Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106.182
Filtrar
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38959853

RESUMO

Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.


Assuntos
Proteínas de Bactérias , Lysobacter , Pseudomonas , Sistemas de Secreção Tipo IV , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lysobacter/genética , Lysobacter/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Regulação Bacteriana da Expressão Gênica , Oligopeptídeos/metabolismo , Oligopeptídeos/genética , Transativadores/genética , Transativadores/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator sigma/genética , Fator sigma/metabolismo
2.
J Infect ; 89(2): 106216, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964511

RESUMO

OBJECTIVES: We evaluated the effect of fecal microbiota transplantation (FMT) on the clearance of carbapenemase-producing Enterobacterales (CPE) carriage. METHODS: We performed a prospective, multi-center study, conducted among patients who received a single dose of FMT from one of four healthy donors. The primary endpoint was complete clearance of CPE carriage two weeks after FMT with a secondary endpoint at three months. Shotgun metagenomic sequencing was performed to assess gut microbiota composition of donors and recipients before and after FMT. RESULTS: Twenty CPE-colonized patients were included in the study, where post-FMT 20% (n = 4/20) of patients met the primary endpoint and 40% (n = 8/20) of patients met the secondary endpoint. Kaplan-Meier curves between patients with FMT intervention and the control group (n = 82) revealed a similar rate of decolonization between groups. Microbiota composition analyses revealed that response to FMT was not donor-dependent. Responders had a significantly lower relative abundance of CPE species pre-FMT than non-responders, and 14 days post-FMT responders had significantly higher bacterial species richness and alpha diversity compared to non-responders (p < 0.05). Responder fecal samples were also enriched in specific species, with significantly higher relative abundances of Faecalibacterium prausnitzii, Parabacteroides distasonis, Collinsella aerofaciens, Alistipes finegoldii and Blautia_A sp900066335 (q<0.01) compared to non-responders. CONCLUSION: FMT administration using the proposed regimen did not achieve statistical significance for complete CPE decolonization but was correlated with the relative abundance of specific bacterial taxa, including CPE species.


Assuntos
Transplante de Microbiota Fecal , Fezes , Microbioma Gastrointestinal , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto , Fezes/microbiologia , Idoso , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Enterobacteriaceae/terapia , Infecções por Enterobacteriaceae/microbiologia , beta-Lactamases/genética , Portador Sadio/microbiologia , Portador Sadio/terapia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Biodiversidade
3.
Proc Natl Acad Sci U S A ; 121(28): e2408092121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968106

RESUMO

The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.


Assuntos
Proteínas de Bactérias , Cobre , Haemophilus influenzae , Oxazolona , Fatores de Virulência , Haemophilus influenzae/metabolismo , Haemophilus influenzae/enzimologia , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidade , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Cobre/metabolismo , Cobre/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Oxazolona/metabolismo , Tioamidas/metabolismo , Tioamidas/química , Ferro/metabolismo , Processamento de Proteína Pós-Traducional , Oxirredutases/metabolismo , Oxirredutases/genética , Óperon , Cisteína/metabolismo
4.
ACS Synth Biol ; 13(7): 2177-2187, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38968698

RESUMO

Transcription factor (TF)-based biosensors have arisen as powerful tools in the advancement of metabolic engineering. However, with the emergence of numerous bioproduction targets, the variety of applicable TF-based biosensors remains severely limited. In this study, we investigated and engineered an 1,2-propanediol (1,2-PD)-responsive transcription activator, PocR, from Salmonella typhimurium to enrich the current biosensor repertoire. Heterologous characterization of PocR in E. coli revealed a significantly limited operational range and dynamic range, primarily attributed to the leaky binding between PocR and its corresponding promoters in the absence of the 1,2-PD inducer. Promiscuity characterization uncovered the minor responsiveness of PocR toward glycerol and 1,2-butanediol (1,2-BD). Using AlphaFold-predicted structure and protein mutagenesis, we preliminarily explored the underlying mechanism of PocR. Based on the investigated mechanism, we engineered a PcoR-F46R/G105D variant with an altered inducer specificity to glycerol, as well as a PocR-ARE (Q107A/S192R/A203E) variant with nearly a 4-fold higher dynamic range (6.7-fold activation) and a 20-fold wider operational range (0-20 mM 1,2-PD). Finally, we successfully converted PocR to a repressor through promoter engineering. Integrating the activation and repression functions established a versatile 1,2-PD-induced bifunctional regulation system based on PocR-ARE. Our work showcases the exploration and exploitation of an underexplored type of transcriptional activator capable of recruiting RNA polymerase. It also expands the biosensor toolbox by providing a 1,2-PD-responsive bifunctional regulator and glycerol-responsive activator.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Engenharia Metabólica , Propilenoglicol , Salmonella typhimurium , Fatores de Transcrição , Técnicas Biossensoriais/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Propilenoglicol/metabolismo , Engenharia Metabólica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicerol/metabolismo , Regiões Promotoras Genéticas/genética
5.
BMC Microbiol ; 24(1): 247, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971740

RESUMO

BACKGROUND: Mercury (Hg) is highly toxic and has the potential to cause severe health problems for humans and foraging animals when transported into edible plant parts. Soil rhizobia that form symbiosis with legumes may possess mechanisms to prevent heavy metal translocation from roots to shoots in plants by exporting metals from nodules or compartmentalizing metal ions inside nodules. Horizontal gene transfer has potential to confer immediate de novo adaptations to stress. We used comparative genomics of high quality de novo assemblies to identify structural differences in the genomes of nitrogen-fixing rhizobia that were isolated from a mercury (Hg) mine site that show high variation in their tolerance to Hg. RESULTS: Our analyses identified multiple structurally conserved merA homologs in the genomes of Sinorhizobium medicae and Rhizobium leguminosarum but only the strains that possessed a Mer operon exhibited 10-fold increased tolerance to Hg. RNAseq analysis revealed nearly all genes in the Mer operon were significantly up-regulated in response to Hg stress in free-living conditions and in nodules. In both free-living and nodule environments, we found the Hg-tolerant strains with a Mer operon exhibited the fewest number of differentially expressed genes (DEGs) in the genome, indicating a rapid and efficient detoxification of Hg from the cells that reduced general stress responses to the Hg-treatment. Expression changes in S. medicae while in bacteroids showed that both rhizobia strain and host-plant tolerance affected the number of DEGs. Aside from Mer operon genes, nif genes which are involved in nitrogenase activity in S. medicae showed significant up-regulation in the most Hg-tolerant strain while inside the most Hg-accumulating host-plant. Transfer of a plasmid containing the Mer operon from the most tolerant strain to low-tolerant strains resulted in an immediate increase in Hg tolerance, indicating that the Mer operon is able to confer hyper tolerance to Hg. CONCLUSIONS: Mer operons have not been previously reported in nitrogen-fixing rhizobia. This study demonstrates a pivotal role of the Mer operon in effective mercury detoxification and hypertolerance in nitrogen-fixing rhizobia. This finding has major implications not only for soil bioremediation, but also host plants growing in mercury contaminated soils.


Assuntos
Transferência Genética Horizontal , Mercúrio , Óperon , Simbiose , Transcriptoma , Mercúrio/metabolismo , Mercúrio/toxicidade , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Microbiologia do Solo
6.
Nat Commun ; 15(1): 5683, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971825

RESUMO

Bacteria within mature biofilms are highly resistant to antibiotics than planktonic cells. Oxygen limitation contributes to antibiotic resistance in mature biofilms. Nitric oxide (NO) induces biofilm dispersal; however, low NO levels stimulate biofilm formation, an underexplored process. Here, we introduce a mechanism of anaerobic biofilm formation by investigating the antibiofilm activity of tyrosol, a component in wine. Tyrosol inhibits E. coli and Pseudomonas aeruginosa biofilm formation by enhancing NO production. YbfA is identified as a target of tyrosol and its downstream targets are sequentially determined. YbfA activates YfeR, which then suppresses the anaerobic regulator FNR. This suppression leads to decreased NO production, elevated bis-(3'-5')-cyclic dimeric GMP levels, and finally stimulates anaerobic biofilm formation in the mature stage. Blocking YbfA with tyrosol treatment renders biofilm cells as susceptible to antibiotics as planktonic cells. Thus, this study presents YbfA as a promising antibiofilm target to address antibiotic resistance posed by biofilm-forming bacteria, with tyrosol acting as an inhibitor.


Assuntos
Antibacterianos , Biofilmes , Escherichia coli , Óxido Nítrico , Álcool Feniletílico , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Óxido Nítrico/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Anaerobiose/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/antagonistas & inibidores
7.
ACS Synth Biol ; 13(7): 2199-2214, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38981062

RESUMO

The Gram-positive bacterium Bacillus subtilis is extensively used in the industry for the secretory production of proteins with commercial value. To further improve its performance, this microbe has been the subject of extensive genome engineering efforts, especially the removal of large genomic regions that are dispensable or even counterproductive. Here, we present the genome-reduced B. subtilis strain IIG-Bs-27-39, which was obtained through systematic deletion of mobile genetic elements, as well as genes for extracellular proteases, sporulation, flagella formation, and antibiotic production. Different from previously characterized genome-reduced B. subtilis strains, the IIG-Bs-27-39 strain was still able to grow on minimal media. We used this feature to benchmark strain IIG-Bs-27-39 against its parental strain 168 with respect to heterologous protein production and metabolic parameters during bioreactor cultivation. The IIG-Bs-27-39 strain presented superior secretion of difficult-to-produce staphylococcal antigens, as well as higher specific growth rates and biomass yields. At the metabolic level, changes in byproduct formation and internal amino acid pools were observed, whereas energetic parameters such as the ATP yield, ATP/ADP levels, and adenylate energy charge were comparable between the two strains. Intriguingly, we observed a significant increase in the total cellular NADPH level during all tested conditions and increases in the NAD+ and NADP(H) pools during protein production. This indicates that the IIG-Bs-27-39 strain has more energy available for anabolic processes and protein production, thereby providing a link between strain physiology and production performance. On this basis, we conclude that the genome-reduced strain IIG-Bs-27-39 represents an attractive chassis for future biotechnological applications.


Assuntos
Bacillus subtilis , Genoma Bacteriano , Proteínas Recombinantes , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Genoma Bacteriano/genética , Engenharia Metabólica/métodos , Reatores Biológicos , Metaboloma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
8.
Nat Commun ; 15(1): 5969, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013920

RESUMO

The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.


Assuntos
Metanol , Methylobacterium , Methylobacterium/metabolismo , Methylobacterium/genética , Methylobacterium/enzimologia , Methylobacterium/crescimento & desenvolvimento , Metanol/metabolismo , Simbiose , Mutação , Aldeído Liases/metabolismo , Aldeído Liases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/crescimento & desenvolvimento , Methylobacterium extorquens/enzimologia , Desenvolvimento Vegetal , Microbiota/genética , Biomassa
9.
Extremophiles ; 28(3): 31, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020126

RESUMO

The present study investigates the low temperature tolerance strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1, which grows optimally at 55 °C , by subjecting it to a temperature down-shift of 10 °C (45 °C) for 4 and 6 h followed by studying its growth, morphophysiological, molecular and proteomic responses. Results suggested that although TPH1 experienced increased growth inhibition, ROS production, protein oxidation and membrane disruption after 4 h of incubation at 45 °C yet maintained its DNA integrity and cellular structure through the increased expression of DNA damage repair and cell envelop synthesizing proteins and also progressively alleviated growth inhibition by 20% within two hours i.e., 6 h, by inducing the expression of antioxidative enzymes, production of unsaturated fatty acids, capsular and released exopolysaccharides and forming biofilm along with chemotaxis proteins. Conclusively, the adaptation of Anoxybacillus rupiensis TPH1 to lower temperature is mainly mediated by the synthesis of large numbers of defense proteins and exopolysaccharide rich biofilm formation.


Assuntos
Adaptação Fisiológica , Anoxybacillus , Proteínas de Bactérias , Anoxybacillus/metabolismo , Anoxybacillus/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Temperatura Baixa , Biofilmes/crescimento & desenvolvimento
10.
Curr Microbiol ; 81(9): 275, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020143

RESUMO

In this study, the toxigenic characteristics of 14 strains of Microcystis were analyzed, and single nucleotide polymorphism (SNP) and insertion/deletion (InDel) loci in microcystin synthetase (mcy) gene clusters were screened. Based on SNP and InDel loci associated with the toxigenic characteristics, primers and TaqMan or Cycling fluorescent probes were designed to develop duplex real-time fluorescent quantitative PCR (FQ-PCR) assays. After evaluating specificity and sensitivity, these assays were applied to detect the toxigenic Microcystis genotypes in a shrimp pond where Microcystis blooms occurred. The results showed a total of 2155 SNP loci and 66 InDel loci were obtained, of which 12 SNP loci and 5 InDel loci were associated with the toxigenic characteristics. Three duplex real-time FQ-PCR assays were developed, each of which could quantify two genotypes of toxigenic Microcystis. These FQ-PCR assays were highly specific, and two Cycling assays were more sensitive than TaqMan assay. In the shrimp pond, six genotypes of toxigenic Microcystis were detected using the developed FQ-PCR assays, indicating that above genotyping assays have the potential for quantitative analysis of the toxigenic Microcystis genotypes in natural water.


Assuntos
Genótipo , Microcystis , Família Multigênica , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Microcystis/genética , Microcystis/classificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microcistinas/genética , Mutação INDEL , Proteínas de Bactérias/genética , Sensibilidade e Especificidade , Lagoas/microbiologia , Peptídeo Sintases/genética
11.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38970380

RESUMO

Alternative strategies for controlling Staphylococcus aureus and other pathogens have been continuously investigated, with nisin, a bacteriocin widely used in the food industry as a biopreservative, gaining increasing attention. In addition to its antimicrobial properties, bacteriocins have significant effects on genome functionality even at inhibitory concentrations. This study investigated the impact of subinhibitory concentrations of nisin on S. aureus. Culturing in the presence of 0.625 µmol l-1 nisin, led to the increased relative expression of hla, saeR, and sarA, genes associated with virulence while expression of the sea gene, encoding staphylococcal enterotoxin A (SEA), decreased. In an in vivo experiment, Galleria mellonella larvae inoculated with S. aureus cultured in the presence of nisin exhibited 97% mortality at 72 h post-infection, compared to over 40% of larvae mortality in larvae infected with S. aureus. A comprehensive understanding of the effect of nisin on the transcriptional response of virulence genes and the impact of these changes on the virulence of S. aureus can contribute to assessing the application of this bacteriocin in food and medical contexts.


Assuntos
Antibacterianos , Larva , Mariposas , Nisina , Staphylococcus aureus , Nisina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Animais , Virulência/genética , Larva/microbiologia , Larva/efeitos dos fármacos , Antibacterianos/farmacologia , Mariposas/microbiologia , Infecções Estafilocócicas/microbiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana
12.
Euro Surveill ; 29(28)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994602

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAb) is an important pathogen causing serious nosocomial infections. We describe an outbreak of CRAb in an intensive care unit in the Netherlands in 2021. During an outbreak of non-resistant A. baumannii, while infection control measures were in place, CRAb isolates carrying highly similar bla NDM-1 - and tet(x3)-encoding plasmids were isolated from three patients over a period of several months. The chromosomal and plasmid sequences of the CRAb and non-carbapenemase-carrying A. baumannii isolates cultured from patient materials were analysed using hybrid assemblies of short-read and long-read sequences. The CRAb isolates revealed that the CRAb outbreak consisted of two different strains, carrying similar plasmids. The plasmids contained multiple antibiotic resistance genes including the tetracycline resistance gene tet(x3), and the bla NDM-1 and bla OXA-97 carbapenemase genes. We determined minimal inhibitory concentrations (MICs) for 13 antibiotics, including the newly registered tetracycline antibiotics eravacycline and omadacycline. The CRAb isolates showed high MICs for tetracycline antibiotics including eravacycline and omadacycline, except for minocycline which had a low MIC. In this study we show the value of sequencing multidrug-resistant A. baumannii for outbreak tracking and guiding outbreak mitigation measures.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Infecção Hospitalar , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Tetraciclinas , beta-Lactamases , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/enzimologia , Humanos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Tetraciclinas/farmacologia , Antibacterianos/farmacologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , beta-Lactamases/genética , Países Baixos/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Surtos de Doenças , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Unidades de Terapia Intensiva
13.
Euro Surveill ; 29(28)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994601

RESUMO

This report documents the case of a Ukrainian patient infected with an extensively drug-resistant (XDR) lineage 2 Mycobacterium tuberculosis strain harbouring the rifampicin resistance mutation RpoB I491F. This mutation is not detected by routine molecular WHO-recommended rapid diagnostics, complicating the detection and treatment of these strains. The occurrence of such mutations underscores the need for enhanced diagnostic techniques and tailored treatment regimens, especially in eastern Europe where lineage 2 strains and XDR-tuberculosis are prevalent.


Assuntos
Antituberculosos , Proteínas de Bactérias , RNA Polimerases Dirigidas por DNA , Tuberculose Extensivamente Resistente a Medicamentos , Mutação , Mycobacterium tuberculosis , Rifampina , Adulto , Humanos , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Alemanha , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/uso terapêutico , Ucrânia , Feminino
14.
Med Microbiol Immunol ; 213(1): 15, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008129

RESUMO

Chlamydiae are a large group of obligate endosymbionts of eukaryotes that includes the Chlamydiaceae family, comprising several animal pathogens. Among Chlamydiaceae, Chlamydia trachomatis causes widespread ocular and urogenital infections in humans. Like many bacterial pathogens, all Chlamydiae manipulate host cells by injecting them with type III secretion effector proteins. We previously characterized the C. trachomatis effector CteG, which localizes at the host cell Golgi and plasma membrane during distinct phases of the chlamydial infectious cycle. Here, we show that CteG is a Chlamydiaceae-specific effector with over 60 homologs phylogenetically categorized into two distinct clades (CteG I and CteG II) and exhibiting several inparalogs and outparalogs. Notably, cteG I homologs are syntenic to C. trachomatis cteG, whereas cteG II homologs are syntenic among themselves but not with C. trachomatis cteG. This indicates a complex evolution of cteG homologs, which is unique among C. trachomatis effectors, marked by numerous events of gene duplication and loss. Despite relatively modest sequence conservation, nearly all tested CteG I and CteG II proteins were identified as type III secretion substrates using Yersinia as a heterologous bacterial host. Moreover, most of the type III secreted CteG I and CteG II homologs were delivered by C. trachomatis into host cells, where they localized at the Golgi region and cell periphery. Overall, this provided insights into the evolution of bacterial effectors and revealed a Chlamydiaceae family of type III secreted proteins that underwent substantial divergence during evolution while conserving the capacity to localize at specific host cell compartments.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis , Filogenia , Sistemas de Secreção Tipo III , Humanos , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Células HeLa , Yersinia/genética , Yersinia/metabolismo , Transporte Proteico , Interações Hospedeiro-Patógeno , Evolução Molecular , Chlamydiaceae/genética , Chlamydiaceae/metabolismo , Chlamydiaceae/classificação
15.
Nat Commun ; 15(1): 5953, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009586

RESUMO

The intracellular bacterial pathogen Legionella pneumophila modulates host cell functions by secreting multiple effectors with diverse biochemical activities. In particular, effectors of the SidE family interfere with host protein ubiquitination in a process that involves production of phosphoribosyl ubiquitin (PR-Ub). Here, we show that effector LnaB converts PR-Ub into ADP-ribosylated ubiquitin, which is further processed to ADP-ribose and functional ubiquitin by the (ADP-ribosyl)hydrolase MavL, thus maintaining ubiquitin homeostasis in infected cells. Upon being activated by actin, LnaB also undergoes self-AMPylation on tyrosine residues. The activity of LnaB requires a motif consisting of Ser, His and Glu (SHxxxE) present in a large family of toxins from diverse bacterial pathogens. Thus, our study sheds light on the mechanisms by which a pathogen maintains ubiquitin homeostasis and identifies a family of enzymes capable of protein AMPylation.


Assuntos
Proteínas de Bactérias , Homeostase , Legionella pneumophila , Ubiquitina , Ubiquitinação , Ubiquitina/metabolismo , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , ADP-Ribosilação , Interações Hospedeiro-Patógeno , Adenosina Difosfato Ribose/metabolismo , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Células HEK293 , Actinas/metabolismo , Células HeLa
16.
Mol Plant Pathol ; 25(7): e13496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39011828

RESUMO

The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZR10A can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ.


Assuntos
Proteínas de Bactérias , GMP Cíclico , Metiltransferases , Xanthomonas , Xanthomonas/patogenicidade , Xanthomonas/metabolismo , Xanthomonas/genética , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Virulência , Doenças das Plantas/microbiologia , Ligação Proteica
17.
PLoS One ; 19(7): e0306695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012901

RESUMO

INTRODUCTION: Bacterial sexually transmitted infections (STIs) pose a major public health problem. The emergence of antibiotic-resistant strains of Neisseria gonorrhoeae represents a serious threat to successful treatment and epidemiological control. The first extensively drug-resistant (XDR) strains (ceftriaxone-resistant and high-level azithromycin-resistant [HLR AZY]) have been reported. AIMS: To identify molecular mechanisms implicated in azithromycin resistance in strains isolated from patients over a three-year period in a university hospital in Switzerland. MATERIAL AND METHODS: From January 2020 to December 2022, 34 isolates (one per patient) were recovered from samples analyzed at the University Hospital of Lausanne. Eight genes involved in azithromycin resistance were sequenced: mtrR repressor (mtrCDE operon repressor) and his promotor mtrR-pr, rplD gene (L4 ribosomal protein), rplV gene (L22 ribosomal protein) and the four alleles of the rrl gene (23S rRNA). RESULTS: With a cutoff value of 1 mg/L, 15 isolates were considered as being resistant to azithromycin, whereas the remaining 19 were susceptible. The C2597T mutation in 3 or 4 of the rrl allele confer a medium-level resistance to azithromycin (MIC = 16 mg/L, N = 2). The following mutations were significantly associated with MIC values ≥1 mg/L: the three mutations V125A, A147G, R157Q in the rplD gene (N = 10) and a substitution A->C in the mtrR promotor (N = 9). Specific mutations in the mtrR repressor and its promotor were observed in both susceptible and resistant isolates. CONCLUSIONS: Resistance to azithromycin was explained by the presence of mutations in many different copies of 23S RNA ribosomal genes and their regulatory genes. Other mutations, previously reported to be associated with azithromycin resistance, were documented in both susceptible and resistant isolates, suggesting they play little role, if any, in azithromycin resistance.


Assuntos
Antibacterianos , Azitromicina , Proteínas de Bactérias , Farmacorresistência Bacteriana , Mutação , Neisseria gonorrhoeae , Proteínas Repressoras , Azitromicina/farmacologia , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/efeitos dos fármacos , Humanos , Proteínas Repressoras/genética , Farmacorresistência Bacteriana/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Proteínas Ribossômicas/genética , Gonorreia/microbiologia , Gonorreia/tratamento farmacológico , Masculino , Feminino
18.
Front Cell Infect Microbiol ; 14: 1410921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015336

RESUMO

Objective: The emergence of clinical Klebsiella pneumoniae strains harboring acrAB-tolC genes in the chromosome, along with the presence of two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65 genes on a plasmid, has presented a significant clinical challenge. Methods: In order to study the detailed genetic features of K. pneumoniae strain SC35, both the bacterial chromosome and plasmids were sequenced using Illumina and nanopore platforms. Furthermore, bioinformatics methods were employed to analyze the mobile genetic elements associated with antibiotic resistance genes. Results: K. pneumoniae strain SC35 was found to possess a class A beta-lactamase and demonstrated resistance to all tested antibiotics. This resistance was attributed to the presence of efflux pump genes, specifically acrAB-tolC, on the SC35 chromosome. Additionally, the SC35 plasmid p1 carried the two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65, as well as bla TEM-1 with rmtB, which shared overlapping structures with mobile genetic elements as In413, Tn3, and TnAs3. Through plasmid transfer assays, it was determined that the SC35 plasmid p1 could be successfully transferred with an average conjugation frequency of 6.85 × 10-4. Conclusion: The structure of the SC35 plasmid p1 appears to have evolved in correlation with other plasmids such as pKPC2_130119, pDD01754-2, and F4_plasmid pA. The infectious strain SC35 exhibits no susceptibility to tested antibioticst, thus effective measures should be taken to prevent the spread and epidemic of this strain.


Assuntos
Antibacterianos , Cromossomos Bacterianos , Infecções por Klebsiella , Klebsiella pneumoniae , Plasmídeos , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Plasmídeos/genética , beta-Lactamases/genética , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Cromossomos Bacterianos/genética , Humanos , Testes de Sensibilidade Microbiana , Sequências Repetitivas Dispersas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
19.
BMC Genomics ; 25(1): 692, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009997

RESUMO

BACKGROUND: Cable bacteria are filamentous members of the Desulfobulbaceae family that are capable of performing centimetre­scale electron transport in marine and freshwater sediments. This long­distance electron transport is mediated by a network of parallel conductive fibres embedded in the cell envelope. This fibre network efficiently transports electrical currents along the entire length of the centimetre­long filament. Recent analyses show that these fibres consist of metalloproteins that harbour a novel nickel­containing cofactor, which indicates that cable bacteria have evolved a unique form of biological electron transport. This nickel­dependent conduction mechanism suggests that cable bacteria are strongly dependent on nickel as a biosynthetic resource. Here, we performed a comprehensive comparative genomic analysis of the genes linked to nickel homeostasis. We compared the genome­encoded adaptation to nickel of cable bacteria to related members of the Desulfobulbaceae family and other members of the Desulfobulbales order. RESULTS: Presently, four closed genomes are available for the monophyletic cable bacteria clade that consists of the genera Candidatus Electrothrix and Candidatus Electronema. To increase the phylogenomic coverage, we additionally generated two closed genomes of cable bacteria: Candidatus Electrothrix gigas strain HY10­6 and Candidatus Electrothrix antwerpensis strain GW3­4, which are the first closed genomes of their respective species. Nickel homeostasis genes were identified in a database of 38 cable bacteria genomes (including 6 closed genomes). Gene prevalence was compared to 19 genomes of related strains, residing within the Desulfobulbales order but outside of the cable bacteria clade, revealing several genome­encoded adaptations to nickel homeostasis in cable bacteria. Phylogenetic analysis indicates that nickel importers, nickel­binding enzymes and nickel chaperones of cable bacteria are affiliated to organisms outside the Desulfobulbaceae family, with several proteins showing affiliation to organisms outside of the Desulfobacterota phylum. Conspicuously, cable bacteria encode a unique periplasmic nickel export protein RcnA, which possesses a putative cytoplasmic histidine­rich loop that has been largely expanded compared to RcnA homologs in other organisms. CONCLUSION: Cable bacteria genomes show a clear genetic adaptation for nickel utilization when compared to closely related genera. This fully aligns with the nickel­dependent conduction mechanism that is uniquely found in cable bacteria.


Assuntos
Genoma Bacteriano , Genômica , Homeostase , Níquel , Filogenia , Níquel/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
20.
FASEB J ; 38(13): e23763, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954404

RESUMO

Riemerella anatipestifer is a pathogenic bacterium that causes duck serositis and meningitis, leading to significant harm to the duck industry. To escape from the host immune system, the meningitis-causing bacteria must survive and multiply in the bloodstream, relying on specific virulence factors such as capsules. Therefore, it is essential to study the genes involved in capsule biosynthesis in R. anatipestifer. In this study, we successfully constructed gene deletion mutants Δ3820 and Δ3830, targeting the GE296_RS03820 and GE296_RS03830 genes, respectively, using the RA-LZ01 strain as the parental strain. The growth kinetics analysis revealed that these two genes contribute to bacterial growth. Transmission and scanning electron microscopy (TEM and SEM) and silver staining showed that Δ3820 and Δ3830 produced the altered capsules and compounds of capsular polysaccharides (CPSs). Serum resistance test showed the mutants also exhibited reduced C3b deposition and decreased resistance serum killing. In vivo, Δ3820 and Δ3830 exhibited markedly declining capacity to cross the blood-brain barrier, compared to RA-LZ01. These findings indicate that the GE296_RS03820 and GE296_RS03830 genes are involved in CPSs biosynthesis and play a key role in the pathogenicity of R. anatipestifer. Furthermore, Δ3820 and Δ3830 mutants presented a tendency toward higher survival rates from RA-LZ01 challenge in vivo. Additionally, sera from ducklings immunized with the mutants showed cross-immunoreactivity with different serotypes of R. anatipestifer, including 1, 2, 7 and 10. Western blot and SDS-PAGE assays revealed that the altered CPSs of Δ3820 and Δ3830 resulted in the exposure of some conserved proteins playing the key role in the cross-immunoreactivity. Our study clearly demonstrated that the GE296_RS03820 and GE296_RS03830 genes are involved in CPS biosynthesis in R. anatipestifer and the capsule is a target for attenuation in vaccine development.


Assuntos
Cápsulas Bacterianas , Patos , Infecções por Flavobacteriaceae , Riemerella , Riemerella/genética , Riemerella/patogenicidade , Riemerella/metabolismo , Animais , Patos/microbiologia , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Doenças das Aves Domésticas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/biossíntese , Fatores de Virulência/genética , Deleção de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...