Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 322(1): C38-C48, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788146

RESUMO

The gaseous signaling molecule hydrogen sulfide (H2S) physiologically regulates store-operated Ca2+ entry (SOCE). The SOCE machinery consists of the plasma membrane-localized Orai channels (Orai1-3) and endoplasmic reticulum-localized stromal interaction molecule (STIM)1 and STIM2 proteins. H2S inhibits Orai3- but not Orai1- or Orai2-mediated SOCE. The current objective was to define the mechanism by which H2S selectively modifies Orai3. We measured SOCE and STIM1/Orai3 dynamics and interactions in HEK293 cells exogenously expressing fluorescently tagged human STIM1 and Orai3 in the presence and absence of the H2S donor GYY4137. Two cysteines (C226 and C232) are present in Orai3 that are absent in the Orai1 and Orai2. When we mutated either of these cysteines to serine, alone or in combination, SOCE inhibition by H2S was abolished. We also established that inhibition was dependent on an interaction with STIM1. To further define the effects of H2S on STIM1/Orai3 interaction, we performed a series of fluorescence recovery after photobleaching (FRAP), colocalization, and fluorescence resonance energy transfer (FRET) experiments. Treatment with H2S did not affect the mobility of Orai3 in the membrane, nor did it influence STIM1/Orai3 puncta formation or STIM1-Orai3 protein-protein interactions. These data support a model in which H2S modification of Orai3 at cysteines 226 and 232 limits SOCE evoked upon store depletion and STIM1 engagement, by a mechanism independent of the interaction between Orai3 and STIM1.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cisteína/metabolismo , Sulfeto de Hidrogênio/toxicidade , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células HEK293 , Humanos , Proteínas Sensoras de Cálcio Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores
2.
J Cell Physiol ; 235(12): 9644-9666, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32394484

RESUMO

Hematopoietic stem cells (HSCs) are known to reside in a bone marrow (BM) niche, which is associated with relatively higher calcium content. HSCs sense and respond to calcium changes. However, how calcium-sensing components modulate HSC function and expansion is largely unknown. We investigated temporal modulation of calcium sensing and Ca2+ homeostasis during ex vivo HSC culture and in vivo. Murine BM-HSCs, human BM, and umbilical cord blood (UCB) mononuclear cells (MNCs) were treated with store-operated calcium entry (SOCE) inhibitors SKF 96365 hydrochloride (abbreviated as SKF) and 2-aminoethoxydiphenyl borate (2-APB). Besides, K+ channel inhibitor TEA chloride (abbreviated as TEA) was used to compare the relationship between calcium-activated potassium channel activities. Seven days of SKF treatment induced mouse and human ex vivo BM-HSC expansion as well as UCB-derived primitive HSC expansion. SKF treatment induced the surface expression of CaSR, CXCR4, and adhesion molecules on human hematopoietic stem and progenitor cells. HSCs expanded with SKF successfully differentiated into blood lineages in recipient animals and demonstrated a higher repopulation capability. Furthermore, modulation of SOCE in the BM-induced HSC content and differentially altered niche-related gene expression profile in vivo. Intriguingly, treatments with SOCE inhibitors SKF and 2-APB boosted the mouse BM mesenchymal stem cell (MSC) and human adipose-derived MSCs proliferation, whereas they did not affect the endothelial cell proliferation. These findings suggest that temporal modulation of calcium sensing is crucial in expansion and maintenance of murine HSCs, human HSCs, and mouse BM-MSCs function.


Assuntos
Cálcio/metabolismo , Proteínas Sensoras de Cálcio Intracelular/genética , Proteínas de Membrana/genética , Receptores CXCR4/genética , Receptores de Detecção de Cálcio/genética , Animais , Compostos de Boro/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Moléculas de Adesão Celular/genética , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/genética , Técnicas de Cocultura , Sangue Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imidazóis/farmacologia , Proteínas Sensoras de Cálcio Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Camundongos
3.
Curr Alzheimer Res ; 17(4): 344-354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469698

RESUMO

Despite decades of research and effort, there is still no effective disease-modifying treatment for Alzheimer's Disease (AD). Most of the recent AD clinical trials were targeting amyloid pathway, but all these trials failed. Although amyloid pathology is a hallmark and defining feature of AD, targeting the amyloid pathway has been very challenging due to low efficacy and serious side effects. Alternative approaches or mechanisms for our understanding of the major cause of memory loss in AD need to be considered as potential therapeutic targets. Increasing studies suggest that Ca2+ dysregulation in AD plays an important role in AD pathology and is associated with other AD abnormalities, such as excessive inflammation, increased ROS, impaired autophagy, neurodegeneration, synapse, and cognitive dysfunction. Ca2+ dysregulation in cytosolic space, Endoplasmic Reticulum (ER) and mitochondria have been reported in the context of various AD models. Drugs or strategies, to correct the Ca2+ dysregulation in AD, have been demonstrated to be promising as an approach for the treatment of AD in preclinical models. This review will discuss the mechanisms of Ca2+ dysregulation in AD and associated pathology and discuss potential approaches or strategies to develop novel drugs for the treatment of AD by targeting Ca2+ dysregulation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Bloqueadores dos Canais de Cálcio/uso terapêutico , Cálcio/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Proteínas Sensoras de Cálcio Intracelular/antagonistas & inibidores , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Resultado do Tratamento
4.
Bone ; 46(3): 571-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19660583

RESUMO

Recent progress has been made in our understanding of the functional role of the seven-transmembrane-spanning extracellular calcium-sensing receptor (CaSR) in bone cells. Both in vitro and in vivo data indicate that the CaSR is a physiological regulator of bone cell metabolism. The CaSR regulates the recruitment, differentiation and survival of osteoblasts and osteoclasts through activation of multiple CaSR-mediated intracellular signaling pathways in bone cells. This raises the possibility that the bone CaSR could potentially be targeted by allosteric modulators, either agonists (calcimimetics) or antagonists (calcilytics) to control bone remodeling. The therapeutic potential of CaSR agonists or antagonists in bone cells is however hampered by their effects on the CaSR in nonskeletal tissues. Rather, direct targeting of the bone CaSR may be of potential interest for the treatment of bone diseases. Targeting the bone CaSR using a bone-seeking CaSR agonist offers a potential mean to modulate bone cell metabolism. The development of drugs that preferentially target the CaSR and possibly other cation-sensing receptors in bone cells may thus be helpful for the treatment of osteoporosis.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Osteócitos/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , Receptores de Detecção de Cálcio/metabolismo , Animais , Humanos , Proteínas Sensoras de Cálcio Intracelular/agonistas , Proteínas Sensoras de Cálcio Intracelular/antagonistas & inibidores , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteócitos/efeitos dos fármacos , Osteócitos/patologia , Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...