Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 314(1): R84-R93, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28877869

RESUMO

The ability of many reptilian hemoglobins (Hbs) to form high-molecular weight polymers, albeit known for decades, has not been investigated in detail. Given that turtle Hbs often contain a high number of cysteine (Cys), potentially contributing to the red blood cell defense against reactive oxygen species, we have examined whether polymerization of Hb could occur via intermolecular disulfide bonds in red blood cells of freshwater turtle Trachemys scripta, a species that is highly tolerant of hypoxia and oxidative stress. We find that one of the two Hb isoforms of the hemolysate HbA is prone to polymerization in vitro into linear flexible chains of different size that are visible by electron microscopy but not the HbD isoform. Polymerization of purified HbA is favored by hydrogen peroxide, a main cellular reactive oxygen species and a thiol oxidant, and inhibited by thiol reduction and alkylation, indicating that HbA polymerization is due to disulfide bonds. By using mass spectrometry, we identify Cys5 of the αA-subunit of HbA as specifically responsible for forming disulfide bonds between adjacent HbA tetramers. Polymerization of HbA does not affect oxygen affinity, cooperativity, and sensitivity to the allosteric cofactor ATP, indicating that HbA is still fully functional. Polymers also form in T. scripta blood after exposure to anoxia but not normoxia, indicating that they are of physiological relevance. Taken together, these results show that HbA polymers may form during oxidative stress and that Cys5αA of HbA is a key element of the antioxidant capacity of turtle red blood cells.


Assuntos
Proteínas de Anfíbios/sangue , Antioxidantes/metabolismo , Dissulfetos/sangue , Hemoglobina A/metabolismo , Hipóxia/sangue , Estresse Oxidativo , Oxigênio/sangue , Tartarugas/sangue , Adaptação Fisiológica , Animais , Biomarcadores/sangue , Cisteína , Hipóxia/fisiopatologia , Polimerização
2.
PLoS One ; 9(9): e107284, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25211333

RESUMO

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused mass mortality leading to population declines and extinctions in many frog species worldwide. The lack of host resistance may be due to fungal immunosuppressive effects that have been observed when Bd is incubated with cultured lymphocytes, but whether in vivo host immunosuppression occurs is unknown. We used a broad range of hematologic and protein electrophoresis biomarkers, along with various functional tests, to assess immune competence in common green (Litoria caerulea) and white-lipped (L. infrafrenata) tree frogs experimentally infected with Bd. Compared with uninfected frogs, Bd infection in L. caerulea caused a reduction in immunoglobulin and splenic lymphocyte responses to antigenic stimulation with sheep red blood cells, along with decreased white blood cell and serum protein concentrations, indicating possible impaired immune response capability of Bd-infected frogs. This is the first in vivo study suggesting that infection with Bd causes multiple defects in systemic host immune function, and this may contribute to disease development in susceptible host species. Although L. infrafrenata failed to maintain Bd infection after exposure, white blood cell and serum globulin concentrations were lower in recovered frogs compared with unexposed frogs, but antigen-specific serum and splenic antibody, and splenic cellular, responses were similar in both recovered and unexposed frogs. This may indicate potential systemic costs associated with infection clearance and/or redirection of host resources towards more effective mechanisms to overcome infection. No clear mechanism for resistance was identified in L. infrafrenata, suggesting that localized and/or innate immune defense mechanisms may be important factors involved in disease resistance in this species.


Assuntos
Anuros/imunologia , Quitridiomicetos/imunologia , Micoses/veterinária , Proteínas de Anfíbios/sangue , Animais , Anuros/microbiologia , Doença Crônica , Globulinas/metabolismo , Imunidade Celular , Contagem de Leucócitos , Micoses/sangue , Micoses/imunologia
3.
Regul Pept ; 181: 17-21, 2013 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-23318502

RESUMO

The most striking sequence difference between glucagon-like peptide-1 (GLP-1)(2) and the longer-acting GLP-1 receptor agonist, exendin-4 (Ex-4),(3) is the nine-amino acid COOH-terminal extension of Ex-4. We investigated the contribution of this extension to the survival time of Ex-4. We assessed the overall metabolism of GLP-1, Ex-4, a COOH-terminally extended GLP-1 peptide (GLP-1+Ex(31-39); GLP-Ex),(4) and a COOH-terminally truncated exendin peptide (Ex(1-30)) in anaesthetized, catheterized pigs, with focus on the extraction across the kidneys and a peripheral tissue (a hindleg, representing muscle, adipose- and connective tissue). Peptide analysis was carried out with assays against the mid-region of the peptides, whereby the role of dipeptidyl peptidase-4 (DPP-4)(5) mediated NH(2)-terminal degradation could be disregarded. The half-life of GLP-1 was significantly increased when the COOH-terminal extension of Ex-4 was added (GLP-1 4.8±3.3min; GLP-Ex 19.5±3.3min). In contrast, there was no effect of truncating Ex-4 (Ex-4 32.4±4.1min; Ex(1-30) 28.4±1.7min). Ex-4 and Ex(1-30) were cleared solely by the kidneys at rates corresponding to the glomerular filtration rate (GFR),(6) while GLP-1 and GLP-Ex were cleared by both the kidneys and peripheral tissues. Both extraction rates were, however, significantly reduced with GLP-Ex compared to GLP-1. The renal clearance rate of GLP-1 greatly exceeded GFR, while GLP-Ex was cleared at a rate resembling GFR. In conclusion, the COOH-terminal extension of Ex-4 contributes minimally to the increased survival time of Ex-4, while addition of this sequence to GLP-1 significantly reduces its clearance.


Assuntos
Proteínas de Anfíbios/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Hipoglicemiantes/sangue , Fragmentos de Peptídeos/sangue , Peptídeos/sangue , Peçonhas/sangue , Sequência de Aminoácidos , Proteínas de Anfíbios/síntese química , Proteínas de Anfíbios/farmacocinética , Anestesia , Animais , Dipeptidil Peptidase 4/sangue , Exenatida , Feminino , Taxa de Filtração Glomerular , Peptídeo 1 Semelhante ao Glucagon/síntese química , Peptídeo 1 Semelhante ao Glucagon/farmacocinética , Meia-Vida , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacocinética , Lagartos , Dados de Sequência Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacocinética , Peptídeos/síntese química , Peptídeos/farmacocinética , Estabilidade Proteica , Proteólise , Relação Estrutura-Atividade , Suínos , Peçonhas/síntese química , Peçonhas/farmacocinética
4.
Am J Physiol Cell Physiol ; 298(3): C510-20, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19940069

RESUMO

The Na(+)/H(+) and K(+)/H(+) exchange pathways of Amphiuma tridactylum red blood cells (RBCs) are quiescent at normal resting cell volume yet are selectively activated in response to cell shrinkage and swelling, respectively. These alkali metal/H(+) exchangers are activated by net kinase activity and deactivated by net phosphatase activity. We employed relaxation kinetic analyses to gain insight into the basis for coordinated control of these volume regulatory ion flux pathways. This approach enabled us to develop a model explaining how phosphorylation/dephosphorylation-dependent events control and coordinate the activity of the Na(+)/H(+) and K(+)/H(+) exchangers around the cell volume set point. We found that the transition between initial and final steady state for both activation and deactivation of the volume-induced Na(+)/H(+) and K(+)/H(+) exchange pathways in Amphiuma RBCs proceed as a single exponential function of time. The rate of Na(+)/H(+) exchange activation increases with cell shrinkage, whereas the rate of Na(+)/H(+) exchange deactivation increases as preshrunken cells are progressively swollen. Similarly, the rate of K(+)/H(+) exchange activation increases with cell swelling, whereas the rate of K(+)/H(+) exchange deactivation increases as preswollen cells are progressively shrunken. We propose a model in which the activities of the controlling kinases and phosphatases are volume sensitive and reciprocally regulated. Briefly, the activity of each kinase-phosphatase pair is reciprocally related, as a function of volume, and the volume sensitivities of kinases and phosphatases controlling K(+)/H(+) exchange are reciprocally related to those controlling Na(+)/H(+) exchange.


Assuntos
Proteínas de Anfíbios/sangue , Tamanho Celular , Eritrócitos/metabolismo , Antiportadores de Potássio-Hidrogênio/sangue , Potássio/metabolismo , Trocadores de Sódio-Hidrogênio/sangue , Sódio/metabolismo , Urodelos/sangue , Animais , Ativação Enzimática , Cinética , Modelos Biológicos , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais , Equilíbrio Hidroeletrolítico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...