Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Anal Chim Acta ; 1246: 340877, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764771

RESUMO

Ubiquitination is a reversible post-translational modification that plays a pivotal role in numerous biological processes. Antibody-based approaches, as the most used methods for identifying ubiquitination sites, exist sequence recognition bias, high cost, and ubiquitin-like protein modification interference, limiting their widespread application. Here, we proposed an Antibody-Free approach for Ubiquitination Profiling, termed AFUP, by selectively clicking the ubiquitinated lysine to enrich and profile endogenous ubiquitinated peptides using mass spectrometry. Briefly, protein amines were blocked with formaldehyde, and then the ubiquitin molecules were hydrolyzed from the ubiquitinated proteins by non-specific deubiquitinases USP2 and USP21 to release the free ε-amine of lysine. Peptides containing free ε-amines were selectively enriched with streptavidin beads upon NHS-SS-biotin labeling. Finally, the enriched peptides were eluted by DTT and analyzed by LC-MS/MS, resulting in ubiquitination profiling. Preliminary experiment showed that 349 ± 7 ubiquitination sites were identified in 0.8 mg HeLa lysates with excellent reproducibility (CV = 2%) and high quantitative stability (Pearson, r ≥ 0.91) using our method. With the combination of AFUP and simple basic C18 pre-fractionation, approximately 4000 ubiquitination sites were identified in a single run of 293T cells. In addition, we showed that 209 ubiquitination sites were significantly regulated in UBE2O knockdown cells after normalized to protein abundance. In conclusion, our results demonstrated that AFUP is a robust alternative strategy for ubiquitomics research.


Assuntos
Lisina , Espectrometria de Massas em Tandem , Humanos , Lisina/metabolismo , Cromatografia Líquida , Reprodutibilidade dos Testes , Ubiquitinação , Ubiquitina , Proteínas Ubiquitinadas/análise , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/metabolismo , Peptídeos/química , Anticorpos/metabolismo , Aminas , Ubiquitina Tiolesterase/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
2.
Methods Mol Biol ; 2261: 79-91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33420986

RESUMO

Posttranslational modifications (PTMs) of a protein are chemical modifications that play a key role because they regulate almost all cellular events, including gene expression, signal transduction, protein-protein interaction, cell-cell interaction, and communication. Defects in PTMs have been linked to numerous developmental disorders and human diseases, highlighting the importance of PTMs in maintaining normal cellular states. PTMs reversibly or irreversibly alter the structure and properties of proteins through biochemical reactions, thus extending protein function beyond what is dictated by gene transcripts. As analytical approaches have evolved, the biological influences of many types of PTMs have been identified and are routinely analyzed in many systems.Among several types of PTMs, polyubiquitination-addition of ubiquitin (often in the form of polymers) to substrates-governs a variety of biological processes ranging from proteolysis to DNA damage response. The functional flexibility of this modification correlates with the existence of a large number of ubiquitinating enzymes that form distinct ubiquitin polymers, which in turn result in different signals. Thus, the need of specific and sensitive methods for the analysis of the complexity of ubiquitin chain linkage is needed to understand how this structural diversity could translate into various cellular functions. In this section, we described a detailed protocol to enrich polyubiquitinated proteins.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Síndrome de Down/metabolismo , Eletroforese em Gel Bidimensional , Proteômica , Proteínas Ubiquitinadas/análise , Métodos Analíticos de Preparação de Amostras , Animais , Modelos Animais de Doenças , Humanos , Espectrometria de Massas , Proteólise , Ubiquitinação
3.
Chem Commun (Camb) ; 56(49): 6735-6738, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32426760

RESUMO

The covalent conjugation of ubiquitin (Ub), known as ubiquitination, is a multi-step reaction involving multiple enzymes. We report a real-time, tag-free method to monitor protein ubiquitination by NMR spectroscopy under physiological conditions. The approach is also applicable for monitoring other ubiquitin-like modifications, and the disassembly of Ub polymers.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Sumoilação , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/análise , Proteínas Ubiquitinadas/química , Ubiquitinação , Humanos , Modelos Moleculares , Fatores de Tempo , Ubiquitina/química
4.
J Vis Exp ; (157)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32250355

RESUMO

The posttranslational modification of proteins by the small protein ubiquitin is involved in many cellular events. After tryptic digestion of ubiquitinated proteins, peptides with a diglycine remnant conjugated to the epsilon amino group of lysine ('K-ε-diglycine' or simply 'diGly') can be used to track back the original modification site. Efficient immunopurification of diGly peptides combined with sensitive detection by mass spectrometry has resulted in a huge increase in the number of ubiquitination sites identified up to date. We have made several improvements to this workflow, including offline high pH reverse-phase fractionation of peptides prior to the enrichment procedure, and the inclusion of more advanced peptide fragmentation settings in the ion routing multipole. Also, more efficient cleanup of the sample using a filter-based plug in order to retain the antibody beads results in a greater specificity for diGly peptides. These improvements result in the routine detection of more than 23,000 diGly peptides from human cervical cancer cells (HeLa) cell lysates upon proteasome inhibition in the cell. We show the efficacy of this strategy for in-depth analysis of the ubiquitinome profiles of several different cell types and of in vivo samples, such as brain tissue. This study presents an original addition to the toolbox for protein ubiquitination analysis to uncover the deep cellular ubiquitinome.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/metabolismo , Proteínas Ubiquitinadas/análise , Ubiquitinação , Sequência de Aminoácidos , Animais , Bortezomib/farmacologia , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo , Camundongos , Peptídeos/química , Proteínas Ubiquitinadas/química
5.
Sci Rep ; 10(1): 2447, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051488

RESUMO

Ubiquitination is a critical post-translational modification machinery that governs a wide range of cellular functions by regulating protein homeostasis. Identification of ubiquitinated proteins and lysine residues can help researchers better understand the physiological roles of ubiquitin modification in different biological systems. In this study, we report the first comprehensive analysis of the peach ubiquitome by liquid chromatography-tandem mass spectrometry-based diglycine remnant affinity proteomics. Our systematic profiling revealed a total of 544 ubiquitination sites on a total of 352 protein substrates. Protein annotation and functional analysis suggested that ubiquitination is involved in modulating a variety of essential cellular and physiological processes in peach, including but not limited to carbon metabolism, histone assembly, translation and vesicular trafficking. Our results could facilitate future studies on how ubiquitination regulates the agricultural traits of different peach cultivars and other crop species.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Prunus persica/metabolismo , Proteínas Ubiquitinadas/metabolismo , Sequência de Aminoácidos , Folhas de Planta/química , Proteínas de Plantas/análise , Proteômica , Prunus persica/química , Proteínas Ubiquitinadas/análise , Ubiquitinação
6.
Nat Protoc ; 13(3): 530-550, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29446774

RESUMO

Ubiquitin-binding proteins play an important role in eukaryotes by translating differently linked polyubiquitin chains into proper cellular responses. Current knowledge about ubiquitin-binding proteins and ubiquitin linkage-selective interactions is mostly based on case-by-case studies. We have recently reported a method called ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), which enables comprehensive identification of ubiquitin interactors for all ubiquitin linkages from crude cell lysates. One major strength of UbIA-MS is the fact that ubiquitin interactors are enriched from crude cell lysates, in which proteins are present at endogenous levels, contain biologically relevant post-translational modifications (PTMs) and are assembled in native protein complexes. In addition, UbIA-MS uses chemically synthesized nonhydrolyzable diubiquitin, which mimics native diubiquitin and is inert to cleavage by endogenous deubiquitinases (DUBs). Here, we present a detailed protocol for UbIA-MS that proceeds in five stages: (i) chemical synthesis of ubiquitin precursors and click chemistry for the generation of biotinylated nonhydrolyzable diubiquitin baits, (ii) in vitro affinity purification of ubiquitin interactors, (iii) on-bead interactor digestion, (iv) liquid chromatography (LC)-MS/MS analysis and (v) data analysis to identify differentially enriched proteins. The computational analysis tools are freely available as an open-source R software package, including a graphical interface. Typically, UbIA-MS allows the identification of dozens to hundreds of ubiquitin interactors from any type of cell lysate, and can be used to study cell type or stimulus-dependent ubiquitin interactions. The nonhydrolyzable diubiquitin synthesis can be completed in 3 weeks, followed by ubiquitin interactor enrichment and identification, which can be completed within another 2 weeks.


Assuntos
Biologia Computacional/métodos , Ubiquitina/química , Proteínas Ubiquitinadas/análise , Sítios de Ligação , Proteínas de Transporte , Cromatografia de Afinidade/métodos , Espectrometria de Massas/métodos , Poliubiquitina , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteoma , Software , Espectrometria de Massas em Tandem/métodos , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/química , Ubiquitinação/fisiologia
7.
J Proteome Res ; 17(1): 315-324, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29061044

RESUMO

Ubiquitinated proteins carried by the extracellular vesicles (EV) released by myeloid-derived suppressor cells (MDSC) have been investigated using proteomic strategies to examine the effect of tumor-associated inflammation. EV were collected from MDSC directly following isolation from tumor-bearing mice with low and high inflammation. Among the 1092 proteins (high inflammation) and 925 proteins (low inflammation) identified, more than 50% were observed as ubiquitinated proteoforms. More than three ubiquitin-attachment sites were characterized per ubiquitinated protein, on average. Multiple ubiquitination sites were identified in the pro-inflammatory proteins S100 A8 and S100 A9, characteristic of MDSC and in histones and transcription regulators among other proteins. Spectral counting and pathway analysis suggest that ubiquitination occurs independently of inflammation. Some ubiquitinated proteins were shown to cause the migration of MDSC, which has been previously connected with immune suppression and tumor progression. Finally, MDSC EV are found collectively to carry all the enzymes required to catalyze ubiquitination, and the hypothesis is presented that a portion of the ubiquitinated proteins are produced in situ.


Assuntos
Vesículas Extracelulares/patologia , Inflamação , Células Supressoras Mieloides/ultraestrutura , Ubiquitina/metabolismo , Animais , Sítios de Ligação , Movimento Celular , Camundongos , Proteínas Ubiquitinadas/análise , Ubiquitinação
8.
J Proteome Res ; 16(8): 2848-2862, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28665616

RESUMO

The ubiquitin-proteasome system (UPS), a highly regulated mechanism including the active marking of proteins by ubiquitin to be degraded, is critical in regulating proteostasis. Dysfunctioning of the UPS has been implicated in diseases such as cancer and neurodegenerative disorders. Here we investigate the effects of proteasome malfunctioning on global proteome and ubiquitinome dynamics using SILAC proteomics in Drosophila S2 cells. dsRNA-mediated knockdown of specific proteasome target subunits is used to inactivate the proteasome. Upon this perturbation, both the global proteome and the ubiquitinome become modified to a great extent, with the overall impact on the ubiquitinome being the most dramatic. The abundances of ∼10% of all proteins are increased, while the abundances of the far majority of over 14 000 detected diGly peptides are increased, suggesting that the pool of ubiquitinated proteins is highly dynamic. Remarkably, several proteins show heterogeneous ubiquitination dynamics, with different lysine residues on the same protein showing either increased or decreased ubiquitination. This suggests the occurrence of simultaneous and functionally different ubiquitination events. This strategy offers a powerful tool to study the response of the ubiquitinome upon interruption of normal UPS activity by targeted interference and opens up new avenues for the dissection of the mode of action of individual components of the proteasome. Because this is to our knowledge the first comprehensive ubiquitinome screen upon proteasome malfunctioning in a fruit fly cell system, this data set will serve as a valuable repository for the Drosophila community.


Assuntos
Drosophila/química , Proteômica/métodos , Proteínas Ubiquitinadas/análise , Animais , Técnicas de Silenciamento de Genes , Complexo de Endopeptidases do Proteassoma/deficiência , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/genética , RNA de Cadeia Dupla/genética , Ubiquitina/análise , Ubiquitina/metabolismo , Ubiquitinação
9.
Biochem Biophys Res Commun ; 466(1): 1-14, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26325464

RESUMO

Immunoblotting is a powerful technique for the semi-quantitative analysis of ubiquitylation events, and remains the most commonly used method to study this process due to its high specificity, speed, sensitivity and relatively low cost. However, the ubiquitylation of proteins is complex and, when the analysis is performed in an inappropriate manner, it can lead to the misinterpretation of results and to erroneous conclusions being reached. Here we discuss the advantages and disadvantages of the methods currently in use to analyse ubiquitin chains and protein ubiquitylation, and describe the procedures that we have found to be most useful for optimising the quality and reliability of the data that we have generated. We also highlight commonly encountered problems and the pitfalls inherent in some of these methods. Finally, we introduce a set of recommendations to help researchers obtain high quality data, especially those new to the field of ubiquitin signalling. The specific topics addressed in this article include sample preparation, the separation, detection and identification of particular ubiquitin chains by immunoblotting, and the analysis of ubiquitin chain topology through the combined use of ubiquitin-binding proteins and ubiquitin linkage-specific deubiquitylases.


Assuntos
Immunoblotting/métodos , Ubiquitina/análise , Proteínas Ubiquitinadas/análise , Animais , Eletroforese em Gel de Poliacrilamida/métodos , Humanos , Imunoprecipitação/métodos , Ubiquitina/genética , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Regulação para Cima
10.
J Am Soc Mass Spectrom ; 26(9): 1580-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25994767

RESUMO

Comprehensive analysis of the ubiquitylome is a prerequisite to fully understand the regulatory role of ubiquitylation. However, the impact of key mass spectrometry parameters on ubiquitylome analyses has not been fully explored. In this study, we show that using electron transfer dissociation (ETD) fragmentation, either exclusively or as part of a decision tree method, leads to ca. 2-fold increase in ubiquitylation site identifications in K-ε-GG peptide-enriched samples over traditional collisional-induced dissociation (CID) or higher-energy collision dissociation (HCD) methods. Precursor ions were predominantly observed as 3+ charged species or higher and in a mass range 300-1200 m/z. N-ethylmaleimide was used as an alkylating agent to reduce false positive identifications resulting from overalkylation with halo-acetamides. These results demonstrate that the application of ETD fragmentation, in addition to narrowing the mass range and using N-ethylmaleimide yields more high-confidence ubiquitylation site identification than conventional CID and HCD analysis.


Assuntos
Espectrometria de Massas/métodos , Proteoma/análise , Proteoma/química , Proteínas Ubiquitinadas/análise , Proteínas Ubiquitinadas/química , Bases de Dados de Proteínas
11.
Malar J ; 14: 200, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25968882

RESUMO

BACKGROUND: The ubiquitin proteasome system (UPS) is one of the main proteolytical pathways in eukaryotic cells and plays an essential role in key cellular processes such as cell cycle, stress response, signal transduction, and transcriptional regulation. Many components of this pathway have been implicated in diverse pathologies including cancer, neurodegeneration and infectious diseases, such as malaria. The success of proteasome inhibitors in clinical trials underlines the potential of the UPS in drug discovery. METHODS: Plasmodium falciparum, the malaria causative pathogen, has been used to develop two assays that allow the quantification of the parasite protein ubiquitylation levels in a high-throughput format that can be used to find new UPS inhibitors. RESULTS: In both assays tandem ubiquitin binding entities (TUBEs), also known as ubiquitin traps, have been used to capture ubiquitylated proteins from cell lysates. The primary assay is based on AlphaLISA technology, and the orthogonal secondary assay relies on a dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) system. A panel of well-known proteasome inhibitors has been used to validate both technologies. An excellent correlation was obtained between these biochemical assays and the standard whole cell assay that measures parasite growth inhibition. CONCLUSIONS: The two assays presented can be used in a high-throughput format to find new UPS inhibitors for P. falciparum and could help to identify new targets within this system. This methodology is also applicable to other cellular contexts or pathologies.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/análise , Proteínas Ubiquitinadas/análise , Malária Falciparum/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/metabolismo
12.
Nat Protoc ; 10(2): 349-361, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25633630

RESUMO

Protein ubiquitination is a versatile protein modification that regulates virtually all cellular processes. This versatility originates from polyubiquitin chains, which can be linked in eight distinct ways. The combinatorial complexity of eight linkage types in homotypic (one chain type per polymer) and heterotypic (multiple linkage types per polymer) chains poses significant problems for biochemical analysis. Here we describe UbiCRest, in which substrates (ubiquitinated proteins or polyubiquitin chains) are treated with a panel of linkage-specific deubiquitinating enzymes (DUBs) in parallel reactions, followed by gel-based analysis. UbiCRest can be used to show that a protein is ubiquitinated, to identify which linkage type(s) are present on polyubiquitinated proteins and to assess the architecture of heterotypic polyubiquitin chains. DUBs used in UbiCRest can be obtained commercially; however, we include details for generating a toolkit of purified DUBs and for profiling their linkage preferences in vitro. UbiCRest is a qualitative method that yields insights into ubiquitin chain linkage types and architecture within hours, and it can be performed on western blotting quantities of endogenously ubiquitinated proteins.


Assuntos
Bioquímica/métodos , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/análise , Proteínas Ubiquitinadas/análise , Proteínas Ubiquitinadas/química , Western Blotting , Ubiquitina/química , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/química , Ubiquitinação
13.
Histochem Cell Biol ; 141(5): 483-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24577783

RESUMO

A particle-rich cytoplasmic structure (PaCS) concentrating ubiquitin-proteasome system (UPS) components and barrel-like particles in clear, cytoskeleton- and organelle-free areas has recently been described in some neoplasms and in genetic or infectious diseases at risk of neoplasia. Ultrastructurally similar particulate cytoplasmic structures, interpreted as glycogen deposits, have previously been reported in clear-cell neoplasms and some fetal tissues. It remains to be investigated whether the two structures are the same, colocalize UPS components and polysaccharides, and have a role in highly proliferative cells such as fetal and neoplastic cells. We used immunogold electron microscopy and confocal immunofluorescence microscopy to examine human and mouse fetal tissues and human neoplasms. Fetal and neoplastic cells both showed colocalization of polyubiquitinated proteins, 19S and 20S proteasomes, and polysaccharides, both glycogen and chondroitin sulfate, inside cytoplasmic structures showing all distinctive features of PaCSs. Poorly demarcated and/or hybrid (ribosomes admixed) UPS- and glycogen-enriched areas, likely stages in PaCS development, were also seen in some fetal cells, with special reference to those, like primary alveolar pulmonary cells or pancreatic centroacinar cells, having a crucial role in organogenesis. UPS- and glycogen-rich PaCSs developed extensively in clear-cell neoplasms of the kidney, ovary, pancreas, and other organs, as well as, in infantile, development-related tumors replicating fetal patterns, such as choroid plexus papilloma. UPS-mediated, ATP-dependent proteolysis and its potential energy source, glycogen metabolism, may have a crucial, synergic role in embryo-/organogenesis and carcinogenesis.


Assuntos
Citoplasma/metabolismo , Feto/citologia , Glicogênio/metabolismo , Neoplasias/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Ubiquitinadas/metabolismo , Citoplasma/química , Citoplasma/ultraestrutura , Glicogênio/análise , Humanos , Imuno-Histoquímica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Complexo de Endopeptidases do Proteassoma/análise , Proteínas Ubiquitinadas/análise
14.
World J Gastroenterol ; 19(44): 8099-107, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24307806

RESUMO

AIM: To investigate H2B monoubiquitination (uH2B) and H3K4 di- and tri-methylation (H3K4-2me, H3K4-3me) levels and their clinical significance in gastric cancer (GC). METHODS: Immunohistochemistry (IGC) was used to detect the differential levels of uH2B, H3K4-2me and H3K4-3me modifications in GC specimens from chemo/radiotherapy-naïve patients who underwent potentially curative surgical resection (n = 159) and in a random sampling of non-tumor gastric epithelium specimens (normal controls, n = 20). The immunohistochemistry (IHC)-detected modifications were classified as negative, low-level, or high-level using a dual-rated (staining intensity and percentage of positively-stained cells) semi-quantitative method. The relationships between uH2B modification levels and clinicopathological parameters of GC were assessed by a Wilcoxon rank sum test (pairwise comparisons) and the Kruskal-Wallis H test (multiple comparisons). The correlation between uH2B modification and survival was estimated by Kaplan-Meier analysis, and the role of uH2B as an independent prognostic factor for survival was assessed by multivariate Cox regression analysis. RESULTS: The presence and level of H3K4-2me and H3K4-3me IHC staining was similar between the normal controls and GC specimens. In contrast, the level of uH2B was significantly lower in the malignant gastric tissues (vs normal control tissues) and decreased along with increases in dedifferentiation (well differentiated > moderately differentiated > poorly differentiated). The level of uH2B correlated with tumor differentiation (P < 0.001), Lauren's diffuse- and intestinal-type classification (P < 0.001), lymph node metastasis (P = 0.049) and tumor-node-metastasis stage (P = 0.005). Patients with uH2B+ staining had higher 5-year survival rates than patients with uH2B-staining (52.692 ± 2.452 vs 23.739 ± 5.207, P < 0.001). The uH2B level was an independent prognostic factor for cancer-specific survival (95%CI: 0.237-0.677, P = 0.001). CONCLUSION: uH2B displays differential IHC staining patterns corresponding to progressive stages of GC. uH2B may contribute to tumorigenesis and could be a potential therapeutic target.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma/química , Histonas/análise , Neoplasias Gástricas/química , Proteínas Ubiquitinadas/análise , Carcinoma/mortalidade , Carcinoma/secundário , Carcinoma/cirurgia , Estudos de Casos e Controles , Diferenciação Celular , Regulação para Baixo , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Metilação , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Fatores de Risco , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia , Ubiquitinação
15.
Proteomics ; 13(22): 3284-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24030972

RESUMO

The ubiquitin proteasome system (UPS) is the major pathway of intracellular protein degradation and may be involved in the pathophysiology of inflammatory bowel diseases or irritable bowel syndrome. UPS specifically degrades proteins tagged with an ubiquitin chain. We aimed to identify polyubiquitinated proteins during inflammatory response in intestinal epithelial HCT-8 cells by a proteomic approach. HCT-8 cells were incubated with interleukin 1ß, tumor necrosis factor-α, and interferon-γ for 2 h. Total cellular protein extracts were separated by 2D gel electrophoresis and analyzed by an immunodetection using antiubiquitin antibody. Differential ubiquitinated proteins were then identified by LC-ESI MS/MS. Seven proteins were differentially ubiquitinated between control and inflammatory conditions. Three of them were chaperones: Grp75 and Hsc70 were more ubiquitinated (p < 0.05) and Grp78 was less ubiquitinated (p < 0.05) under inflammatory conditions. The results for Grp75 and Grp78 were then confirmed in HCT-8 cells and in 2-4-6-trinitrobenzen sulfonic acid induced colitis in rats mimicking inflammatory bowel disease by immunoprecipitation. No difference was observed in irritable bowel syndrome like model. In conclusion, we showed that a proteomic approach is suitable to identify ubiquitinated proteins and that UPS-regulated expression of Grp75 and Grp78 may be involved in inflammatory response. Further studies should lead to the identification of ubiquitin ligases responsible for Grp75 and Grp78 ubiquitination.


Assuntos
Colo/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Proteínas Ubiquitinadas/análise , Animais , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colite/metabolismo , Colo/química , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70/análise , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/análise , Proteínas de Choque Térmico/química , Humanos , Interleucina-8/análise , Interleucina-8/metabolismo , Mucosa Intestinal/química , Mucosa Intestinal/metabolismo , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/química , Ratos , Ratos Wistar , Ácido Trinitrobenzenossulfônico/toxicidade , Ubiquitina/química , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/metabolismo
16.
Anal Chem ; 85(12): 5827-34, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23682733

RESUMO

The quantitation of lysine post-translational modifications (PTMs) by bottom-up mass spectrometry is convoluted by the need for analogous derivatives and the production of different tryptic peptides from the unmodified and modified versions of a protein. Chemical derivatization of lysines prior to enzymatic digestion circumvents these problems and has proven to be a successful method for lysine PTM quantitation. The most notable example is the use of deuteroacetylation to quantitate lysine acetylation. In this work, levels of lysine ubiquitination were quantitated using a structurally homologous label that is chemically similar to the diglycine (GlyGly) tag, which is left at the ubiquitination site upon trypsinolysis. The LC-MS analysis of a chemically equivalent monoglycine (Gly) tag that is analogous to the corresponding GlyGly tag proved that the monoglycine tag can be used for the quantitation of ubiquitination. A glycinylation protocol was then established for the derivatization of proteins to label unmodified lysine residues with a single glycine tag. Ubiquitin multimers were used to show that after glycinylation and tryptic digestion, the mass spectrometric response from the corresponding analogous tagged peptides could be compared for relative quantitation. For a proof of principle regarding the applicability of this technique to the analysis of ubiquitination in biological samples, the glycinylation technique was used to quantitate the increase in monoubiquitinated histone H2B that is observed in yeast which lacks the enzyme responsible for deubiquitinating H2B-K123, compared to wild-type yeast.


Assuntos
Glicina/química , Espectrometria de Massas em Tandem/métodos , Proteínas Ubiquitinadas/análise , Cromatografia Líquida/métodos , Humanos , Processamento de Proteína Pós-Traducional/genética , Saccharomyces cerevisiae/genética , Proteínas Ubiquitinadas/genética
17.
Curr Opin Chem Biol ; 17(1): 59-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23339974

RESUMO

Human neurodegenerative and infectious diseases and tumorigenesis are associated with alterations in ubiquitin pathways. Over 10% of the genome encode for genes that either bind or manipulate ubiquitin to affect a large proportion of biological processes. This has been the basis for the development of approaches allowing the enrichment of ubiquitinated proteins for comparisons using proteomics and mass spectrometry. Tools such as tagged tandem ubiquitin binding domains, chemically derivatized ubiquitin or anti-gly-gly-lys antibodies combined with mass spectrometry have contributed to surveys of poly-ubiquitinated proteins, poly-ubiquitin linkage diversity and protein ubiquitination sites and their relation to other posttranslational modifications at a proteome wide level, providing insights in to how dynamic alterations in ubiquitination and deubiquitination steps are associated with normal physiology and pathogenesis.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Animais , Infecções Bacterianas/metabolismo , Humanos , Inflamação/metabolismo , Espectrometria de Massas/métodos , Modelos Moleculares , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais , Ubiquitina/análise , Proteínas Ubiquitinadas/análise , Ubiquitinação , Ubiquitinas/análise , Ubiquitinas/metabolismo , Viroses/metabolismo
18.
Mol Cell Proteomics ; 12(3): 825-31, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23266961

RESUMO

Detection of endogenous ubiquitination sites by mass spectrometry has dramatically improved with the commercialization of anti-di-glycine remnant (K-ε-GG) antibodies. Here, we describe a number of improvements to the K-ε-GG enrichment workflow, including optimized antibody and peptide input requirements, antibody cross-linking, and improved off-line fractionation prior to enrichment. This refined and practical workflow enables routine identification and quantification of ∼20,000 distinct endogenous ubiquitination sites in a single SILAC experiment using moderate amounts of protein input.


Assuntos
Proteoma/análise , Proteômica/métodos , Ubiquitinação , Aminoácidos/metabolismo , Anticorpos/química , Anticorpos/imunologia , Sítios de Ligação , Cromatografia Líquida/métodos , Reagentes de Ligações Cruzadas/química , Inibidores de Cisteína Proteinase/farmacologia , Glicilglicina/imunologia , Humanos , Marcação por Isótopo/métodos , Células Jurkat , Leupeptinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/química , Proteoma/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Proteínas Ubiquitinadas/análise , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/metabolismo
19.
J Proteome Res ; 11(9): 4722-32, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22871113

RESUMO

Protein ubiquitination is an essential post-translational modification regulating neurodevelopment, synaptic plasticity, learning, and memory, and its dysregulation contributes to the pathogenesis of neurological diseases. Here we report a systematic analysis of ubiquitinated proteome (ubiquitome) in rat brain using a newly developed monoclonal antibody that recognizes the diglycine tag on lysine residues in trypsinized peptides (K-GG peptides). Initial antibody specificity analysis showed that the antibody can distinguish K-GG peptides from linear GG peptides or pseudo K-GG peptides derived from iodoacetamide. To evaluate the false discovery rate of K-GG peptide matches during database search, we introduced a null experiment using bacterial lysate that contains no such peptides. The brain ubiquitome was then analyzed by this antibody enrichment with or without strong cation exchange (SCX) prefractionation. During SCX chromatography, although the vast majority of K-GG peptides were detected in the fractions containing at least three positive charged peptides, specific K-GG peptides with two positive charges (e.g., protein N-terminal acetylated and C-terminal non-K/R peptides) were also identified in early fractions. The reliability of C-terminal K-GG peptides was also extensively investigated. Finally, we collected a data set of 1786 K-GG sites on 2064 peptides in 921 proteins and estimated their abundance by spectral counting. The study reveals a wide range of ubiquitination events on key components in presynaptic region (e.g., Bassoon, NSF, SNAP25, synapsin, synaptotagmin, and syntaxin) and postsynaptic density (e.g., PSD-95, GKAP, CaMKII, as well as receptors for NMDA, AMPA, GABA, serotonin, and acetylcholine). We also determined ubiquitination sites on amyloid precursor protein and alpha synuclein that are thought to be causative agents in Alzhermer's and Parkinson's disorders, respectively. As K-GG peptides can also be produced from Nedd8 or ISG15 modified proteins, we quantified these proteins in the brain and found that their levels are less than 2% of ubiquitin. Together, this study demonstrates that a large number of neuronal proteins are modified by ubiquitination and provides a feasible method for profiling the ubiquitome in the brain.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/análise , Proteoma/análise , Proteômica/métodos , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/análise , Sequência de Aminoácidos , Animais , Anticorpos/química , Anticorpos/metabolismo , Química Encefálica/fisiologia , Cromatografia por Troca Iônica , Bases de Dados de Proteínas , Iodoacetamida , Lisina/química , Lisina/metabolismo , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteoma/química , Proteoma/metabolismo , Ratos , Sinapses , Espectrometria de Massas em Tandem , Ubiquitina/química , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação
20.
Rapid Commun Mass Spectrom ; 26(15): 1649-60, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22730086

RESUMO

RATIONALE: Ubiquitination of proteins plays an important role in regulating a myriad of physiological functions in plants such as xylogenesis, senescence, cell cycle control, and stress response. However, only a limited number of proteins in plants have been identified as being ubiquitinated in response to salt stress. The relationships between ubiquitination and salt-stress responses in plants are not clear. METHODS: Rice (Oryza sativa) seedlings from the same genetic background with various salt tolerances exposed to salt stress were studied. The proteins of roots were extracted then analyzed using western blotting against ubiquitin. Differentially expressed ubiquitinated proteins were identified by nanospray liquid chromatography/tandem mass spectrometry (nano-LC/MS/MS) and quantified by label-free methods based on the Exponentially Modified Protein Abundance Index (emPAI) and on the peak areas of XIC spectra derived from ubiquitinated peptides. In addition, we performed a gel-based shotgun proteomic analysis to detect the ubiquitinated proteome that may be involved in response to salt stress. RESULTS: The expressions of ubiquitination on pyruvate phosphate dikinase 1, heat shock protein 81-1, probable aldehyde oxidase 3, plasma membrane ATPase, cellulose synthase A catalytic subunit 4 [UDP-forming] and cyclin-C1-1 were identified and compared before and after salt treatment. The functions of those ubiquitinated proteins were further discussed for defence against salt stress. In addition, a large number of ubiquitinated proteins were successfully identified as well in this study. CONCLUSIONS: The ubiquitination of proteins affected the protective mechanisms in rice seedlings to resist the salt stress during the initial phase. The findings in the present study also demonstrate that the regulated mechanisms through protein ubiquitination are important for rice seedlings against salt stress.


Assuntos
Oryza/química , Proteínas de Plantas/análise , Plantas Tolerantes a Sal/química , Proteínas Ubiquitinadas/análise , Sequência de Aminoácidos , Western Blotting , Cromatografia Líquida , Dados de Sequência Molecular , Oryza/enzimologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Tolerância ao Sal , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Cloreto de Sódio , Espectrometria de Massas em Tandem , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...