Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.688
Filtrar
1.
J Insect Sci ; 24(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958928

RESUMO

Insulin receptor substrate (IRS) proteins are key mediators in insulin signaling pathway. In social insect lives, IRS proteins played important roles in caste differentiation and foraging, but there function in disease defenses such as active immunization has not been reported yet. To investigate the issue, we successfully suppressed the IRS gene 3 days after dsRNA injection. Suppressing IRS gene increased the contents of glucose, trehalose, glycogen, and triglyceride and decreased the content of pyruvate in termites, and led to the metabolic disorder of glucose and lipids. IRS suppressing significantly enhanced grooming behaviors of nestmates of fungus-contaminated termites and hence increased the conidial load in the guts of the nestmates. Additionally, IRS suppressing led to significant downregulation of the immune genes Gram-negative bacteria-binding protein2 (GNBP2) and termicin and upregulation of the apoptotic gene caspase8, and hence diminished antifungal activity of nestmates of fungus-contaminated termites. The above abnormal behavioral and physiological responses significantly decreased the survival rate of dsIRS-injected nestmates of the fungus-contaminated termites. These findings suggest that IRS is involved in regulation of active immunization in termites, providing a better understanding of the link between insulin signaling and the social immunity of termites.


Assuntos
Proteínas Substratos do Receptor de Insulina , Isópteros , Animais , Isópteros/imunologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
2.
Front Immunol ; 15: 1397722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957471

RESUMO

Rationale: Sepsis is a life-threatening organ dysfunction and lack of effective measures in the current. Exosomes from mesenchymal stem cells (MSCs) reported to alleviate inflammation during sepsis, and the preconditioning of MSCs could enhance their paracrine potential. Therefore, this study investigated whether exosomes secreted by lipopolysaccharide (LPS)-pretreated MSCs exert superior antiseptic effects, and explored the underlying molecular mechanisms. Methods: Exosomes were isolated and characterized from the supernatants of MSCs. The therapeutic efficacy of normal exosomes (Exo) and LPS-pretreated exosomes (LPS-Exo) were evaluated in terms of survival rates, inflammatory response, and organ damage in an LPS-induced sepsis model. Macrophages were stimulated with LPS and treated with Exo or LPS-Exo to confirm the results of the in vivo studies, and to explain the potential mechanisms. Results: LPS-Exo were shown to inhibit aberrant pro-inflammatory cytokines, prevent organ damages, and improve survival rates of the septic mice to a greater extent than Exo. In vitro, LPS-Exo significantly promoted the M2 polarization of macrophages exposed to inflammation. miRNA sequencing and qRT-PCR analysis identified the remarkable expression of miR-150-5p in LPS-Exo compared to that in Exo, and exosomal miR-150-5p was transferred into recipient macrophages and mediated macrophage polarization. Further investigation demonstrated that miR-150-5p targets Irs1 in recipient macrophages and subsequently modulates macrophage plasticity by down-regulating the PI3K/Akt/mTOR pathway. Conclusion: The current findings highly suggest that exosomes derived from LPS pre-conditioned MSCs represent a promising cell-free therapeutic method and highlight miR-150-5p as a novel molecular target for regulating immune hyperactivation during sepsis.


Assuntos
Exossomos , Proteínas Substratos do Receptor de Insulina , Lipopolissacarídeos , Macrófagos , Células-Tronco Mesenquimais , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sepse , Transdução de Sinais , Serina-Treonina Quinases TOR , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Sepse/metabolismo , Sepse/imunologia , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ativação de Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças
3.
Redox Biol ; 73: 103221, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843768

RESUMO

Brain insulin resistance links the failure of energy metabolism with cognitive decline in both type 2 Diabetes Mellitus (T2D) and Alzheimer's disease (AD), although the molecular changes preceding overt brain insulin resistance remain unexplored. Abnormal biliverdin reductase-A (BVR-A) levels were observed in both T2D and AD and were associated with insulin resistance. Here, we demonstrate that reduced BVR-A levels alter insulin signaling and mitochondrial bioenergetics in the brain. Loss of BVR-A leads to IRS1 hyper-activation but dysregulates Akt-GSK3ß complex in response to insulin, hindering the accumulation of pGSK3ßS9 into the mitochondria. This event impairs oxidative phosphorylation and fosters the activation of the mitochondrial Unfolded Protein Response (UPRmt). Remarkably, we unveil that BVR-A is required to shuttle pGSK3ßS9 into the mitochondria. Our data sheds light on the intricate interplay between insulin signaling and mitochondrial metabolism in the brain unraveling potential targets for mitigating the development of brain insulin resistance and neurodegeneration.


Assuntos
Glicogênio Sintase Quinase 3 beta , Resistência à Insulina , Insulina , Mitocôndrias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Transdução de Sinais , Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Animais , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Insulina/metabolismo , Camundongos , Humanos , Encéfalo/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resposta a Proteínas não Dobradas , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença de Alzheimer/metabolismo
4.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38836287

RESUMO

Somatic mutations have been identified in 10% to 63% of focal cortical dysplasia type II samples, primarily linked to the mTOR pathway. When the causative genetic mutations are not identified, this opens the possibility of discovering new pathogenic genes or pathways that could be contributing to the condition. In our previous study, we identified a novel candidate pathogenic somatic variant of IRS-1 c.1791dupG in the brain tissue of a child with focal cortical dysplasia type II. This study further explored the variant's role in causing type II focal cortical dysplasia through in vitro overexpression in 293T and SH-SY5Y cells and in vivo evaluation via in utero electroporation in fetal brains, assessing effects on neuronal migration, morphology, and network integrity. It was found that the mutant IRS-1 variant led to hyperactivity of p-ERK, increased cell volume, and was predominantly associated with the MAPK signaling pathway. In vivo, the IRS-1 c.1791dupG variant induced abnormal neuron migration, cytomegaly, and network hyperexcitability. Notably, the ERK inhibitor GDC-0994, rather than the mTOR inhibitor rapamycin, effectively rescued the neuronal defects. This study directly highlighted the ERK signaling pathway's role in the pathogenesis of focal cortical dysplasia II and provided a new therapeutic target for cases of focal cortical dysplasia II that are not treatable by rapamycin analogs.


Assuntos
Proteínas Substratos do Receptor de Insulina , Sistema de Sinalização das MAP Quinases , Mutação , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Animais , Malformações do Desenvolvimento Cortical do Grupo I/genética , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios/metabolismo , Neurônios/patologia , Movimento Celular/genética , Células HEK293 , Feminino , Displasia Cortical Focal , Epilepsia
5.
Nutrients ; 16(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931156

RESUMO

Nucleotides (NTs) act as pivotal regulatory factors in numerous biological processes, playing indispensable roles in growth, development, and metabolism across organisms. This study delves into the effects of exogenous NTs on hepatic insulin resistance using palmitic-acid-induced HepG2 cells, administering interventions at three distinct dosage levels of exogenous NTs. The findings underscore that exogenous NT intervention augments glucose consumption in HepG2 cells, modulates the expression of glycogen-synthesis-related enzymes (glycogen synthase kinase 3ß and glycogen synthase), and influences glycogen content. Additionally, it governs the expression levels of hepatic enzymes (hexokinase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase). Moreover, exogenous NT intervention orchestrates insulin signaling pathway (insulin receptor substrate-1, protein kinase B, and forkhead box protein O1) and AMP-activated protein kinase (AMPK) activity in HepG2 cells. Furthermore, exogenous NT intervention fine-tunes the expression levels of oxidative stress-related markers (malondialdehyde, glutathione peroxidase, and NADPH oxidase 4) and the expression of inflammation-related nuclear transcription factor (NF-κB). Lastly, exogenous NT intervention regulates the expression levels of glucose transporter proteins (GLUTs). Consequently, exogenous NTs ameliorate insulin resistance in HepG2 cells by modulating the IRS-1/AKT/FOXO1 pathways and regulate glucose consumption, glycogen content, insulin signaling pathways, AMPK activity, oxidative stress, and inflammatory status.


Assuntos
Proteína Forkhead Box O1 , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina , Ácido Palmítico , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Células Hep G2 , Ácido Palmítico/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Glucose/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Glicogênio/metabolismo , Insulina/metabolismo
6.
Mech Ageing Dev ; 220: 111955, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852746

RESUMO

While high-fat diet (HFD)-induced obesity is a major threat to global public health, the effect of HFD on cognition and insulin signaling during ageing remains controversial. The aim of this study was to characterize the dynamic alterations in cognition and cerebral insulin signaling during 6-month HFD consumption, and to investigate the potential therapeutic target and optimal timing to rescue obesity-related cognitive deficits. In the present study, impaired memory retention induced by 2-month HFD was recovered after 4 months on HFD. Prolonged (6-month) HFD did not further enhance tau hyperphosphorylation and ß-amyloid deposition, which was consistent with the alleviation of memory retention. In brain insulin signaling, 2-month HFD increased IRS-1 and p-IRS-1(Ser307)/IRS-1, while decreasing pAKT(Ser473)/AKT, PI3K and mTOR; 4-month HFD decreased IRS-1 and pAKT(Ser473)/AKT, while increasing AKT; 6-month HFD increased IRS-1, pAKT(Ser473)/AKT, and mTOR, while decreasing p-IRS-1(Ser307)/IRS-1, PI3K and AKT. Notably, bioinformatic analysis revealed a rhythmic process presented only in 4-month HFD group, with Srebf1 emerging as a link between circadian rhythms and insulin signaling pathway. These results suggest that prolonged HFD prevents further cognitive decline and the progression of Alzheimer's disease (AD)-related pathologies during ageing. Moreover, there may be a window for recovery, in which Srebf1 acts as a self-recovery switch to address obesity-related cognitive disorders in elders.


Assuntos
Cognição , Dieta Hiperlipídica , Proteínas Substratos do Receptor de Insulina , Insulina , Transdução de Sinais , Dieta Hiperlipídica/efeitos adversos , Animais , Insulina/metabolismo , Masculino , Cognição/fisiologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Obesidade/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Camundongos Endogâmicos C57BL
7.
Ecotoxicol Environ Saf ; 279: 116492, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795415

RESUMO

Pregnant women are a special group that is sensitive to adverse external stimuli, causing metabolic abnormalities and adverse pregnancy outcomes. Microplastics (MPs), an environmental pollutant widely used in various fields, can induce a variety of toxic responses in mammals. Recent studies verified an association between MPs and metabolic disorders. Our research built a gestational mouse model in which polystyrene microplastics (PS-MPs) of 1 µm size were consumed at concentrations of 0.1, 1, and 10 mg/L during pregnancy. Results indicated that PS-MPs induced placental malfunction and fetal growth retardation. Significant glucose disorders, decreased liver function, hepatic inflammation, and oxidative stress were also observed after PS-MPs exposure. The hepatic SIRT1/IRS1/PI3K pathway was inhibited in the 10 mg/L PS-MPs exposure group. Our study found that PS-MPs activated inflammatory response and oxidative stress by increasing hepatic lipopolysaccharide (LPS) that inhibited the hepatic SIRT1/IRS1/PI3K pathway, ultimately leading to insulin resistance, glucose metabolism disorders, and adverse pregnancy outcomes. This study provides a basis for preventing environment-related gestational diabetes and concomitant adverse pregnancy outcomes.


Assuntos
Microplásticos , Estresse Oxidativo , Poliestirenos , Resultado da Gravidez , Sirtuína 1 , Feminino , Gravidez , Poliestirenos/toxicidade , Animais , Microplásticos/toxicidade , Camundongos , Sirtuína 1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Glucose/metabolismo , Placenta/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Proteínas Substratos do Receptor de Insulina/metabolismo , Retardo do Crescimento Fetal/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Fígado/efeitos dos fármacos
8.
J Ethnopharmacol ; 332: 118341, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754646

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The extracellular regulated protein kinase (ERK) plays a crucial role in the mitogen-activated protein kinase (MAPK) family, influencing apoptosis, proliferation, and differentiation. It connection to the insulin (INS) signaling cascade and the development of type 2 diabetes mellitus (T2DM) has been established. Rubus irritans Focke, an indispensable herb in Chinese Tibetan medicine for diabetes mellitus treatment, lacks a comprehensive understanding of its effects and pharmacological mechanisms in T2DM. AIM OF THE STUDY: This study aimed to elucidate the effects of Rubus irritans Focke extract (Rife) on a T2DM rat model, exploring its impact on glycemic and lipid metabolism, histopathological changes, and its potential targeting of the extracellular regulated protein kinase/insulin receptor substrate-1 (ERK/IRS-1) signaling pathway. MATERIALS AND METHODS: A T2DM rat model was induced by streptozotocin (STZ) injection (40 mg/kg) in high-fat diet-fed (HFD) male Wistar rats. Rife and metformin (Met) were administered for 4 weeks, and glycemic, lipid metabolism indices, and histopathological changes were assessed. Protein expression of ERK, IRS-1 in rat liver tissues was examined to evaluate the impact on the ERK/IRS-1 pathway. RESULTS: Rife reducing hepatic ERK and IRS-1 protein expression in T2DM rats. Untargeted metabolomics identified 13 potential biomarkers and 4 differential metabolic pathways related to glycolipid metabolism disorders. CONCLUSIONS: Rife demonstrated improved glycolipid metabolism in T2DM rats by inhibiting the ERK/IRS-1 related signaling pathway and influencing multiple metabolic pathways. This study provides valuable insights into the potential therapeutic mechanisms of Rife in the context of T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Glicolipídeos , Hipoglicemiantes , Proteínas Substratos do Receptor de Insulina , Extratos Vegetais , Ratos Wistar , Animais , Masculino , Proteínas Substratos do Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Extratos Vegetais/farmacologia , Glicolipídeos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratos , Hipoglicemiantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Estreptozocina
9.
J Sci Food Agric ; 104(11): 6933-6946, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38597456

RESUMO

BACKGROUND: Tea dregs, typically generated during the production of instant tea or tea beverages, have conventionally been regarded as waste material and routinely discarded. Nevertheless, contemporary research endeavors are concentrating on discovering efficient methods for utilizing the potential of this discarded resource. RESULTS: In this study, we employed a sequential extraction method using chemical chelating agents to extract and isolate four distinct cell wall polysaccharides, designated as CWTPS-1 through CWTPS-4, from the tea dregs of Liubao brick tea. A comprehensive investigation into their physicochemical, structural, and hypoglycemic properties was conducted. The analysis of chemical composition and physicochemical characteristics revealed that all four CWTPSs were characterized as acidic polysaccharides, albeit with varying chemical compositions and physicochemical attributes. Specifically, the xyloglucan fractions, CWTPS-3 and CWTPS-4, were found to be rich in glucose and xylose, displaying a more uniform molecular weight distribution, greater structural stability, and a more irregular surface compared to the others. Moreover, they exhibited a higher diversity of monosaccharide residues. Importantly, our research unveiled that all four CWTPSs exhibited the capacity to modulate key glucose-regulated and antioxidant enzyme activities within HepG2 cells via the IRS-1-PI3K/AKT signaling pathway, thereby ameliorating cellular insulin resistance. Furthermore, our correlation analysis highlighted significant associations between monosaccharide composition and neutral sugar content with the observed hypoglycemic activity of CWTPSs. CONCLUSION: This study highlights the potential of utilizing tea dregs as a valuable resource, making a significant contribution to the advancement of the tea industry. Furthermore, CWTPS-4 exhibits promising prospects for further development as a functional food ingredient or additive. © 2024 Society of Chemical Industry.


Assuntos
Camellia sinensis , Parede Celular , Hipoglicemiantes , Polissacarídeos , Chá , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/isolamento & purificação , Parede Celular/química , Humanos , Células Hep G2 , Chá/química , Camellia sinensis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/química , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética
10.
Drug Discov Ther ; 18(2): 117-129, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38644207

RESUMO

Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disorder characterized by a complex pathogenesis and limited treatment options. Yishen Huatan and Huoxue decoction (YHHD), as a traditional Chinese Medicine formula, has shown effectiveness in treating PCOS. However, the specific mechanisms by which YHHD exerts its therapeutic effects remain unclear. In this study, we performed to investigate the therapeutic effects of YHHD and quercetin on dehydroepiandrosterone-induced PCOS mice, and examine the effect of quercetin on the decidualization of T-HESCs under hyperinsulinemic conditions. The results showed that YHHD could reduce early miscarriage rates in PCOS patients and significantly improved glucose metabolism disorders, sex hormone levels, and the estrous cycles in PCOS mice. Quercetin could alleviate effect of high insulin levels and restore the low expression of insulin receptor substrate1/2 (IRS1/2) and glucose transporte 4 (GLUT4) in T-HESCs, demonstrating its potential to mitigate hyperinsulin-induced decidualization dysfunction via the GLUT4 signaling pathway mediated by IRS1/2. This study provides valuable molecular insights of YHHD and highlight the therapeutic potential of quercetin in treating decidualization dysfunction in PCOS.


Assuntos
Medicamentos de Ervas Chinesas , Síndrome do Ovário Policístico , Quercetina , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Feminino , Quercetina/farmacologia , Quercetina/uso terapêutico , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Humanos , Modelos Animais de Doenças , Transportador de Glucose Tipo 4/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto , Aborto Espontâneo/tratamento farmacológico , Insulina/sangue , Insulina/metabolismo , Desidroepiandrosterona/farmacologia , Decídua/efeitos dos fármacos , Decídua/metabolismo , Ciclo Estral/efeitos dos fármacos , Gravidez
11.
Proc Natl Acad Sci U S A ; 121(17): e2401716121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625937

RESUMO

Serine phosphorylations on insulin receptor substrate 1 (IRS-1) by diverse kinases aoccur widely during obesity-, stress-, and inflammation-induced conditions in models of insulin resistance and type 2 diabetes. In this study, we define a region within the human IRS-1, which is directly C-terminal to the PTB domain encompassing numerous serine phosphorylation sites including Ser307 (mouse Ser302) and Ser312 (mouse 307) creating a phosphorylation insulin resistance (PIR) domain. We demonstrate that the IRS-1 PTB-PIR with its unphosphorylated serine residues interacts with the insulin receptor (IR) but loses the IR-binding when they are phosphorylated. Surface plasmon resonance studies further confirm that the PTB-PIR binds stronger to IR than just the PTB domain, and that phosphorylations at Ser307, Ser312, Ser315, and Ser323 within the PIR domain result in abrogating the binding. Insulin-responsive cells containing the mutant IRS-1 with all these four serines changed into glutamates to mimic phosphorylations show decreased levels of phosphorylations in IR, IRS-1, and AKT compared to the wild-type IRS-1. Hydrogen-deuterium exchange mass spectrometry experiments indicating the PIR domain interacting with the N-terminal lobe and the hinge regions of the IR kinase domain further suggest the possibility that the IRS-1 PIR domain protects the IR from the PTP1B-mediated dephosphorylation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Humanos , Animais , Fosforilação , Serina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Linhagem Celular , Fosfoproteínas/metabolismo , Insulina/metabolismo
12.
Nat Commun ; 15(1): 3410, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649684

RESUMO

Estrogen receptor α (ERα) plays a crucial role in regulating glucose and energy homeostasis during type 2 diabetes mellitus (T2DM). However, the underlying mechanisms remain incompletely understood. Here we find a ligand-independent effect of ERα on the regulation of glucose homeostasis. Deficiency of ERα in the liver impairs glucose homeostasis in male, female, and ovariectomized (OVX) female mice. Mechanistic studies reveal that ERα promotes hepatic insulin sensitivity by suppressing ubiquitination-induced IRS1 degradation. The ERα 1-280 domain mediates the ligand-independent effect of ERα on insulin sensitivity. Furthermore, we identify a peptide based on ERα 1-280 domain and find that ERα-derived peptide increases IRS1 stability and enhances insulin sensitivity. Importantly, administration of ERα-derived peptide into obese mice significantly improves glucose homeostasis and serum lipid profiles. These findings pave the way for the therapeutic intervention of T2DM by targeting the ligand-independent effect of ERα and indicate that ERα-derived peptide is a potential insulin sensitizer for the treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor alfa de Estrogênio , Glucose , Homeostase , Resistência à Insulina , Fígado , Obesidade , Animais , Feminino , Humanos , Masculino , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Receptor alfa de Estrogênio/metabolismo , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Ovariectomia , Peptídeos/farmacologia , Ubiquitinação/efeitos dos fármacos
13.
Neuromolecular Med ; 26(1): 15, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653878

RESUMO

Lycium barbarum polysaccharide (LBP) have a certain curative effect on hypoglycemic and neuroprotective effects, but the specific mechanism is unclear and needs to be further explored. This study aimed to clarify the mechanisms of LBP in the treatment of ICV-STZ mice model of AD from the perspectives of insulin resistance, IRS1/PI3K/AKT signaling pathway, and synaptic protein expression. We used male C57BL/6J mice injected with STZ (3 mg/kg) in the lateral ventricle as an AD model. After treatment with LBP, the learning and memory abilities of ICV-STZ mice were enhanced, and the pathological changes in brain tissue were alleviated. LBP can regulate the expression of proteins related to the IRS1/PI3K/AKT signaling pathway and thereby reducing Aß deposition and tau protein phosphorylation in the brain of ICV-STZ mice. In addition, LBP also can up-regulate the expression of synaptic proteins. The results indicated that LBP played a neuroprotective role by regulating the IRS1/PI3K/AKT pathway, inhibiting tau protein hyperphosphorylation and improving the expression levels of synapse-related proteins.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Proteínas Substratos do Receptor de Insulina , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteínas tau , Animais , Masculino , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Sinapses/efeitos dos fármacos , Proteínas tau/metabolismo
14.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583436

RESUMO

The treatment of patients with acute pulmonary embolism (APE) is extremely challenging due to the complex clinical presentation and prognosis of APE related to the patient's hemodynamic status and insufficient arterial blood flow and right ventricular overload. Protective efficacy against cardiovascular diseases of curcumin, a common natural polyphenolic compound, which has antithrombotic properties and reduces platelet accumulation in the circulation by inhibiting thromboxane synthesis has been demonstrated. However, the direct effect of curcumin on APE has rarely been studied. Therefore, the present study aimed to investigate the therapeutic potential of curcumin in APE and associated myocardial injury to provide new insights into curcumin as a promising competitive new target for the treatment of APE. A suspension of 12 mg/kg microspheres was injected intravenously into rats. An APE rat model was built. Before modeling, intragastric 100 mg/kg curcumin was given, and/or lentiviral plasmid vector targeting microRNA-145-5p or insulin receptor substrate 1 (IRS1) was injected. Pulmonary artery pressure was measured to assess right ventricular systolic pressure (RVSP). Hematoxylin and eosin (H&E) staining was performed on liver tissues and myocardial tissues of APE rats. TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling) staining and immunohistochemical (IHC) staining were conducted to measure apoptosis and CyPA-CD147 expression in the myocardium, respectively. Inflammatory indices interleukin-1beta (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were measured by ELISA in cardiac tissues. RT-qPCR and Western blot were performed to determine the expression levels of related genes. In addition, by dual luciferase reporter assay and RIP assay, the relationship between microRNA-145-5p and insulin receptor substrate 1 (IRS1) was confirmed. In results: curcumin improved APE-induced myocardial injury, reduced myocardial tissue edema, and thrombus volume. It attenuated APE-induced myocardial inflammation and apoptosis, as well as reduced lung injury and pulmonary artery pressure. Curcumin promoted microRNA-145-5p expression in APE rat myocardium. MicroRNA-145-5p overexpression protected against APE-induced myocardial injury, and microRNA-145-5p silencing abolished the beneficial effects of curcumin in APE-induced myocardial injury. IRS1 was targeted by microRNA-145-5p. IRS1 silencing attenuated APE-induced myocardial injury, and enhanced therapeutic effect of curcumin on myocardial injury in APE rats. In conclusion, curcumin alleviates myocardial inflammation, apoptosis, and oxidative stress induced by APE by regulating microRNA-145-5p/IRS1 axis.


Assuntos
Curcumina , Hominidae , MicroRNAs , Miocardite , Embolia Pulmonar , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Proteínas Substratos do Receptor de Insulina/metabolismo , Interleucina-6/metabolismo , Apoptose , Inflamação/tratamento farmacológico , Estresse Oxidativo , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/genética , Hominidae/genética , Hominidae/metabolismo
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167173, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631410

RESUMO

Here, we show that insulin induces palmitoylation turnover of Caveolin-2 (Cav-2) in adipocytes. Acyl protein thioesterases-1 (APT1) catalyzes Cav-2 depalmitoylation, and zinc finger DHHC domain-containing protein palmitoyltransferase 21 (ZDHHC21) repalmitoylation of the depalmitoylated Cav-2 for the turnover, thereby controlling insulin receptor (IR)-Cav-2-insulin receptor substrate-1 (IRS-1)-Akt-driven signaling. Insulin-induced palmitoylation turnover of Cav-2 facilitated glucose uptake and fat storage through induction of lipogenic genes. Cav-2-, APT1-, and ZDHHC21-deficient adipocytes, however, showed increased induction of lipolytic genes and glycerol release. In addition, white adipose tissues from insulin sensitive and resistant obese patients exhibited augmented expression of LYPLA1 (APT1) and ZDHHC20 (ZDHHC20). Our study identifies the specific enzymes regulating Cav-2 palmitoylation turnover, and reveals a new mechanism by which insulin-mediated lipid metabolism is controlled in adipocytes.


Assuntos
Adipócitos , Caveolina 2 , Proteínas Substratos do Receptor de Insulina , Insulina , Metabolismo dos Lipídeos , Lipoilação , Receptor de Insulina , Humanos , Adipócitos/metabolismo , Animais , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Camundongos , Caveolina 2/metabolismo , Caveolina 2/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Insulina/metabolismo , Obesidade/metabolismo , Obesidade/genética , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Aciltransferases/metabolismo , Aciltransferases/genética , Transdução de Sinais , Resistência à Insulina , Células 3T3-L1 , Masculino
16.
Int J Obes (Lond) ; 48(7): 934-940, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38491191

RESUMO

BACKGROUND/OBJECTIVE: Insulin resistance is more prominent in men than women. If this involves adipose tissue is unknown and was presently examined. SUBJECTS/METHODS: AdipoIR (in vivo adipose insulin resistance index) was measured in 2344 women and 787 men. In 259 of the women and 54 of the men, insulin induced inhibition of lipolysis (acylglycerol breakdown) and stimulation of lipogenesis (glucose conversion to acylglycerols) were determined in subcutaneous adipocytes; in addition, basal (spontaneous) lipolysis was also determined in the fat cells. In 234 women and 115 men, RNAseq expression of canonical insulin signal genes were measured in subcutaneous adipose tissue. Messenger RNA transcripts of the most discriminant genes were quantified in 175 women and 109 men. RESULTS: Men had higher AdipoIR values than women but only when obesity (body mass index 30 kg/m2 or more) was present (p < 0.0001). The latter sex dimorphism was found among physically active and sedentary people, in those with and without cardiometabolic disease and in people using nicotine or not (p = 0.0003 or less). In obesity, adipocyte insulin sensitivity (half maximum effective hormone concentration) and maximal antilipolytic effect were tenfold and 10% lower, respectively, in men than women (p = 0.005 or less). Basal rate of lipolysis was two times higher in men than women (p > 0.0001). Sensitivity and maximum effect of insulin on lipogenesis were similar in both sexes (p = 0.26 and p = 0.18, respectively). When corrected for multiple comparison only RNAseq expression of insulin receptor substrate 1 (IRS1) was lower in men than women (p < 0.0001). The mRNA transcript for IRS1 was 60% higher in women than men (p < 0.0001). CONCLUSIONS: In obesity, adipose tissue insulin resistance is more pronounced in men than in women. The mechanism involves less efficient insulin-mediated inhibition of adipocyte lipolysis, increased basal rate of lipolysis and decreased adipose expression of a key element of insulin signaling, IRS1.


Assuntos
Proteínas Substratos do Receptor de Insulina , Resistência à Insulina , Lipólise , Obesidade , Humanos , Feminino , Masculino , Lipólise/fisiologia , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Adulto , Pessoa de Meia-Idade , Tecido Adiposo/metabolismo , Caracteres Sexuais , Adipócitos/metabolismo , Fatores Sexuais
17.
Planta Med ; 90(5): 388-396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490239

RESUMO

Diabetes mellitus, linked with insulin resistance and hyperglycaemia, is a leading cause of mortality. Glucose uptake through glucose transporter type 4, especially in skeletal muscle, is crucial for maintaining euglycaemia and is a key pathway targeted by antidiabetic medication. Abrus precatorius is a medicinal plant with demonstrated antihyperglycaemic activity in animal models, but its mechanisms are unclear.This study evaluated the effect of a 50% ethanolic (v/v) A. precatorius leaf extract on (1) insulin-stimulated glucose uptake and (2) related gene expression in differentiated C2C12 myotubes using rosiglitazone as a positive control, and (3) generated a comprehensive phytochemical profile of A. precatorius leaf extract using liquid chromatography-high resolution mass spectrometry to elucidate its antidiabetic compounds. A. precatorius leaf extract significantly increased insulin-stimulated glucose uptake, and insulin receptor substrate 1 and Akt substrate of 160 kDa gene expression; however, it had no effect on glucose transporter type 4 gene expression. At 250 µg/mL A. precatorius leaf extract, the increase in glucose uptake was significantly higher than 1 µM rosiglitazone. Fifty-five phytochemicals (primarily polyphenols, triterpenoids, saponins, and alkaloids) were putatively identified, including 24 that have not previously been reported from A. precatorius leaves. Abrusin, precatorin I, glycyrrhizin, hemiphloin, isohemiphloin, hispidulin 4'-O-ß-D-glucopyranoside, homoplantaginin, and cirsimaritin were putatively identified as known major compounds previously reported from A. precatorius leaf extract. A. precatorius leaves contain antidiabetic phytochemicals and enhance insulin-stimulated glucose uptake in myotubes via the protein kinase B/phosphoinositide 3-kinase pathway by regulating insulin receptor substrate 1 and Akt substrate of 160 kDa gene expression. Therefore, A. precatorius leaves may improve skeletal muscle insulin sensitivity and hyperglycaemia. Additionally, it is a valuable source of bioactive phytochemicals with potential therapeutic use for diabetes.


Assuntos
Abrus , Diabetes Mellitus , Hiperglicemia , Resistência à Insulina , Animais , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Abrus/química , Proteínas Substratos do Receptor de Insulina/metabolismo , Rosiglitazona/metabolismo , Rosiglitazona/farmacologia , Transportador de Glucose Tipo 4 , Fosfatidilinositol 3-Quinases , Músculo Esquelético/metabolismo , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais/química , Glucose/farmacologia
18.
Exp Clin Endocrinol Diabetes ; 132(3): 152-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513652

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a commonly observed complication associated with obesity. The effect of fibroblast growth factor 19 (FGF19), a promising therapeutic agent for metabolic disorders, on pancreatic ß cells in obesity-associated T2DM remains poorly understood. METHODS: Human pancreatic ß cells were cultured with high glucose (HG) and palmitic acid (PA), followed by treatment with FGF19. The cell proliferation, apoptosis, and insulin secretion were evaluated by CCK-8, qRT-PCR, ELISA, flow cytometry, and western blotting. The expression of the insulin receptor substrate (IRS)/glucose transporter (GLUT) pathway was evaluated. The interaction between FGF19 and IRS1 was predicted using the STRING database and verified by co-immunoprecipitation and immunofluorescence. The regulatory effects of the IRS1/GLUT4 pathway on human pancreatic ß cells were assessed by overexpressing IRS1 and silencing IRS1 and GLUT4. RESULTS: HG+PA treatment reduced the human pancreatic ß cell proliferation and insulin secretion and promoted cell apoptosis. However, FGF19 treatment restored these alterations and significantly increased the expressions of IRS1, GLUT1, and GLUT4 in the IRS/GLUT pathway. Furthermore, FGF19 and IRS1 were found to interact. IRS1 overexpression partially promoted the proliferation of pancreatic ß cells and insulin secretion through GLUT4. Additionally, the silencing of IRS1 or GLUT4 attenuated the therapeutic effects of FGF19. CONCLUSION: In conclusion, FGF19 partly promoted the proliferation and insulin secretion of human pancreatic ß cells and inhibited apoptosis by upregulating the IRS1/GLUT4 pathway. These findings establish a theoretical framework for the clinical utilization of FGF19 in the treatment of obesity-associated T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Fatores de Crescimento de Fibroblastos , Transportador de Glucose Tipo 1 , Proteínas Substratos do Receptor de Insulina , Secreção de Insulina , Células Secretoras de Insulina , Obesidade , Humanos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Fatores de Crescimento de Fibroblastos/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Obesidade/etiologia , Obesidade/terapia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Transportador de Glucose Tipo 1/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Glucose/farmacologia
19.
Theranostics ; 14(5): 2246-2264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505620

RESUMO

Aim: Adipose tissue (AT) dysfunction that occurs in both obesity and lipodystrophy is associated with the development of cardiomyopathy. However, it is unclear how dysfunctional AT induces cardiomyopathy due to limited animal models available. We have identified vacuolar H+-ATPase subunit Vod1, encoded by Atp6v0d1, as a master regulator of adipogenesis, and adipose-specific deletion of Atp6v0d1 (Atp6v0d1AKO) in mice caused generalized lipodystrophy and spontaneous cardiomyopathy. Using this unique animal model, we explore the mechanism(s) underlying lipodystrophy-related cardiomyopathy. Methods and Results: Atp6v0d1AKO mice developed cardiac hypertrophy at 12 weeks, and progressed to heart failure at 28 weeks. The Atp6v0d1AKO mouse hearts exhibited excessive lipid accumulation and altered lipid and glucose metabolism, which are typical for obesity- and diabetes-related cardiomyopathy. The Atp6v0d1AKO mice developed cardiac insulin resistance evidenced by decreased IRS-1/2 expression in hearts. Meanwhile, the expression of forkhead box O1 (FoxO1), a transcription factor which plays critical roles in regulating cardiac lipid and glucose metabolism, was increased. RNA-seq data and molecular biological assays demonstrated reduced expression of myocardin, a transcription coactivator, in Atp6v0d1AKO mouse hearts. RNA interference (RNAi), luciferase reporter and ChIP-qPCR assays revealed the critical role of myocardin in regulating IRS-1 transcription through the CArG-like element in IRS-1 promoter. Reducing IRS-1 expression with RNAi increased FoxO1 expression, while increasing IRS-1 expression reversed myocardin downregulation-induced FoxO1 upregulation in cardiomyocytes. In vivo, restoring myocardin expression specifically in Atp6v0d1AKO cardiomyocytes increased IRS-1, but decreased FoxO1 expression. As a result, the abnormal expressions of metabolic genes in Atp6v0d1AKO hearts were reversed, and cardiac dysfunctions were ameliorated. Myocardin expression was also reduced in high fat diet-induced diabetic cardiomyopathy and palmitic acid-treated cardiomyocytes. Moreover, increasing systemic insulin resistance with rosiglitazone restored cardiac myocardin expression and improved cardiac functions in Atp6v0d1AKO mice. Conclusion: Atp6v0d1AKO mice are a novel animal model for studying lipodystrophy- or metabolic dysfunction-related cardiomyopathy. Moreover, myocardin serves as a key regulator of cardiac insulin sensitivity and metabolic homeostasis, highlighting myocardin as a potential therapeutic target for treating lipodystrophy- and diabetes-related cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Resistência à Insulina , Lipodistrofia , Proteínas Nucleares , Transativadores , ATPases Vacuolares Próton-Translocadoras , Animais , Camundongos , Cardiomiopatias Diabéticas/genética , Modelos Animais de Doenças , Glucose/metabolismo , Resistência à Insulina/genética , Lipídeos , Obesidade/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo
20.
FASEB J ; 38(3): e23432, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38300173

RESUMO

The IGF signaling pathway plays critical role in regulating skeletal myogenesis. We have demonstrated that KIF5B, the heavy chain of kinesin-1 motor, promotes myoblast differentiation through regulating IGF-p38MAPK activation. However, the roles of the kinesin light chain (Klc) in IGF pathway and myoblast differentiation remain elusive. In this study, we found that Klc1 was upregulated during muscle regeneration and downregulated in senescence mouse muscles and dystrophic muscles from mdx (X-linked muscular dystrophic) mice. Gain- and loss-of-function experiments further displayed that Klc1 promotes AKT-mTOR activity and positively regulates myogenic differentiation. We further identified that the expression levels of IRS1, the critical node of IGF-1 signaling, are downregulated in Klc1-depleted myoblasts. Coimmunoprecipitation study revealed that IRS1 interacted with the 88-154 amino acid sequence of Klc1 via its PTB domain. Notably, the reduced Klc1 levels were found in senescence and osteoporosis skeletal muscle samples from both mice and human. Taken together, our findings suggested a crucial role of Klc1 in the regulation of IGF-AKT pathway during myogenesis through stabilizing IRS1, which might ultimately influence the development of muscle-related disorders.


Assuntos
Fator de Crescimento Insulin-Like I , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Proteínas Substratos do Receptor de Insulina/genética , Cinesinas/genética , Camundongos Endogâmicos mdx , Mioblastos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...