Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.577
Filtrar
1.
Nat Commun ; 15(1): 5051, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877024

RESUMO

Type IV pili are filamentous appendages found in most bacteria and archaea, where they can support functions such as surface adhesion, DNA uptake, aggregation, and motility. In most bacteria, PilT-family ATPases disassemble adhesion pili, causing them to rapidly retract and produce twitching motility, important for surface colonization. As archaea do not possess PilT homologs, it was thought that archaeal pili cannot retract and that archaea do not exhibit twitching motility. Here, we use live-cell imaging, automated cell tracking, fluorescence imaging, and genetic manipulation to show that the hyperthermophilic archaeon Sulfolobus acidocaldarius exhibits twitching motility, driven by retractable adhesion (Aap) pili, under physiologically relevant conditions (75 °C, pH 2). Aap pili are thus capable of retraction in the absence of a PilT homolog, suggesting that the ancestral type IV pili in the last universal common ancestor (LUCA) were capable of retraction.


Assuntos
Fímbrias Bacterianas , Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo , Sulfolobus acidocaldarius/fisiologia , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética
2.
Nat Commun ; 15(1): 5050, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877033

RESUMO

Amongst the major types of archaeal filaments, several have been shown to closely resemble bacterial homologues of the Type IV pili (T4P). Within Sulfolobales, member species encode for three types of T4P, namely the archaellum, the UV-inducible pilus system (Ups) and the archaeal adhesive pilus (Aap). Whereas the archaellum functions primarily in swimming motility, and the Ups in UV-induced cell aggregation and DNA-exchange, the Aap plays an important role in adhesion and twitching motility. Here, we present a cryoEM structure of the Aap of the archaeal model organism Sulfolobus acidocaldarius. We identify the component subunit as AapB and find that while its structure follows the canonical T4P blueprint, it adopts three distinct conformations within the pilus. The tri-conformer Aap structure that we describe challenges our current understanding of pilus structure and sheds new light on the principles of twitching motility.


Assuntos
Microscopia Crioeletrônica , Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/metabolismo , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/fisiologia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Fímbrias Bacterianas/ultraestrutura , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/fisiologia , Fímbrias Bacterianas/química , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Modelos Moleculares
3.
Sci Adv ; 10(18): eadl4450, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701202

RESUMO

Caulobacter crescentus Tad (tight adherence) pili, part of the type IV pili family, are crucial for mechanosensing, surface adherence, bacteriophage (phage) adsorption, and cell-cycle regulation. Unlike other type IV pilins, Tad pilins lack the typical globular ß sheet domain responsible for pilus assembly and phage binding. The mechanisms of Tad pilus assembly and its interaction with phage ΦCb5 have been elusive. Using cryo-electron microscopy, we unveiled the Tad pilus assembly mechanism, featuring a unique network of hydrogen bonds at its core. We then identified the Tad pilus binding to the ΦCb5 maturation protein (Mat) through its ß region. Notably, the amino terminus of ΦCb5 Mat is exposed outside the capsid and phage/pilus interface, enabling the attachment of fluorescent and affinity tags. These engineered ΦCb5 virions can be efficiently assembled and purified in Escherichia coli, maintaining infectivity against C. crescentus, which presents promising applications, including RNA delivery and phage display.


Assuntos
Caulobacter crescentus , Fímbrias Bacterianas , Caulobacter crescentus/virologia , Caulobacter crescentus/metabolismo , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Ligação Proteica , Microscopia Crioeletrônica , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fagos RNA/metabolismo , Fagos RNA/química , Modelos Moleculares
4.
mBio ; 15(5): e0069024, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717196

RESUMO

Extracellular cytochrome filaments are proposed to serve as conduits for long-range extracellular electron transfer. The primary functional physiological evidence has been the reported inhibition of Geobacter sulfurreducens Fe(III) oxide reduction when the gene for the filament-forming cytochrome OmcS is deleted. Here we report that the OmcS-deficient strain from that original report reduces Fe(III) oxide as well as the wild-type, as does a triple mutant in which the genes for the other known filament-forming cytochromes were also deleted. The triple cytochrome mutant displayed filaments with the same 3 nm diameter morphology and conductance as those produced by Escherichia coli heterologously expressing the G. sulfurreducens PilA pilin gene. Fe(III) oxide reduction was inhibited when the pilin gene in cytochrome-deficient mutants was modified to yield poorly conductive 3 nm diameter filaments. The results are consistent with the concept that 3 nm diameter electrically conductive pili (e-pili) are required for G. sulfurreducens long-range extracellular electron transfer. In contrast, rigorous physiological functional evidence is lacking for cytochrome filaments serving as conduits for long-range electron transport. IMPORTANCE: Unraveling microbial extracellular electron transfer mechanisms has profound implications for environmental processes and advancing biological applications. This study on Geobacter sulfurreducens challenges prevailing beliefs on cytochrome filaments as crucial components thought to facilitate long-range electron transport. The discovery of an OmcS-deficient strain's unexpected effectiveness in Fe(III) oxide reduction prompted a reevaluation of the key conduits for extracellular electron transfer. By exploring the impact of genetic modifications on G. sulfurreducens' performance, this research sheds light on the importance of 3-nm diameter electrically conductive pili in Fe(III) oxide reduction. Reassessing these mechanisms is essential for uncovering the true drivers of extracellular electron transfer in microbial systems, offering insights that could revolutionize applications across diverse fields.


Assuntos
Citocromos , Compostos Férricos , Geobacter , Oxirredução , Transporte de Elétrons , Geobacter/genética , Geobacter/metabolismo , Citocromos/metabolismo , Citocromos/genética , Compostos Férricos/metabolismo , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo
5.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791440

RESUMO

The pil gene cluster for Type IV pilus (Tfp) biosynthesis is commonly present and highly conserved in Streptococcus sanguinis. Nevertheless, Tfp-mediated twitching motility is less common among strains, and the factors determining twitching activity are not fully understood. Here, we analyzed the functions of three major pilin proteins (PilA1, PilA2, and PilA3) in the assembly and activity of Tfp in motile S. sanguinis CGMH010. Using various recombinant pilA deletion strains, we found that Tfp composed of different PilA proteins varied morphologically and functionally. Among the three PilA proteins, PilA1 was most critical in the assembly of twitching-active Tfp, and recombinant strains expressing motility generated more structured biofilms under constant shearing forces compared to the non-motile recombinant strains. Although PilA1 and PilA3 shared 94% identity, PilA3 could not compensate for the loss of PilA1, suggesting that the nature of PilA proteins plays an essential role in twitching activity. The single deletion of individual pilA genes had little effect on the invasion of host endothelia by S. sanguinis CGMH010. In contrast, the deletion of all three pilA genes or pilT, encoding the retraction ATPase, abolished Tfp-mediated invasion. Tfp- and PilT-dependent invasion were also detected in the non-motile S. sanguinis SK36, and thus, the retraction of Tfp, but not active twitching, was found to be essential for invasion.


Assuntos
Biofilmes , Proteínas de Fímbrias , Fímbrias Bacterianas , Streptococcus sanguis , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética , Streptococcus sanguis/metabolismo , Streptococcus sanguis/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
6.
mBio ; 15(6): e0061624, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38771052

RESUMO

Pseudomonas aeruginosa is one of the most common nosocomial pathogens worldwide, known for its virulence, drug resistance, and elaborate sensor-response network. The primary challenge encountered by pathogens during the initial stages of infection is the immune clearance arising from the host. The resident macrophages of barrier organs serve as the frontline defense against these pathogens. Central to our understanding is the mechanism by which bacteria modify their behavior to circumvent macrophage-mediated clearance, ensuring their persistence and colonization. To successfully evade macrophage-mediated phagocytosis, bacteria must possess an adaptive response mechanism. Two-component systems provide bacteria the agility to navigate diverse environmental challenges, translating external stimuli into cellular adaptive responses. Here, we report that the well-documented histidine kinase, LadS, coupled to a cognate two-component response regulator, PA0034, governs the expression of a vital adhesin called chaperone-usher pathway pilus cupA. The LadS/PA0034 system is susceptible to interference from the reactive oxygen species likely to be produced by macrophages and further lead to a poor adhesive phenotype with scantily cupA pilus, impairing the phagocytosis efficiency of macrophages during acute infection. This dynamic underscores the intriguing interplay: as macrophages deploy reactive oxygen species to combat bacterial invasion, the bacteria recalibrate their exterior to elude these defenses. IMPORTANCE: The notoriety of Pseudomonas aeruginosa is underscored by its virulence, drug resistance, and elaborate sensor-response network. Yet, the mechanisms by which P. aeruginosa maneuvers to escape phagocytosis during acute infections remain elusive. This study pinpoints a two-component response regulator, PA0034, coupled with the histidine kinase LadS, and responds to macrophage-derived reactive oxygen species. The macrophage-derived reactive oxygen species can impair the LadS/PA0034 system, resulting in reduced expression of cupA pilus in the exterior of P. aeruginosa. Since the cupA pilus is an important adhesin of P. aeruginosa, its deficiency reduces bacterial adhesion and changes their behavior to adopt a planktonic lifestyle, subsequently inhibiting the phagocytosis of macrophages by interfering with bacterial adhesion. Briefly, reactive oxygen species may act as environmental cues for the LadS/PA0034 system. Upon recognition, P. aeruginosa may transition to a poorly adhesive state, efficiently avoiding engulfment by macrophages.


Assuntos
Macrófagos , Fagocitose , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/metabolismo , Macrófagos/microbiologia , Macrófagos/imunologia , Camundongos , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/imunologia , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Histidina Quinase/metabolismo , Histidina Quinase/genética , Humanos , Células RAW 264.7
7.
Food Microbiol ; 121: 104519, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637081

RESUMO

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Assuntos
Manose , Salmonella typhimurium , Salmonella typhimurium/genética , Manose/metabolismo , Spinacia oleracea , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Adesinas Bacterianas/genética , Aderência Bacteriana/genética
8.
Nat Commun ; 15(1): 3032, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589417

RESUMO

Type 1 pili are important virulence factors of uropathogenic Escherichia coli that mediate bacterial attachment to epithelial cells in the urinary tract. The pilus rod is comprised of thousands of copies of the main structural subunit FimA and is assembled in vivo by the assembly platform FimD. Although type 1 pilus rods can self-assemble from FimA in vitro, this reaction is slower and produces structures with lower kinetic stability against denaturants compared to in vivo-assembled rods. Our study reveals that FimD-catalysed in vitro-assembled type 1 pilus rods attain a similar stability as pilus rods assembled in vivo. Employing structural, biophysical and biochemical analyses, we show that in vitro assembly reactions lacking FimD produce pilus rods with structural defects, reducing their stability against dissociation. Overall, our results indicate that FimD is not only required for the catalysis of pilus assembly, but also to control the assembly of the most stable quaternary structure.


Assuntos
Proteínas de Escherichia coli , Proteínas de Fímbrias , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Fímbrias Bacterianas/química
9.
Science ; 384(6691): eadl0635, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574145

RESUMO

The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen Pseudomonas aeruginosa. The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence. Using cryo-electron microscopy, mutagenesis, optical trapping, and Langevin dynamics simulation, we resolved the structure of PP7, T4P, and the PP7/T4P complex and showed that T4P detachment is driven by the affinity between the phage maturation protein and its bound pilin, plus the pilus retraction force and speed, and pilus bending. Pilus detachment may be widespread among other ssRNA phages and their retractile pilus systems and offers new prospects for antibacterial prophylaxis and therapeutics.


Assuntos
Fímbrias Bacterianas , Fagos de Pseudomonas , Pseudomonas aeruginosa , Vírus de RNA , Internalização do Vírus , Humanos , Microscopia Crioeletrônica , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/virologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/virologia , Vírus de RNA/química , Vírus de RNA/fisiologia , Fagos de Pseudomonas/química , Fagos de Pseudomonas/fisiologia , Proteínas Virais/metabolismo
10.
Curr Opin Microbiol ; 79: 102468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579360

RESUMO

Bacteria utilize type IV pili (T4P) to interact with their environment, where they facilitate processes including motility, adherence, and DNA uptake. T4P require multisubunit, membrane-spanning nanomachines for assembly. The tight adherence (Tad) pili are an Archaea-derived T4P subgroup whose machinery exhibits significant mechanistic and architectural differences from bacterial type IVa and IVb pili. Most Tad biosynthetic genes are encoded in a single locus that is widespread in bacteria due to facile acquisition via horizontal gene transfer. These loci experience extensive structural rearrangements, including the acquisition of novel regulatory or biosynthetic genes, which fine-tune their function. This has permitted their integration into many different bacterial lifestyles, including the Caulobacter crescentus cell cycle, Myxococcus xanthus predation, and numerous plant and mammalian pathogens and symbionts.


Assuntos
Fímbrias Bacterianas , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/fisiologia , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiologia , Bactérias/genética , Bactérias/metabolismo , Aderência Bacteriana/genética , Transferência Genética Horizontal , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Myxococcus xanthus/genética , Myxococcus xanthus/fisiologia , Myxococcus xanthus/metabolismo
11.
mBio ; 15(5): e0069324, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587426

RESUMO

Among genes present in all group A streptococci (GAS), those encoding M-fibril and T-pilus proteins display the highest levels of sequence diversity, giving rise to the two primary serological typing schemes historically used to define strain. A new genotyping scheme for the pilin adhesin and backbone genes is developed and, when combined with emm typing, provides an account of the global GAS strain population. Cluster analysis based on nucleotide sequence similarity assigns most T-serotypes to discrete pilin backbone sequence clusters, yet the established T-types correspond to only half the clusters. The major pilin adhesin and backbone sequence clusters yield 98 unique combinations, defined as "pilin types." Numerous horizontal transfer events that involve pilin or emm genes generate extensive antigenic and functional diversity on the bacterial cell surface and lead to the emergence of new strains. Inferred pilin genotypes applied to a meta-analysis of global population-based collections of pharyngitis and impetigo isolates reveal highly significant associations between pilin genotypes and GAS infection at distinct ecological niches, consistent with a role for pilin gene products in adaptive evolution. Integration of emm and pilin typing into open-access online tools (pubmlst.org) ensures broad utility for end-users wanting to determine the architecture of M-fibril and T-pilus genes from genome assemblies.IMPORTANCEPrecision in defining the variant forms of infectious agents is critical to understanding their population biology and the epidemiology of associated diseases. Group A Streptococcus (GAS) is a global pathogen that causes a wide range of diseases and displays a highly diverse cell surface due to the antigenic heterogeneity of M-fibril and T-pilus proteins which also act as virulence factors of varied functions. emm genotyping is well-established and highly utilized, but there is no counterpart for pilin genes. A global GAS collection provides the basis for a comprehensive pilin typing scheme, and online tools for determining emm and pilin genotypes are developed. Application of these tools reveals the expansion of structural-functional diversity among GAS via horizontal gene transfer, as evidenced by unique combinations of surface protein genes. Pilin and emm genotype correlations with superficial throat vs skin infection provide new insights on the molecular determinants underlying key ecological and epidemiological trends.


Assuntos
Variação Genética , Genótipo , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/classificação , Humanos , Recombinação Genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Fímbrias/genética , Transferência Genética Horizontal , Antígenos de Bactérias/genética , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/epidemiologia , Impetigo/microbiologia , Impetigo/epidemiologia , Faringite/microbiologia , Fímbrias Bacterianas/genética , Proteínas de Transporte
12.
Sci Total Environ ; 927: 172242, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582122

RESUMO

Bacterial adhesion plays a vital role in forming and shaping the structure of electroactive biofilms that are essential for the performance of bioelectrochemical systems (BESs). Type IV pili are known to mediate cell adhesion in many Gram-negative bacteria, but the mechanism of pili-mediated cell adhesion of Geobacter species on anode surface remains unclear. Herein, a minor pilin PilV2 was found to be essential for cell adhesion ability of Geobacter sulfurreducens since the lack of pilV2 gene depressed the cell adhesion capability by 81.2% in microplate and the anodic biofilm density by 23.1 % at -0.1 V and 37.7 % at -0.3 V in BESs. The less cohesiveness of mutant biofilms increased the charge transfer resistance and biofilm resistance, which correspondingly lowered current generation of the pilV2-deficient strain by up to 63.2 % compared with that of the wild-type strain in BESs. The deletion of pilV2 posed an insignificant effect on the production of extracellular polysaccharides, pili, extracellular cytochromes and electron shuttles that are involved in biofilm formation or extracellular electron transfer (EET) process. This study demonstrated the significance of pilV2 gene in cell adhesion and biofilm formation of G. sulfurreducens, as well as the importance of pili-mediated adhesion for EET of electroactive biofilm.


Assuntos
Aderência Bacteriana , Biofilmes , Proteínas de Fímbrias , Geobacter , Geobacter/fisiologia , Geobacter/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Fímbrias Bacterianas/metabolismo , Fontes de Energia Bioelétrica
13.
PLoS Genet ; 20(3): e1011088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437248

RESUMO

Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.


Assuntos
Fator F , Sistemas de Secreção Tipo IV , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/metabolismo , Proteínas de Fímbrias/genética , Plasmídeos/genética , DNA Bacteriano , Proteínas de Bactérias/metabolismo
14.
J Microbiol Biotechnol ; 34(3): 527-537, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38346803

RESUMO

Pilins are protein subunits of pili. The pilins of type IV pili (T4P) in pathogenic bacteria are well characterized, but anything is known about the T4P proteins in acidophilic chemolithoautotrophic microorganisms such as the genus Acidithiobacillus. The interest in T4P of A. thiooxidans is because of their possible role in cell recruitment and bacterial aggregation on the surface of minerals during biooxidation of sulfide minerals. In this study we present a successful ad hoc methodology for the heterologous expression and purification of extracellular proteins such as the minor pilin PilV of the T4P of A. thiooxidans, a pilin exposed to extreme conditions of acidity and high oxidation-reduction potentials, and that interact with metal sulfides in an environment rich in dissolved minerals. Once obtained, the model structure of A. thiooxidans PilV revealed the core basic architecture of T4P pilins. Because of the acidophilic condition, we carried out in silico characterization of the protonation status of acidic and basic residues of PilV in order to calculate the ionization state at specific pH values and evaluated their pH stability. Further biophysical characterization was done using UV-visible and fluorescence spectroscopy and the results showed that PilV remains soluble and stable even after exposure to significant changes of pH. PilV has a unique amino acid composition that exhibits acid stability, with significant biotechnology implications such as biooxidation of sulfide minerals. The biophysics profiles of PilV open new paradigms about resilient proteins and stimulate the study of other pilins from extremophiles.


Assuntos
Acidithiobacillus thiooxidans , Proteínas de Fímbrias , Proteínas de Fímbrias/genética , Acidithiobacillus thiooxidans/metabolismo , Fímbrias Bacterianas , Sulfetos/metabolismo , Minerais/metabolismo
15.
Clin Microbiol Infect ; 30(5): 683.e1-683.e3, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38310999

RESUMO

OBJECTIVES: In Finland, whole cell pertussis vaccine (wP) was introduced in 1952 and was replaced by acellular pertussis vaccine (aP) without fimbrial (FIM) antigen in 2005. We aimed to analyse the changes in serotypes of circulating Bordetella pertussis before and after acellular vaccination and to explore the relationship between biofilm formation and serotype diversity after the introduction of aP vaccine. METHODS: Serotyping of 1399 B. pertussis isolates collected at the Finnish National Reference Laboratory for Pertussis and Diphtheria in Turku, Finland, from 1974 to 2023 was performed by slide agglutination or indirect ELISA. Of 278 isolates collected after 2005, 53 were selected, genotyped for fim3 and fim2 alleles, and tested for biofilm formation. The selection criteria included maintaining a relatively equal distribution of isolates per time interval, ensuring approximately a 50:50 ratio of FIM2 (N = 26) and FIM3 (N = 27) serotypes. The reference strain Tohama I was used as a control. RESULTS: During the wP era, the majority of circulating B. pertussis exhibited the FIM2 serotype. However, FIM3 strains have appeared since 1999 and become prevalent. After the implementation of aP vaccines, the distribution of serotypes has exhibited substantial variability. FIM3 isolates displayed an enhanced biofilm formation compared to FIM2 isolates (Geometric mean value (95% CI): 0.90 (0.79-1.03) vs. 0.75 (0.65-0.85); p < 0.05). Of the 27 FIM3 isolates, 8 harboured fim3-1 and 19 fim3-2 alleles. FIM3 isolates with fim3-2 allele were significantly associated with increased biofilm formation when compared to those with fim3-1 (1.07 (0.96-1.19) vs. 0.61 (0.52-0.72); p < 0.0001). CONCLUSION: Following the implementation of aP vaccines, the distribution of serotypes in Finland has exhibited substantial variability. FIM3 isolates with the fim3-2 allele displayed an enhanced biofilm formation capability compared to FIM2 isolates.


Assuntos
Antígenos de Bactérias , Biofilmes , Bordetella pertussis , Sorogrupo , Fatores de Virulência de Bordetella , Coqueluche , Biofilmes/crescimento & desenvolvimento , Finlândia/epidemiologia , Bordetella pertussis/genética , Bordetella pertussis/classificação , Bordetella pertussis/imunologia , Bordetella pertussis/isolamento & purificação , Humanos , Coqueluche/microbiologia , Coqueluche/epidemiologia , Coqueluche/prevenção & controle , Vacina contra Coqueluche/imunologia , Vacina contra Coqueluche/administração & dosagem , Vacinas Acelulares/imunologia , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/imunologia , Sorotipagem , Genótipo , Pré-Escolar , Criança , Lactente , Vacinação
16.
mBio ; 15(1): e0266723, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38095871

RESUMO

IMPORTANCE: Type 4 filaments (T4F) are nanomachines ubiquitous in prokaryotes, centered on filamentous polymers of type 4 pilins. T4F are exceptionally versatile and widespread virulence factors in bacterial pathogens. The mechanisms of filament assembly and the many functions they facilitate remain poorly understood because of the complexity of T4F machineries. This hinders the development of anti-T4F drugs. The significance of our research lies in characterizing the simplest known T4F-the Com pilus that mediates DNA uptake in competent monoderm bacteria-and showing that four protein components universally conserved in T4F are sufficient for filament assembly. The Com pilus becomes a model for elucidating the mechanisms of T4F assembly.


Assuntos
Fímbrias Bacterianas , Streptococcus sanguis , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Bactérias/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , DNA/metabolismo
17.
Int J Biol Macromol ; 257(Pt 2): 127527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37866558

RESUMO

Adhesion to gastrointestinal tract is crucial for bifidobacteria to exert their probiotic effects. Our previous work found that bile salts significantly enhance the adhesion ability of Bifidobacterium longum BBMN68 to HT-29 cells. In this study, trypsin-shaving and LC-MS/MS-based surface proteomics were employed to identify surface proteins involved in bile stress response. Among the 829 differentially expressed proteins, 56 up-regulated proteins with a fold change >1.5 were subjected to further analysis. Notably, the minor pilin subunit FimB was 4.98-fold up-regulated in response to bile stress. In silico analysis and RT-PCR confirmed that gene fimB, fimA and srtC were co-transcribed and contributed to the biosynthesis of sortase-dependent pili Pil1. Moreover, scanning electron microscopy and immunogold electron microscopy assays showed increased abundance and length of Pil1 on BBMN68 under bile stress. As the major pilin subunit FimA serves as adhesion component of Pil1, an inhibition assay using anti-FimA antibodies further confirmed the critical role of Pil1 in mediating the adhesion of BBMN68 to HT-29 cells under bile stress. Our findings suggest that the up-regulation of Pil1 in response to bile stress enhances the adhesion of BBMN68 to intestinal epithelial cells, highlighting a novel mechanism of gut persistence in B. longum strains.


Assuntos
Bifidobacterium longum , Humanos , Bifidobacterium longum/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/farmacologia , Bile , Regulação para Cima , Células HT29 , Cromatografia Líquida , Espectrometria de Massas em Tandem
18.
Int Immunopharmacol ; 125(Pt B): 111197, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951200

RESUMO

For protection against Pseudomonas aeruginosa strains, a number of vaccine candidates have been introduced thus far. However, despite significant attempts in recent years, there are currently no effective immunogenic Bacteria components against this pathogen on the market. P. aeruginosa encoding a number of different virulence characteristics, as well as the rapid growth in multiple drug-resistant forms, has raised numerous health issues throughout the world. This pathogen expresses three different subtypes of T4P, including IVa, IVb, and Tad which are involved in various cellular processes. Highly virulent strains of P. aeruginosa can encode well-conserved PAPI-1 associated PilS2 pilus. Designing an efficient pili-based immunotherapy approach targeting P. aeruginosa pilus has remained controversial due to the variability heterogeneousness and hidden well-preserved binding site of T4aP and no approved human study is commercially based on IVa pilin. In this investigation, for the first time, through analytical immunoinformatics, we designed an effective chimeric PilS2 immunogen against numerous clinically important P. aeruginosa strains. Through active immunization against the extremely conserved region of the chimeric PilS2 pilin, we showed that PilS2 chimeric pilin whether administered alone or formulated with alum as an adjuvant could substantially stimulate humoral immunological responses in BALB/c mice. Based on these findings, we conclude that PilS2 pilin is therapeutically effective against a variety of highly virulent strains of P. aeruginosa and can act as a new immunogen for more research towards the creation of efficient immunotherapy techniques against the P. aeruginosa as a dexterous pathogen.


Assuntos
Proteínas de Fímbrias , Pseudomonas aeruginosa , Humanos , Animais , Camundongos , Proteínas de Fímbrias/genética , Vacinação , Imunoterapia , Adjuvantes Imunológicos , Camundongos Endogâmicos BALB C
19.
Indian J Med Microbiol ; 46: 100417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37945109

RESUMO

PURPOSE: To detect the presence of fimH and iss type 1, 2 and 3 genes in uropathogenic Escherichia coli (UPEC) isolates recovered from patients coming to the out patient department (OPD) of our hospital. METHODS: E. coli isolates recovered from patients who had symptoms of urinary tract infection (UTI) were processed for the presence of fimH and iss genes. DNA was extracted using an in house method after which conventional PCR using forward and reverse primers targeting the four genes was carried out. The amplified products were electrophoresed and visualized in a gel documentation imager. Relevant demographic details of the patients were recorded on a pre-designed pro-forma and antimicrobial susceptibility testing of the isolates was done by disc diffusion method. RESULTS: fimH was present in 87.5% of UPEC isolates whereas iss type 1 was seen in 7.3%, type 2 in 4.2% and iss type 3 in 71.9% isolates. Age of the patients ranged from 3 months to 82 â€‹yrs (mean 43.5 SD â€‹± â€‹18.20). UTI was more common in females (60.2%) as compared to males patients (39.8%). Dysuria (66.7%) was the most common symptom in the studied subjects and diabetes mellitus (42.6%) the most common co-morbidity. A total of 56.5% patients gave a history of prior antibiotic intake. The UPEC isolates were resistant to most of the antibiotics tested. However all the isolates were sensitive to polymyxin B and colistin. Fosfomycin resistance was seen in 9.5% of the UPEC isolates harbouring fimH gene. CONCLUSION: This is the first study that highlights the presence of iss type 3 gene in UPEC isolates along with the fimH and iss type 1 and 2 genes. The results of this study can serve as a stepping stone for future in depth research into the significance of the iss genes in causing UTI.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Masculino , Feminino , Humanos , Lactente , Escherichia coli Uropatogênica/genética , Virulência/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções Urinárias/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Índia , Fatores de Virulência/genética , Adesinas de Escherichia coli/genética , Proteínas de Fímbrias/genética
20.
Nat Commun ; 14(1): 7718, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001074

RESUMO

Adhesive type 1 pili from uropathogenic Escherichia coli strains are filamentous, supramolecular protein complexes consisting of a short tip fibrillum and a long, helical rod formed by up to several thousand copies of the major pilus subunit FimA. Here, we reconstituted the entire type 1 pilus rod assembly reaction in vitro, using all constituent protein subunits in the presence of the assembly platform FimD, and identified the so-far uncharacterized subunit FimI as an irreversible assembly terminator. We provide a complete, quantitative model of pilus rod assembly kinetics based on the measured rate constants of FimD-catalyzed subunit incorporation. The model reliably predicts the length distribution of assembled pilus rods as a function of the ratio between FimI and the main pilus subunit FimA and is fully consistent with the length distribution of membrane-anchored pili assembled in vivo. The results show that the natural length distribution of adhesive pili formed via the chaperone-usher pathway results from a stochastic chain termination reaction. In addition, we demonstrate that FimI contributes to anchoring the pilus to the outer membrane and report the crystal structures of (i) FimI in complex with the assembly chaperone FimC, (ii) the FimI-FimC complex bound to the N-terminal domain of FimD, and (iii) a ternary complex between FimI, FimA and FimC that provides structural insights on pilus assembly termination and pilus anchoring by FimI.


Assuntos
Proteínas de Escherichia coli , Fímbrias Bacterianas , Fímbrias Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/química , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...