle injuries are the most prevalent type of injury in sports. A great number of athletes have relapsed in muscle injuries not being treated properly. Photobiomodulation therapy is an inexpensive and safe technique with many benefits in muscle injury treatment. However, little has been explored about the infrared laser effects on DNA and telomeres in muscle injuries. Thus, the aim of this study was to evaluate photobiomodulation effects on mRNA relative levels from genes related to telomere and genomic stabilization in injured muscle. Wistar male rats were randomly divided into six groups: control, laser 25 mW, laser 75 mW, injury, injury laser 25 mW, and injury laser 75 mW. Photobiomodulation was performed with 904 nm, 3 J/cm2 at 25 or 75 mW. Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly on the tibialis anterior muscle. After euthanasia, skeletal muscle samples were withdrawn and total RNA extracted for evaluation of mRNA levels from genomic (ATM and p53) and chromosome stabilization (TRF1 and TRF2) genes by real-time quantitative polymerization chain reaction. Data show that photobiomodulation reduces the mRNA levels from ATM and p53, as well reduces mRNA levels from TRF1 and TRF2 at 25 and 75 mW in injured skeletal muscle. In conclusion, photobiomodulation alters mRNA relative levels from genes related to genomic and telomere stabilization in injured skeletal muscle.


Assuntos
Cromossomos de Mamíferos/genética , Genoma , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/lesões , Músculo Esquelético/efeitos da radiação , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Anat Rec (Hoboken) ; 300(9): 1560-1569, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28445620

RESUMO

Smad4 is a critical factor in the TGF-ß pathway and is involved in tumor progression and metastasis, but the role of Smad4 in colon cancer cells is unclear. The aim of this study is to explore the effect and the underlying mechanism of Smad4 on the growth, migration and apoptosis of colon cancer cells as well as vascular endothelial growth factor (VEGF)-A and VEGF-C secreted by these cells. In this study, we showed that Smad4, VEGF-A, and VEGF-C are independent prognostic factors of colon cancer, and Smad4 expression was negatively correlated with VEGF-A and -C in samples. We found that Smad4 mRNA and protein levels in colon cancer cells, particularly in HCT-116 cells, were significantly lower than those in the human intestinal epithelial cell line (HIEC). Smad4 overexpression promoted tumor cell apoptosis, inhibited VEGF-A and -C expression in vitro and in vivo, but had no effect on cell proliferation and migration. Tail vein injection of the virus inhibited xenograft growth in nude mice. Importantly, we also demonstrated that Smad4 could increase the phosphorylation level of Smad3, but not Smad2, which may be one of the mechanisms underlying these effects of Smad4 in colon cancer. Therefore, Smad4 may be a new target for the treatment of colon cancer. Anat Rec, 300:1560-1569, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Neoplasias do Colo/metabolismo , Proteína Smad4/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Movimento Celular , Proliferação de Células , Neoplasias do Colo/mortalidade , Feminino , Células HCT116 , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Fosforilação , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adulto Jovem
14.
J Biol Chem ; 292(8): 3201-3212, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28082682

RESUMO

Stress-induced activation of p53 is an essential cellular response to prevent aberrant cell proliferation and cancer development. The ubiquitin ligase MDM2 promotes p53 degradation and limits the duration of p53 activation. It remains unclear, however, how p53 persistently escapes MDM2-mediated negative control for making appropriate cell fate decisions. Here we report that TBP-like protein (TLP), a member of the TBP family, is a new regulatory factor for the p53-MDM2 interplay and thus for p53 activation. We found that TLP acts to stabilize p53 protein to ensure long-lasting p53 activation, leading to potentiation of p53-induced apoptosis and senescence after genotoxic stress. Mechanistically, TLP interferes with MDM2 binding and ubiquitination of p53. Moreover, single cell imaging analysis shows that TLP depletion accelerates MDM2-mediated nuclear export of p53. We further show that a cervical cancer-derived TLP mutant has less p53 binding ability and lacks a proliferation-repressive function. Our findings uncover a role of TLP as a competitive MDM2 blocker, proposing a novel mechanism by which p53 escapes the p53-MDM2 negative feedback loop to modulate cell fate decisions.


Assuntos
Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Células HCT116 , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/análise , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/análise , Proteína Supressora de Tumor p53/análise , Ubiquitinação
15.
Redox Biol ; 11: 335-341, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28039838

RESUMO

Fibroblast growth factor 21 (FGF21) is an endocrine-member of the FGF family. It is synthesized mainly in the liver, but it is also expressed in adipose tissue, skeletal muscle, and many other organs. It has a key role in glucose and lipid metabolism, as well as in energy balance. FGF21 concentration in plasma is increased in patients with obesity, insulin resistance, and metabolic syndrome. Recent findings suggest that such increment protects tissue from an increased oxidative stress environment. Different types of physical stress, such as strenuous exercising, lactation, diabetic nephropathy, cardiovascular disease, and critical illnesses, also increase FGF21 circulating concentration. FGF21 is now considered a stress-responsive hormone in humans. The discovery of an essential response element in the FGF21 gene, for the activating transcription factor 4 (ATF4), involved in the regulation of oxidative stress, and its relation with genes such as NRF2, TBP-2, UCP3, SOD2, ERK, and p38, places FGF21 as a key regulator of the oxidative stress cell response. Its role in chronic diseases and its involvement in the treatment and follow-up of these diseases has been recently the target of new studies. The diminished oxidative stress through FGF21 pathways observed with anti-diabetic therapy is another clue of the new insights of this hormone.


Assuntos
Diabetes Mellitus/genética , Fatores de Crescimento de Fibroblastos/genética , Síndrome Metabólica/genética , Obesidade/genética , Estresse Oxidativo/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Resistência à Insulina , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Transdução de Sinais , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo
16.
Genes Cells ; 21(11): 1223-1232, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27696626

RESUMO

Although the majority of gene expression is driven by TATA-binding protein (TBP)-based transcription machinery, it has been reported that TBP-related factors (TRFs) are also involved in the regulation of gene expression. TBP-like protein (TLP), which is one of the TRFs and exhibits the highest affinity to TFIIA among known proteins, has recently been showed to have significant roles in gene regulation. However, how the level of TLP is maintained in vivo has remained unknown. In this study, we explored the mechanism by which TLP protein is turned over in vivo and the factor that maintains the amount of TLP. We showed that TLP is rapidly degraded by the ubiquitin-proteasome system and that tight interaction with TFIIA results in protection of TLP from ubiquitin-proteasome-dependent degradation. The half-life of TLP was shown to be less than a few hours, and the proteasome inhibitor MG132 specifically suppressed TLP degradation. Moreover, knockdown and over-expression experiments showed that TFIIA is engaged in stabilization of TLPin vivo. Thus, we showed a novel characteristic of TLP, that is, interaction with TFIIA is essential to suppress proteasome-dependent turnover of TLP, providing a further insight into TLP-governed gene regulation.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIA/metabolismo , Ubiquitina/metabolismo , Animais , Ligação Competitiva , Regulação da Expressão Gênica , Células HCT116 , Células HeLa , Humanos , Camundongos , Ligação Proteica , Estabilidade Proteica , Proteólise , Proteína de Ligação a TATA-Box/metabolismo
17.
Biochem Biophys Res Commun ; 479(4): 814-819, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27680312

RESUMO

TBP-like protein (TLP) is one of the metazoan-restricted transcription factors participating in development and differentiation, though the molecular mechanism by which TLP regulates these processes remains unclear. In this study, we investigated the relationship between TLP and myogenesis of mouse C2C12 myoblasts. We found that TLP gene expression decreases during myogenic differentiation. Overexpression and knockdown of TLP revealed that the levels of muscle-specific myosin heavy chain and the myogenic transcription factor myogenin are downregulated by TLP. TLP inhibits the progression of morphological change from myoblasts to myotubes, thereby suppressing myogenesis. We further show that TLP represses the promoter activity of myogenin. The proximal AT-rich sequence of the myogenin promoter is responsible for TLP-mediated transcriptional repression. The results of this study suggest that TLP inhibits myogenesis through downregulation of the myogenin gene.


Assuntos
Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Miogenina/genética , Regiões Promotoras Genéticas , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Regulação para Baixo , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , RNA Interferente Pequeno/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/antagonistas & inibidores
18.
Sci Rep ; 6: 32069, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27576952

RESUMO

Mammalian genomes encode two genes related to the TATA-box binding protein (TBP), TBP-related factors 2 and 3 (TRF2 and TRF3). Male Trf2(-/-) mice are sterile and characterized by arrested spermatogenesis at the transition from late haploid spermatids to early elongating spermatids. Despite this characterization, the molecular function of murine Trf2 remains poorly characterized and no direct evidence exists to show that it acts as a bona fide chromatin-bound transcription factor. We show here that Trf2 forms a stable complex with TFIIA or the testis expressed paralogue ALF chaperoned in the cytoplasm by heat shock proteins. We demonstrate for the first time that Trf2 is recruited to active haploid cell promoters together with Tbp, Taf7l and RNA polymerase II. RNA-seq analysis identifies a set of genes activated in haploid spermatids during the first wave of spermatogenesis whose expression is down-regulated by Trf2 inactivation. We therefore propose that Trf2 is recruited to the preinitiation complex as a testis-specific subunit of TFIIA/ALF that cooperates with Tbp and Taf7l to promote haploid cell gene expression.


Assuntos
Regulação da Expressão Gênica/genética , Espermatogênese/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Testículo/metabolismo , Fator de Transcrição TFIIA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Haploidia , Proteínas de Choque Térmico/metabolismo , Masculino , Camundongos Knockout , Especificidade de Órgãos , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Transporte Proteico , RNA Polimerase II/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Espermátides/metabolismo , Espermátides/ultraestrutura , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética
19.
Cell ; 164(4): 735-46, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26871633

RESUMO

Telomeres, repetitive DNA sequences at chromosome ends, are shielded against the DNA damage response (DDR) by the shelterin complex. To understand how shelterin protects telomere ends, we investigated the structural organization of telomeric chromatin in human cells using super-resolution microscopy. We found that telomeres form compact globular structures through a complex network of interactions between shelterin subunits and telomeric DNA, but not by DNA methylation, histone deacetylation, or histone trimethylation at telomeres and subtelomeric regions. Mutations that abrogate shelterin assembly or removal of individual subunits from telomeres cause up to a 10-fold increase in telomere volume. Decompacted telomeres accumulate DDR signals and become more accessible to telomere-associated proteins. Recompaction of telomeric chromatin using an orthogonal method displaces DDR signals from telomeres. These results reveal the chromatin remodeling activity of shelterin and demonstrate that shelterin-mediated compaction of telomeric chromatin provides robust protection of chromosome ends against the DDR machinery.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a Telômeros/metabolismo , Dano ao DNA , Reparo do DNA , Células HeLa , Humanos , Multimerização Proteica , Complexo Shelterina , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
20.
J Affect Disord ; 195: 156-62, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26896808

RESUMO

OBJECTIVE: The aim of the present study was to explore the telomere length of peripheral blood leukocytes from a rat model of post-traumatic stress disorder (PTSD), as well as the expression level of telomere-binding protein in the hippocampal CA1 region. METHODS: The PTSD model was established with 42 adult male Wistar rats. The relative telomere length of the leukocytes was measured by real-time fluorescence quantitative polymerase chain reaction, and the expression levels of telomere repeating factor 1 (TRF1) and telomere repeating factor 2 (TRF2) in the hippocampal CA1 region of the PTSD rat model were determined by immunofluorescence technology. The covariance analysis of repeated measurements by the mixed model approach was used for the telomere length analysis. The comparison of averaged data among groups was performed using least significant difference and analysis of variance. The Student's t test or the Mann-Whitney U test was used for intragroup comparison. The association study among groups was conducted using the Spearman test. RESULTS: The shortening speed of telomere length significantly accelerated in rats after Single Prolonged Stress (SPS) stimulation (P<0.05). The expression levels of TRF1 and TRF2 increased with the progress of PTSD, and the expression peak was shown in day 14, which was significantly different from the control group (P<0.05). CONCLUSION: The shortening speed of the telomere length of peripheral blood leukocytes accelerated in PTSD rats, and the expression levels of TRF1 and TRF2 increased in hippocampus, both of which were closely associated with the pathological progress of the PTSD-like model and unfavorable prognosis.


Assuntos
Transtornos de Estresse Pós-Traumáticos/genética , Encurtamento do Telômero/genética , Telômero/genética , Animais , Região CA1 Hipocampal/química , Região CA1 Hipocampal/metabolismo , Modelos Animais de Doenças , Marcadores Genéticos , Leucócitos/ultraestrutura , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/psicologia , Natação/psicologia , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Telômero/ultraestrutura , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...