Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.603
Filtrar
1.
Nat Commun ; 15(1): 5946, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009687

RESUMO

The ATP-binding cassette (ABC) transporter, MsbA, plays a pivotal role in lipopolysaccharide (LPS) biogenesis by facilitating the transport of the LPS precursor lipooligosaccharide (LOS) from the cytoplasmic to the periplasmic leaflet of the inner membrane. Despite multiple studies shedding light on MsbA, the role of lipids in modulating MsbA-nucleotide interactions remains poorly understood. Here we use native mass spectrometry (MS) to investigate and resolve nucleotide and lipid binding to MsbA, demonstrating that the transporter has a higher affinity for adenosine 5'-diphosphate (ADP). Moreover, native MS shows the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL) can tune the selectivity of MsbA for adenosine 5'-triphosphate (ATP) over ADP. Guided by these studies, four open, inward-facing structures of MsbA are determined that vary in their openness. We also report a 2.7 Å-resolution structure of MsbA in an open, outward-facing conformation that is not only bound to KDL at the exterior site, but with the nucleotide binding domains (NBDs) adopting a distinct nucleotide-free structure. The results obtained from this study offer valuable insight and snapshots of MsbA during the transport cycle.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Difosfato de Adenosina , Trifosfato de Adenosina , Espectrometria de Massas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Espectrometria de Massas/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Lipopolissacarídeos/metabolismo , Lipídeo A/metabolismo , Lipídeo A/química , Ligação Proteica , Modelos Moleculares , Cristalografia por Raios X , Lipídeos/química , Escherichia coli/metabolismo , Conformação Proteica
2.
BMC Biotechnol ; 24(1): 49, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010004

RESUMO

This study used conservative one variable-at-a-time study and statistical surface response methods to increase the yields of an extracellular thermostable protease secreted by a newly identified thermophilic Bacillus subtilis BSP strain. Using conventional optimization techniques, physical parameters in submerged fermentation were adjusted at the shake flask level to reach 184 U/mL. These physicochemical parameters were further optimized by statistical surface response methodology using Box Behnken design, and the protease yield increased to 295 U/mL. The protease was purified and characterized biochemically. Both Ca2+ and Fe2+ increased the activity of the 36 kDa protease enzyme. Based on its strong inhibition by ethylenediaminetetracetate (EDTA), the enzyme was confirmed to be a metalloprotease. The protease was also resistant to various organic solvents (benzene, ethanol, methanol), surfactants (Triton X-100), sodium dodecyl sulfate (SDS), Tween 20, Tween-80 and oxidants hydrogen per oxide (H2O2). Characteristics, such as tolerance to high SDS and H2O2 concentrations, indicate that this protease has potential applications in the pharmaceutical and detergent industries.


Assuntos
Bacillus subtilis , Estabilidade Enzimática , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Peróxido de Hidrogênio/metabolismo , Fermentação , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Concentração de Íons de Hidrogênio , Solventes/química , Temperatura
3.
Subcell Biochem ; 104: 1-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963480

RESUMO

The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.


Assuntos
Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Microscopia Crioeletrônica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
4.
Protein Pept Lett ; 31(5): e040724231578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967080

RESUMO

BACKGROUND: Staphylococcus aureus is a common pathogen with strains that are resistant to existing antibiotics. MurJ from S. aureus (SaMurJ), an integral membrane protein functioning as Lipid II flippase, is a potential target for developing new antibacterial agents against this pathogen. Successful expression and purification of this protein shall be useful in the development of drugs against this target. OBJECTIVE: In this study, we demonstrated the optimized expression and purification procedures of SaMurJ, identified suitable detergent for extracting and solubilizing the protein, and examined the peptidisc system to generate a detergent-free environment. METHODS: SaMurJ fused with N-terminal ten-His tag was expressed without induction. Six detergents were selected for screening the most efficient candidate for extraction and solubilization of the protein. The thermostability of the detergent-solubilized protein was assessed by evaluated temperature incubation. Different ratios of peptidisc bi-helical peptide (NSPr) to SaMurJ were mixed and the on-bead peptidisc assembly method was applied. RESULTS: SaMurJ expressed in BL21(DE3) was confirmed by peptide fingerprinting, with a yield of 1 mg SaMurJ per liter culture. DDM was identified as the optimum detergent for solubilization and the nickel affinity column enabled SaMurJ purification with a purity of ~88%. However, NSPr could not stabilize SaMurJ. CONCLUSION: The expression and purification of SaMurJ were successful, with high purity and good yield. SaMurJ can be solubilized and stabilized by a DDM-containing buffer.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Detergentes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Solubilidade , Expressão Gênica , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados
6.
Nat Commun ; 15(1): 5737, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982157

RESUMO

Exploring the promiscuity of native enzymes presents a promising strategy for expanding their synthetic applications, particularly for catalyzing challenging reactions in non-native contexts. In this study, we explore the promiscuous potential of old yellow enzymes (OYEs) to facilitate the Morita-Baylis-Hillman reaction (MBH reaction), leveraging substrate similarities between MBH reaction and reduction reaction. Using mass spectrometry and spectroscopic techniques, we confirm promiscuity of GkOYE in both MBH and reduction reactions. By blocking H- and H+ transfer pathways, we engineer GkOYE.8, which loses its reduction ability but enhances its MBH activity. The structural basis of MBH reaction catalyzed by GkOYE.8 is obtained through mutation studies and kinetic simulations. Furthermore, enantiocomplementary mutants GkOYE.11 and GkOYE.13 are obtained by directed evolution, exhibiting the ability to accept various aromatic aldehydes and alkenes as substrates. This study demonstrates the potential of leveraging substrate similarities to unlock enzyme functionalities, enabling the catalysis of new-to-nature reactions.


Assuntos
Biocatálise , Especificidade por Substrato , Cinética , Aldeídos/metabolismo , Aldeídos/química , Catálise , Mutação , Alcenos/metabolismo , Alcenos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Engenharia de Proteínas
7.
Sci Rep ; 14(1): 16043, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992051

RESUMO

FtsZ is highly conserved among bacteria and plays an essential role in bacterial cell division. The tense conformation of FtsZ bound to GTP assembles into a straight filament via head-to-tail associations, and then the upper subunit of FtsZ hydrolyzes GTP bound to the lower FtsZ subunit. The subunit with GDP bound disassembles accompanied by a conformational change in the subunit from the tense to relaxed conformation. Although crystal structures of FtsZ derived from several bacterial species have been determined, the conformational change from the relaxed to tense conformation has only been observed in Staphylococcus aureus FtsZ (SaFtsZ). Recent cryo-electron microscopy analyses revealed the three-dimensional reconstruction of the protofilament, in which tense molecules assemble via head-to-tail associations. However, the lower resolution of the protofilament suggested that the flexibility of the FtsZ protomers between the relaxed and tense conformations caused them to form in less-strict alignments. Furthermore, this flexibility may also prevent FtsZs other than SaFtsZ from crystalizing in the tense conformation, suggesting that the flexibility of bacterial FtsZs differs. In this study, molecular dynamics simulations were performed using SaFtsZ and Bacillus subtilis FtsZ in several situations, which suggested that different features of the FtsZs affect their conformational stability.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas do Citoesqueleto , Simulação de Dinâmica Molecular , Conformação Proteica , Staphylococcus aureus , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/química , Bacillus subtilis/metabolismo , Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/química , Estabilidade Proteica , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química
8.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999028

RESUMO

Tuberculosis is a serious public health problem worldwide. The search for new antibiotics has become a priority, especially with the emergence of resistant strains. A new family of imidazoquinoline derivatives, structurally analogous to triazolophthalazines, which had previously shown good antituberculosis activity, were designed to inhibit InhA, an essential enzyme for Mycobacterium tuberculosis survival. Over twenty molecules were synthesized and the results showed modest inhibitory efficacy against the protein. Docking experiments were carried out to show how these molecules could interact with the protein's substrate binding site. Disappointingly, unlike triazolophthlazines, these imidazoquinoline derivatives showed an absence of inhibition on mycobacterial growth.


Assuntos
Antituberculosos , Proteínas de Bactérias , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Oxirredutases , Quinolinas , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/síntese química , Quinolinas/química , Quinolinas/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Sítios de Ligação , Estrutura Molecular
9.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999960

RESUMO

The initial adoption of penicillin as an antibiotic marked the start of exploring other compounds essential for pharmaceuticals, yet resistance to penicillins and their side effects has compromised their efficacy. The N-terminal nucleophile (Ntn) amide-hydrolases S45 family plays a key role in catalyzing amide bond hydrolysis in various compounds, including antibiotics like penicillin and cephalosporin. This study comprehensively analyzes the structural and functional traits of the bacterial N-terminal nucleophile (Ntn) amide-hydrolases S45 family, covering penicillin G acylases, cephalosporin acylases, and D-succinylase. Utilizing structural bioinformatics tools and sequence analysis, the investigation delineates structurally conserved regions (SCRs) and substrate binding site variations among these enzymes. Notably, sixteen SCRs crucial for substrate interaction are identified solely through sequence analysis, emphasizing the significance of sequence data in characterizing functionally relevant regions. These findings introduce a novel approach for identifying targets to enhance the biocatalytic properties of N-terminal nucleophile (Ntn) amide-hydrolases, while facilitating the development of more accurate three-dimensional models, particularly for enzymes lacking structural data. Overall, this research advances our understanding of structure-function relationships in bacterial N-terminal nucleophile (Ntn) amide-hydrolases, providing insights into strategies for optimizing their enzymatic capabilities.


Assuntos
Amidoidrolases , Amidoidrolases/química , Amidoidrolases/metabolismo , Amidoidrolases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Relação Estrutura-Atividade , Sequência Conservada , Bactérias/enzimologia , Sequência de Aminoácidos , Modelos Moleculares , Especificidade por Substrato
10.
Protein Expr Purif ; 222: 106538, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38950762

RESUMO

Nucleotide sugars (UDP-Sugars) are essential for the production of polysaccharides and glycoconjugates utilized in medicines, cosmetics, and food industries. The enzyme Galactose-1-phosphate uridylyltransferase (GalU; EC 2.7.7.12) is responsible for the synthesis of UDP-galactose from α-d-galactose-1-phosphate (Gal-1P) and UTP. A novel bacterial GalU (TiGalU) encoded from a thermophilic bacterium, Thermodesulfatator indicus, was successfully purified using the Ni-NTA column after being expressed in Escherichia coli. The optimal pH for recombinant TiGalU was determined to be 5.5. The optimum temperature of the enzyme was 45 °C. The activity of TiGalU was not dependent on Mg2+ and was strongly inhibited by SDS. When coupled with galactose kinase (GALK1) and ß-1,4-galactosyltransferase 1 (B4GALT1), the enzyme enabled the one-pot synthesis of Gal-ß-1,4-GlcNAc-X by utilizing galactose and UTP as substrates. This study reported the in vitro biosynthesis of Gal-ß-1,4-GlcNAc-X for the first time, providing an environmentally friendly way to biosynthesis glycosides and other polysaccharides.


Assuntos
Escherichia coli , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo , UTP-Hexose-1-Fosfato Uridililtransferase/química , Expressão Gênica , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/química , Clonagem Molecular , Galactosefosfatos/metabolismo , Galactosefosfatos/genética , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Galactosiltransferases/química
11.
Mol Biol Rep ; 51(1): 817, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012451

RESUMO

BACKGROUND: Nitrile Hydratase (NHase) is one of the most important industrial enzyme widely used in the petroleum exploitation field. The enzyme, composed of two unrelated α- and ß-subunits, catalyzes the conversion of acrylonitrile to acrylamide, releasing a significant amount of heat and generating the organic solvent product, acrylamide. Both the heat and acrylamide solvent have an impact on the structural stability of NHase and its catalytic activity. Therefore, enhancing the stress resistance of NHase to toxic substances is meaningful for the petroleum industry. METHODS AND RESULTS: To improve the thermo-stability and acrylamide tolerance of NHase, the two subunits were fused in vivo using SpyTag and SpyCatcher, which were attached to the termini of each subunit in various combinations. Analysis of the engineered strains showed that the C-terminus of ß-NHase is a better fusion site than the N-terminus, while the C-terminus of α-NHase is the most suitable site for fusion with a larger protein. Fusion of SpyTag and SpyCatcher to the C-terminus of ß-NHase and α-NHase, respectively, led to improved acrylamide tolerance and a slight enhancement in the thermo-stability of one of the engineered strains, NBSt. CONCLUSION: These results indicate that in vivo ligation of different subunits using SpyTag/SpyCatcher is a valuable strategy for enhancing subunit interaction and improving stress tolerance.


Assuntos
Hidroliases , Rhodococcus , Rhodococcus/enzimologia , Rhodococcus/genética , Hidroliases/metabolismo , Hidroliases/genética , Hidroliases/química , Estabilidade Enzimática , Estresse Fisiológico , Acrilamida/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética
12.
J Agric Food Chem ; 72(28): 15633-15642, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950134

RESUMO

The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.


Assuntos
Bacillus , Proteínas de Bactérias , Biodegradação Ambiental , Nitrorredutases , Zea mays , Bacillus/enzimologia , Bacillus/metabolismo , Bacillus/genética , Nitrorredutases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Zea mays/metabolismo , Zea mays/microbiologia , Cucumis sativus/microbiologia , Cucumis sativus/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/química
13.
J Agric Food Chem ; 72(28): 15778-15787, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38951118

RESUMO

Enzymatic oxygenation of various cyclic ketones into lactones via Baeyer-Villiger monooxygenases (BVMOs) could provide a promising route for synthesizing fragrances and pharmaceutical ingredients. However, unsatisfactory catalytic activity and thermostability restricted their applications in the pharmaceutical and food industries. In this study, we successfully improved the catalytic activity and thermostability of a Baeyer-Villiger monooxygenase (OgBVMO) from Oceanicola granulosus by reshaping the binding pocket. As a result, mutant OgBVMO-Re displayed a 1.0- to 6.4-fold increase in the activity toward branched cyclic ketones tested, accompanied by a 3 °C higher melting point, and a 2-fold longer half-life time (t1/2 (45 °C)). Molecular dynamics simulations revealed that reshaping the binding pocket achieved strengthened motion correlation between amino acid residues, appropriate size of the substrate-binding pocket, beneficial surface characteristics, lower energy barriers, and shorter nucleophilic distance. This study well demonstrated the trade-off between the enzyme activity and thermostability by reshaping the substrate-binding pocket, paving the way for further engineering other enzymes.


Assuntos
Estabilidade Enzimática , Oxigenases de Função Mista , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Sítios de Ligação , Cinética , Biocatálise , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Especificidade por Substrato , Simulação de Dinâmica Molecular , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Alta , Cetonas/química , Cetonas/metabolismo
14.
J Agric Food Chem ; 72(28): 15841-15853, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957116

RESUMO

Aflatoxin B1 (AFB1), a mycotoxin and natural carcinogen, commonly contaminates cereals and animal feeds, posing serious health risks to human and animal. In this study, Bacillus amyloliquefaciens ZG08 isolated from kimchi could effectively remove 80.93% of AFB1 within 72 h at 37 °C and pH 7.0. Metabolome and transcriptome analysis showed that metabolic processes including glycerophospholipid metabolism and amino acid metabolism were most affected in B. amyloliquefaciens ZG08 exposed to AFB1. The adaptation mechanism likely involved activation of the thioredoxin system to restore intracellular redox equilibrium. The key genes, tpx and gldA, overexpressed in Escherichia coli BL21, achieved degradation rates of 60.15% and 47.16% for 100 µg/kg AFB1 under optimal conditions of 37 °C and pH 8.0 and 45 °C and pH 7.0, respectively. The degradation products, identified as AFD1, were less cytotoxic than AFB1 in HepG2 cells. These findings suggest potential strategies for utilizing probiotics and engineered enzymes in AFB1 detoxification.


Assuntos
Aflatoxina B1 , Bacillus amyloliquefaciens , Proteínas de Bactérias , Biodegradação Ambiental , Aflatoxina B1/metabolismo , Aflatoxina B1/química , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/química , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Células Hep G2 , Alimentos Fermentados/microbiologia , Multiômica
15.
J Agric Food Chem ; 72(28): 15613-15623, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38978453

RESUMO

Here we describe a complex enzymatic approach to the efficient transformation of abundant waste chitin, a byproduct of the food industry, into valuable chitooligomers with a degree of polymerization (DP) ranging from 6 to 11. This method involves a three-step process: initial hydrolysis of chitin using engineered variants of a novel fungal chitinase from Talaromyces flavus to generate low-DP chitooligomers, followed by an extension to the desired DP using the high-yielding Y445N variant of ß-N-acetylhexosaminidase from Aspergillus oryzae, achieving yields of up to 57%. Subsequently, enzymatic deacetylation of chitooligomers with DP 6 and 7 was accomplished using peptidoglycan deacetylase from Bacillus subtilis BsPdaC. The innovative enzymatic procedure demonstrates a sustainable and feasible route for converting waste chitin into unavailable bioactive chitooligomers potentially applicable as natural pesticides in ecological and sustainable agriculture.


Assuntos
Aspergillus oryzae , Quitina , Quitinases , Proteínas Fúngicas , Oligossacarídeos , Talaromyces , Quitina/metabolismo , Quitina/química , Quitinases/metabolismo , Quitinases/genética , Quitinases/química , Talaromyces/enzimologia , Talaromyces/genética , Talaromyces/química , Talaromyces/metabolismo , Oligossacarídeos/metabolismo , Oligossacarídeos/química , Hidrólise , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Biocatálise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
16.
Biochemistry ; 63(14): 1795-1807, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38951132

RESUMO

Many bacteria have hemerythrin (Hr) proteins that bind O2, including Pseudomonas aeruginosa, in which microoxia-induced Hr (Mhr) provide fitness advantages under microoxic conditions. Mhr has a 23 amino-acid extension at its C-terminus relative to a well-characterized Hr from Methylococcus capsulatus, and similar extensions are also found in Hrs from other bacteria. The last 11 amino acids of this extended, C-terminal tail are highly conserved in gammaproteobacteria and predicted to form a helix with positively charged and hydrophobic faces. In cellular fractionation assays, wild-type (WT) Mhr was found in both membrane and cytosolic fractions, while a MhrW143* variant lacking the last 11 residues was largely in the cytosol and did not complement Mhr function in competition assays. MhrL112Y, a variant that has a much longer-lived O2-bound form, was fully functional and had a similar localization pattern to that of WT Mhr. Both MhrW143* and MhrL112Y had secondary structures, stabilities, and O2-binding kinetics similar to those of WT Mhr. Fluorescence studies revealed that the C-terminal tail, and particularly the fragment corresponding to its last 11 residues, was sufficient and necessary for association with lipid vesicles. Molecular dynamics simulations and subsequent cellular analysis of Mhr variants have demonstrated that conserved, positively charged residues in the tail are important for Mhr interactions with negatively charged membranes and the contribution of this protein to competitive fitness. Together, these data suggest that peripheral interactions of Mhr with membranes are guided by the C-terminal tail and are independent of O2-binding.


Assuntos
Membrana Celular , Hemeritrina , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Hemeritrina/metabolismo , Hemeritrina/química , Hemeritrina/genética , Membrana Celular/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Aminoácidos , Sequência Conservada , Oxigênio/metabolismo
17.
Nat Commun ; 15(1): 5634, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965224

RESUMO

3',5'-cyclic uridine monophosphate (cUMP) and 3',5'-cyclic cytidine monophosphate (cCMP) have been established as bacterial second messengers in the phage defense system, named pyrimidine cyclase system for anti-phage resistance (Pycsar). This system consists of a pyrimidine cyclase and a cyclic pyrimidine receptor protein. However, the molecular mechanism underlying cyclic pyrimidine synthesis and recognition remains unclear. Herein, we determine the crystal structures of a uridylate cyclase and a cytidylate cyclase, revealing the conserved residues for cUMP and cCMP production, respectively. In addition, a distinct zinc-finger motif of the uridylate cyclase is identified to confer substantial resistance against phage infections. Furthermore, structural characterization of cUMP receptor protein PycTIR provides clear picture of specific cUMP recognition and identifies a conserved N-terminal extension that mediates PycTIR oligomerization and activation. Overall, our results contribute to the understanding of cyclic pyrimidine-mediated bacterial defense.


Assuntos
Pirimidinas , Pirimidinas/química , Pirimidinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Bacteriófagos/metabolismo , Uridina Monofosfato/metabolismo , Uridina Monofosfato/química , Escherichia coli/metabolismo , Escherichia coli/genética , Modelos Moleculares , Sequência de Aminoácidos , Dedos de Zinco
18.
ACS Nano ; 18(26): 16692-16700, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952323

RESUMO

Gas vesicles (GVs) are large cylindrical gas-filled protein assemblies found in diverse aquatic bacteria that enable their adaptation of buoyancy. GVs have already been used as ultrasound contrasting agents. Here, we investigate GVs derived from Bacillus megaterium, aiming to minimize the number of accessory Gvps within the GV gene cluster and demonstrate the use of GVs as enhancers of acoustic radiation force administered by ultrasound. Three (GvpR, GvpT, and GvpU) out of 11 genes in the cluster were found to be dispensable for functional GV formation, and their omission resulted in narrower GVs. Two essential proteins GvpJ and GvpN were absent from recently determined GV structures, but GvpJ was nevertheless found to be tightly bound to the cylindrical part of GVs in this study. Additionally, the N-terminus of GvpN was observed to play an important role in the formation of mature GVs. The binding of engineered GvpC fromAnabaena flos-aquae to HEK293 cells via integrins enhanced the acoustic force delivered by ultrasound and resulted in an increased Ca2+ influx into cells. Coupling with a synthetic Ca2+-dependent signaling pathway GVs efficiently enhanced cell stimulation by ultrasound, which expands the potentials of noninvasive sonogenetics cell stimulation.


Assuntos
Bacillus megaterium , Bacillus megaterium/metabolismo , Bacillus megaterium/genética , Humanos , Células HEK293 , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Ondas Ultrassônicas , Transcrição Gênica , Cálcio/metabolismo , Cálcio/química , Regulação da Expressão Gênica , Proteínas
19.
Microb Cell Fact ; 23(1): 191, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956640

RESUMO

BACKGROUND: In this study, we isolated a cellulase-producing bacterium, Bacillus amyloliquefaciens strain elh, from rice peel. We employed two optimization methods to enhance the yield of cellulase. Firstly, we utilized a one-variable-at-a-time (OVAT) approach to evaluate the impact of individual physical and chemical parameters. Subsequently, we employed response surface methodology (RSM) to investigate the interactions among these factors. We heterologously expressed the cellulase encoding gene using a cloning vectorin E. coli DH5α. Moreover, we conducted in silico molecular docking analysis to analyze the interaction between cellulase and carboxymethyl cellulose as a substrate. RESULTS: The bacterial isolate eh1 exhibited an initial cellulase activity of 0.141 ± 0.077 U/ml when cultured in a specific medium, namely Basic Liquid Media (BLM), with rice peel as a substrate. This strain was identified as Bacillus amyloliquefaciens strain elh1 through 16S rRNA sequencing, assigned the accession number OR920278 in GenBank. The optimal incubation time was found to be 72 h of fermentation. Urea was identified as the most suitable nitrogen source, and dextrose as the optimal sugar, resulting in a production increase to 5.04 ± 0.120 U/ml. The peak activity of cellulase reached 14.04 ± 0.42 U/ml utilizing statistical optimization using Response Surface Methodology (RSM). This process comprised an initial screening utilizing the Plackett-Burman design and further refinement employing the BOX -Behnken Design. The gene responsible for cellulase production, egl, was effectively cloned and expressed in E. coli DH5α. The transformed cells exhibited a cellulase activity of 22.3 ± 0.24 U/ml. The egl gene sequence was deposited in GenBank with the accession number PP194445. In silico molecular docking revealed that the two hydroxyl groups of carboxymethyl cellulose bind to the residues of Glu169 inside the binding pocket of the CMCase. This interaction forms two hydrogen bonds, with an affinity score of -5.71. CONCLUSIONS: Optimization of cultural conditions significantly enhances the yield of cellulase enzyme when compared to unoptimized culturing conditions. Additionally, heterologous expression of egl gene showed that the recombinant form of the cellulase is active and that a valid expression system can contribute to a better yield of the enzyme.


Assuntos
Bacillus amyloliquefaciens , Celulase , Clonagem Molecular , Simulação de Acoplamento Molecular , Oryza , Celulase/genética , Celulase/biossíntese , Celulase/metabolismo , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/genética , Oryza/microbiologia , Fermentação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
20.
PLoS One ; 19(7): e0292413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959229

RESUMO

Salmonella infections pose a significant global public health concern due to the substantial expenses associated with monitoring, preventing, and treating the infection. In this study, we explored the core proteome of Salmonella to design a multi-epitope vaccine through Subtractive Proteomics and immunoinformatics approaches. A total of 2395 core proteins were curated from 30 different isolates of Salmonella (strain NZ CP014051 was taken as reference). Utilizing the subtractive proteomics approach on the Salmonella core proteome, Curlin major subunit A (CsgA) was selected as the vaccine candidate. csgA is a conserved gene that is related to biofilm formation. Immunodominant B and T cell epitopes from CsgA were predicted using numerous immunoinformatics tools. T lymphocyte epitopes had adequate population coverage and their corresponding MHC alleles showed significant binding scores after peptide-protein based molecular docking. Afterward, a multi-epitope vaccine was constructed with peptide linkers and Human Beta Defensin-2 (as an adjuvant). The vaccine could be highly antigenic, non-toxic, non-allergic, and have suitable physicochemical properties. Additionally, Molecular Dynamics Simulation and Immune Simulation demonstrated that the vaccine can bind with Toll Like Receptor 4 and elicit a robust immune response. Using in vitro, in vivo, and clinical trials, our findings could yield a Pan-Salmonella vaccine that might provide protection against various Salmonella species.


Assuntos
Biologia Computacional , Epitopos de Linfócito T , Proteômica , Salmonella , Proteômica/métodos , Epitopos de Linfócito T/imunologia , Salmonella/imunologia , Salmonella/genética , Biologia Computacional/métodos , Humanos , Genômica/métodos , Simulação de Acoplamento Molecular , Vacinas contra Salmonella/imunologia , Animais , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Infecções por Salmonella/prevenção & controle , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Epitopos de Linfócito B/imunologia , Imunoinformática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...