Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transcription ; 10(3): 147-156, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31135261

RESUMO

Transcriptional activation by PML-RARα, an acute promyelocytic leukemia-related oncofusion protein, requires pharmacological concentrations of all-trans retinoic acid (ATRA). However, the mechanism by which the liganded PML-RARα complex leads to the formation of the preinitiation complex has been unidentified. Here we demonstrate that the Mediator subunit MED1 plays an important role in the ATRA-dependent activation of the PML-RARα-bound promoter. Luciferase reporter assays showed that PML-RARα induced significant transcription at pharmacological doses (1 µM) of ATRA; however, this was submaximal and equivalent to the level of transcription driven by intact RARα at physiological doses (1 nM) of ATRA. Transcription depended upon the interaction of PML-RARα with the two LxxLL nuclear receptor recognition motifs of MED1, and LxxLL→LxxAA mutations led to minimal transcription. Mechanistically, MED1 interacted ATRA-dependently with the RARα portion of PML-RARα through the two LxxLL motifs of MED1. These results suggest that PML-RARα initiates ATRA-induced transcription through its interaction with MED1.


Assuntos
Subunidade 1 do Complexo Mediador/metabolismo , Proteínas de Fusão Oncogênica/agonistas , Proteínas de Fusão Oncogênica/metabolismo , Ativação Transcricional/efeitos dos fármacos , Tretinoína/farmacologia , Humanos , Subunidade 1 do Complexo Mediador/química , Ligação Proteica/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-15379724

RESUMO

Follicular thyroid carcinoma (FTC) accounts for approximately 20% of all thyroid cancers, and up to 40% of the deaths associated with this disease. Current treatment approaches include surgery, followed by radioactive iodine therapy. However, a significant proportion of locally advanced and metastatic FTC fails to concentrate iodine. Because traditional chemotherapeutic agents have not been shown to alter outcomes in this disease, novel therapeutic strategies are needed for advanced disease. Recently, a genomic rearrangement has been identified in up to 50% of FTC, involving a translocation event between chromosome regions 3p25 and 2q13. This translocation fuses the thyroid-specific transcription factor PAX8 gene with the PPARgamma gene, a ubiquitously expressed transcription factor. We have confirmed that this Pax8/PPARgamma fusion gene (designated PPFP) is an oncogene, which accelerates cell growth, reduces rates of apoptosis and permits anchorage independent and contact uninhibited growth of a thyroid cell line. The action of PPFP arises, at least in part, through its activity as a dominant-negative inhibitor of the wild-type PPARgamma transcription factor. Although the mechanism by which PPFP impairs PPARgamma activity remains unknown at this time, it is likely to be mediated by competition for the genomic PPARgamma response elements, the endogenous ligand, or various cofactors, including the Retinoid X Receptor (RXR). Consequently, modulation of PPFP activity might be possible through the use of PPARgamma agonists, RXR-agonists, or specific modulators of PPFP itself. Alternatively, modulation of several down-stream regulatory pathways may become possible, as the consequences of PPARgamma inhibition become better known. PPFP represents a potential novel target for the management of advanced FTC.


Assuntos
Adenocarcinoma Folicular/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Sistemas de Liberação de Medicamentos , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , PPAR gama/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Transativadores/metabolismo , Adenocarcinoma Folicular/metabolismo , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Sistemas de Liberação de Medicamentos/métodos , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas de Fusão Oncogênica/agonistas , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Fator de Transcrição PAX8 , PPAR gama/agonistas , Fatores de Transcrição Box Pareados , Neoplasias da Glândula Tireoide/metabolismo , Transativadores/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...