Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936777

RESUMO

Chromatin plays a key role in regulating gene expression programs necessary for the orderly progress of development and for preventing changes in cell identity that can lead to disease. The high mobility group N (HMGN) is a family of nucleosome binding proteins that preferentially binds to chromatin regulatory sites including enhancers and promoters. HMGN proteins are ubiquitously expressed in all vertebrate cells potentially affecting chromatin function and epigenetic regulation in multiple cell types. Here, we review studies aimed at elucidating the biological function of HMGN proteins, focusing on their possible role in vertebrate development and the etiology of disease. The data indicate that changes in HMGN levels lead to cell type-specific phenotypes, suggesting that HMGN optimize epigenetic processes necessary for maintaining cell identity and for proper execution of specific cellular functions. This manuscript contains tables that can be used as a comprehensive resource for all the English written manuscripts describing research aimed at elucidating the biological function of the HMGN protein family.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/fisiologia , Animais , Cromatina , Doença , Proteínas HMGN , Proteínas de Grupo de Alta Mobilidade/classificação , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Camundongos , Regiões Promotoras Genéticas
2.
Genome ; 48(2): 181-6, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15838539

RESUMO

The Sox-gene family represents an ancient group of transcription factors involved in numerous developmental processes and sex determination in vertebrates. SOX proteins are characterized by a conserved high mobility group (HMG)-box domain, which is responsible for DNA binding and bending. We studied Sox genes in sturgeon, one of the most primitive groups of fishes characterized by a high chromosome number. Male and female genomes were screened for Sox genes using highly degenerate primers that amplified a broad range of HMG boxes. A total of 102 clones, representing 22 different sequences coding for 8 Sox genes, was detected and classified according to their orthologues. Sox2, Sox3, Sox4, Sox9, Sox11, Sox17, Sox19, and Sox21 were found in sturgeon; these genes represent Sox groups B, C, E, and F. In a phylogenetic analysis (neighbor-joining, maximum likelihood, maximum parsimony), these genes clustered with their mouse orthologues. In the case of Sox4, Sox17, and Sox21, we found evidence of gene duplication.


Assuntos
Peixes/genética , Proteínas de Grupo de Alta Mobilidade/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Feminino , Duplicação Gênica , Genoma , Domínios HMG-Box/genética , Proteínas de Grupo de Alta Mobilidade/classificação , Masculino , Camundongos , Dados de Sequência Molecular , Filogenia , Processos de Determinação Sexual , Fatores de Transcrição/classificação
3.
Eukaryot Cell ; 4(2): 379-91, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15701800

RESUMO

In the smut fungus Ustilago maydis, the pheromone signal is transmitted via a mitogen-activated protein kinase module to the high-mobility-group (HMG) domain transcription factor Prf1, leading to its activation. This triggers sexual and pathogenic development since Prf1 binds to the PRE boxes located in the promoters of the a and b mating type genes. Here, we present the characterization of rop1 and hmg3, encoding two additional sequence-specific HMG domain proteins. While hmg3 mutants are slightly impaired in mating and do form conjugation hyphae, rop1 deletion strains display a severe mating and filamentation defect and do not respond to pheromone stimulation. In particular, rop1 is essential for pheromone-induced gene expression in axenic culture. Constitutive expression of prf1 fully complements the mating defect of rop1 mutants, indicating that rop1 is required for prf1 gene expression. Indeed, we could show that Rop1 binds directly to specific elements in the prf1 promoter. Surprisingly, on the plant surface, rop1 deletion strains do form conjugation hyphae and express sufficient amounts of prf1 to cause full pathogenicity. This indicates the involvement of additional components in the regulation of prf1 gene expression during pathogenic growth.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ustilago/fisiologia , Proteínas Fúngicas/genética , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Proteínas de Grupo de Alta Mobilidade/classificação , Proteínas de Grupo de Alta Mobilidade/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Feromônios/metabolismo , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Ustilago/citologia , Ustilago/genética , Ustilago/patogenicidade
4.
Front Biosci ; 9: 1530-9, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-14977564

RESUMO

In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway controls a cell migration whereas noncanonical Wnt pathways control the polarities of individual cells. Despite the differences in the identities and interactions among canonical and noncanonical Wnt pathway components, as well as the processes they regulate, almost all C. elegans Wnt pathways involve the sole Tcf homolog, POP-1. Intriguingly, POP-1 is asymmetrically distributed between the daughters of an asymmetric cell division, with the anterior sister cell usually having a higher level of nuclear POP-1 than its posterior sister. At some divisions, asymmetric distribution of POP-1 is controlled by noncanonical Wnt signaling, but at others the asymmetry is generated independently. Recent experiments suggest that despite this elaborate anterior-posterior POP-1 asymmetry, the quantity of POP-1 protein may have less to do with the subsequent determination of fate than does the quality of the POP-1 protein in the cell. In this review, we will embark on a quest to understand Quality (1), at least from the standpoint of the effect POP/Tcf quality has on the control of cell polarity in C. elegans.


Assuntos
Caenorhabditis elegans/citologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas de Peixe-Zebra , Animais , Blastômeros/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Polaridade Celular , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/classificação , Proteínas de Grupo de Alta Mobilidade/classificação , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Quinases/fisiologia , Proteínas Repressoras/classificação , Transdução de Sinais , Linfócitos T/citologia , Fatores de Transcrição/classificação , Proteínas Wnt
5.
Mol Reprod Dev ; 66(3): 211-7, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14502599

RESUMO

The Sox9 gene encodes a transcription factor that is critical for testis determination and chondrogenesis in vertebrates. Mutations in human SOX9 cause campomelic dysplasia, a dominant skeletal dysmorphology syndrome often associated with male to female sex reversal. Here we show that the Sox9a gene was duplicated during evolution of the rice field eel, Monopterus albus, a freshwater fish which undergoes natural sex reversal from female to male during its life, and has a haploid genome size (0.6-0.8 pg) that is among the smallest of the vertebrates. The duplicated copies of the gene (named Sox9al and Sox9a2) fit within the Sox9 clade of vertebrates, especially in the Sox9a subfamily, not in the Sox9b subfamily. They have similar structures as revealed by both genomic and cDNA analysis. Furthermore, both Sox9al and Sox9a2 are expressed in testis, ovary, and ovotestis; and specifically in the outer layer (mainly gonocytes) of gonadal epithelium with bipotential capacity to form testis or ovary, suggesting that they have similar roles in gonadal differentiation during sex reversal in this species. The closely related gene structure and expression patterns of the two sox9a genes in the rice field eel also suggest that they arose in recent gene duplication events during evolution of this fish lineage.


Assuntos
Enguias/crescimento & desenvolvimento , Gônadas/crescimento & desenvolvimento , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Diferenciação Sexual/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Enguias/anatomia & histologia , Enguias/genética , Feminino , Duplicação Gênica , Gônadas/citologia , Gônadas/metabolismo , Proteínas de Grupo de Alta Mobilidade/classificação , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Filogenia , Estrutura Terciária de Proteína , Fatores de Transcrição SOX9 , Alinhamento de Sequência , Fatores de Transcrição/classificação
7.
Genes Dev ; 15(12): 1493-505, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11410530

RESUMO

Early endoderm formation in zebrafish requires at least three loci that function downstream of Nodal signaling but upstream of the early endodermal marker sox17: bonnie and clyde (bon), faust (fau), and casanova (cas). cas mutants show the most severe phenotype as they do not form any gut tissue and lack all sox17 expression. Activation of the Nodal signaling pathway or overexpression of Bon or Fau/Gata5 fails to restore any sox17 expression in cas mutants, demonstrating that cas plays a central role in endoderm formation. Here we show that cas encodes a novel member of the Sox family of transcription factors. Initial cas expression appears in the dorsal yolk syncytial layer (YSL) in the early blastula, and is independent of Nodal signaling. In contrast, endodermal expression of cas, which begins in the late blastula, is regulated by Nodal signaling. Cas is a potent inducer of sox17 expression in wild-type embryos as well as in bon and fau/gata5 mutants. Cas is also a potent inducer of sox17 expression in MZoep mutants, which cannot respond to Nodal signaling. In addition, ectopic expression of cas in presumptive mesodermal cells leads to their transfating into endoderm. Altogether, these data indicate that Cas is the principal transcriptional effector of Nodal signaling during zebrafish endoderm formation.


Assuntos
Endoderma/fisiologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra , Sequência de Aminoácidos , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição GATA5 , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/classificação , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mesoderma/citologia , Mesoderma/fisiologia , Dados de Sequência Molecular , Ligantes da Sinalização Nodal , Proteínas/genética , Fatores de Transcrição SOX , Fatores de Transcrição SOXF , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética , Peixe-Zebra
9.
J Mol Biol ; 304(2): 135-49, 2000 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-11080451

RESUMO

The high-mobility group (HMG) proteins HMG1, HMG2 and HMG2a are relatively abundant vertebrate DNA-binding and bending proteins that bind with structure specificity, rather than sequence specificity, and appear to play an architectural role in the assembly of nucleoprotein complexes. They have two homologous "HMG-box" DNA-binding domains (which show about 80 % homology) connected by a short basic linker to an acidic carboxy-terminal tail that differs in length between HMG1 and 2. To gain insights into the role of the acidic tail, we examined the DNA-binding properties of HMG1, HMG2b and HMG2a from chicken erythrocytes (corresponding to HMG1, HMG2 and HMG2a in other vertebrates). HMG1, with the longest acidic tail, is less effective than HMG2a and 2b (at a given molar input ratio) in supercoiling relaxed, closed circular DNA, in inducing ligase-mediated circularisation of an 88 bp DNA fragment, and in binding to four-way DNA junctions in a gel-shift assay. Removal of the acidic tail increases the affinity of the HMG boxes for DNA and largely abolishes the differences between the three species. Switching the acidic tail of HMG1 for that of HMG2a or 2b gives hybrid proteins with essentially the same DNA-binding properties as HMG2a, 2b. The length (and possibly sequence) of the acidic tail thus appears to be the dominant factor in mediating the differences in properties between HMG1, 2a and 2b and finely tunes the rather similar DNA-binding properties of the tandem HMG boxes, presumably to fulfill different cellular roles. The tail is essential for structure-selective DNA-binding of the HMG boxes to DNA minicircles in the presence of equimolar linear DNA, and has little effect on the affinity for this already highly distorted DNA ligand, in contrast to binding to linear and four-way junction DNA.


Assuntos
DNA/química , DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/metabolismo , Conformação de Ácido Nucleico , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Ligação Competitiva , Galinhas , DNA/genética , DNA Circular/química , DNA Circular/genética , DNA Circular/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eritrócitos , Proteínas de Grupo de Alta Mobilidade/classificação , Proteínas de Grupo de Alta Mobilidade/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência , Deleção de Sequência/genética , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato
10.
Dev Dyn ; 217(3): 279-92, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10741422

RESUMO

To investigate the role of sox genes in vertebrate development, we have isolated sox11 from zebrafish (Danio rerio). Two distinct classes of sox11-related cDNAs were identified, sox11a and sox11b. The predicted protein sequences shared 75% identity. In a gene phylogeny, both sox11a and sox11b cluster with human, mouse, chick, and Xenopus Sox11, indicating that zebrafish, like Xenopus, has two orthologues of tetrapod Sox11. The work reported here investigates the evolutionary origin of these two gene duplicates and the consequences of their duplication for development. The sox11a and sox11b genes map to linkage groups 17 and 20, respectively, together with other loci whose orthologues are syntenic with human SOX11, suggesting that during the fish lineage, a large chromosome region sharing conserved syntenies with mammals has become duplicated. Studies in mouse and chick have shown that Sox11 is expressed in the central nervous system during development. Expression patterns of zebrafish sox11a and sox11b confirm that they are expressed in the developing nervous system, including the forebrain, midbrain, hindbrain, eyes, and ears from an early stage. Other sites of expression include the fin buds and somites. The two sox genes, sox11a and sox11b, are expressed in both overlapping and distinct sites. Their expression patterns suggest that sox11a and sox11b may share the developmental domains of the single Sox11 gene present in mouse and chick. For example, zebrafish sox11a is expressed in the anterior somites, and zebrafish sox11b is expressed in the posterior somites, but the single Sox11 gene of mouse is expressed in all the somites. Thus, the zebrafish duplicate genes appear to have reciprocally lost expression domains present in the sox11 gene of the last common ancestor of tetrapods and zebrafish. This splitting of the roles of Sox11 between two paralogues suggests that regulatory elements governing the expression of the sox11 gene in the common ancestor of zebrafish and tetrapods may have been reciprocally mutated in the zebrafish gene duplicates. This is consistent with duplicate gene evolution via a duplication-degeneration-complementation process.


Assuntos
Duplicação Gênica , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Xenopus , Proteínas de Peixe-Zebra , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Galinhas , Mapeamento Cromossômico , DNA Complementar , Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/classificação , Humanos , Camundongos , Dados de Sequência Molecular , Filogenia , Fatores de Transcrição SOX , Fatores de Transcrição SOXC , Homologia de Sequência de Aminoácidos , Xenopus , Peixe-Zebra/embriologia
11.
Trends Genet ; 16(4): 182-7, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10729834

RESUMO

The SOX family of high-mobility group (HMG) domain proteins has recently been recognized as a key player in the regulation of embryonic development and in the determination of the cell fate. In the case of certain SOX proteins, they regulate the target genes by being paired off with specific partner factors. This partnering might allow SOX proteins to act in a cell-specific manner, which is key to their role in cell differentiation. The focus of this article is the mechanism of action of SOX proteins, in particular, how SOX proteins specifically pair off with respective partner factors and, as a consequence, select distinct sets of genes as their regulatory targets.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas Nucleares/genética , Animais , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/metabolismo , Proteínas HMGB , Proteínas de Grupo de Alta Mobilidade/classificação , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Proteínas Nucleares/classificação , Proteínas Nucleares/metabolismo , Fatores de Transcrição SOXB1 , Fatores de Transcrição
13.
Nucleic Acids Res ; 27(6): 1409-20, 1999 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10037800

RESUMO

Sox proteins belong to the HMG box superfamily of DNA-binding proteins and are found throughout the animal kingdom. They are involved in the regulation of such diverse developmental processes as germ layer formation, organ development and cell type specifi-cation. Hence, deletion or mutation of Sox proteins often results in developmental defects and congenital disease in humans. Sox proteins perform their function in a complex interplay with other transcription factors in a manner highly dependent on cell type and promoter context. They exhibit a remarkable crosstalk and functional redundancy among each other.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Proteínas Nucleares , Fatores de Transcrição , Proteínas de Ligação a DNA/classificação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/classificação , Cristalino/embriologia , Sistema Nervoso/embriologia , Diferenciação Sexual , Proteína da Região Y Determinante do Sexo
14.
Genomics ; 37(2): 234-7, 1996 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-8921394

RESUMO

We used RT-PCR to detect the expression in mouse molar and incisor tooth germs of 14 of the 19 known members of the Sox family of HMG box-containing transcription factors. These sequences fell into all 6 of the main subdivisions of the Sox family. In general, the relative transcript abundance of the different Sox genes is similar between molar and incisor tooth germs, although 3 low-abundance transcripts were found in only a single tooth type. The expression of Sox genes during tooth development has not been reported previously and further experiments will be required to determine their role in this process.


Assuntos
Proteínas de Grupo de Alta Mobilidade/genética , Dente/metabolismo , Animais , Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/classificação , Camundongos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Dente/embriologia
16.
Nucleic Acids Res ; 23(9): 1604-13, 1995 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-7784217

RESUMO

The abundant and highly-conserved nucleoproteins comprising the high mobility group-1/2 (HMG-1/2) family contains two homologous basic domains of about 75 amino acids. These basic domains, termed HMG-1 boxes, are highly structured and facilitate HMG-DNA interactions. Many proteins that regulate various cellular functions involving DNA binding and whose target DNA sequences share common structural characteristics have been identified as having an HMG-1 box; these proteins include the RNA polymerase I transcription factor UBF, the mammalian testis-determining factor SRY and the mitochondrial transcription factors ABF2 and mtTF1, among others. The sequences of 121 HMG-1 boxes have been compiled and aligned in accordance with thermodynamic results from homology model building (threading) experiments, basing the alignment on structure rather than by using traditional sequence homology methods. The classification of a representative subset of these proteins was then determined using standard least-squares distance methods. The proteins segregate into two groups, the first consisting of HMG-1/2 proteins and the second consisting of proteins containing the HMG-1 box but which are not canonical HMG proteins. The proteins in the second group further segregate based on their function, their ability to bind specific sequences of DNA, or their ability to recognize discrete non-B-DNA structures. The HMG-1 box provides an excellent example of how a specific protein motif, with slight alteration, can be used to recognize DNA in a variety of functional contexts.


Assuntos
Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/classificação , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Bases de Dados Factuais , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência
17.
Thymus ; 22(2): 67-81, 1993 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8209398

RESUMO

The central theme of this review is the molecular basis for commitment of cells to the T-cell lineage. Principles of transcriptional regulation are illustrated by two examples; the role of GATA-1 during erythroid differentiation and the function of MyoD-like proteins in myogenesis. Several regulatory proteins have been described in the T-cell lineage. Here, we focus attention on the HMG box family of DNA binding proteins. This recently defined family can be divided in two subfamilies: the HMG/UBF and the TCF/SOX group. The first group contains at least two HMG boxes and binds DNA non-specifically, while the other group of proteins has one HMG box and interacts with DNA sequence-specifically. Characteristics of the most prominent members of both subfamilies will be discussed. In particular, we will address the role of HMG box proteins in controlling the expression of T-cell specific proteins during differentiation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Linfócitos T/fisiologia , Sequência de Aminoácidos , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/classificação , Proteínas de Grupo de Alta Mobilidade/classificação , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
18.
Mol Cell Biol ; 11(1): 166-74, 1991 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-1986218

RESUMO

HMG (high-mobility-group protein) B and HMG C are abundant nonhistone chromosomal proteins isolated from Tetrahymena thermophila macronuclei with solubilities, molecular weights, and amino acid compositions like those of vertebrate HMG proteins. Genomic clones encoding each of these proteins have been sequenced. Both are single-copy genes that encode single polyadenylated messages whose amounts are 10 to 15 times greater in growing cells than in starved, nongrowing cells. The derived amino acid sequences of HMG B and HMG C contain a highly conserved sequence, the HMG 1 box, found in vertebrate HMGs 1 and 2, and we speculate that this sequence may represent a novel, previously unrecognized DNA-binding motif in this class of chromosomal proteins. Like HMGs 1 and 2, HMGs B and C contain a high percentage of aromatic amino acids. However, the Tetrahymena HMGs are small, are associated with nucleosome core particles, and can be specifically extracted from macronuclei by elutive intercalation, properties associated with vertebrate HMGs 14 and 17, not HMGs 1 and 2. Thus, it appears that these Tetrahymena proteins have features in common with both of the major subgroups of higher eucaryotic HMG proteins. Surprisingly, a linker histone found exclusively in transcriptionally inactive micronuclei also has several HMG-like characteristics, including the ability to be specifically extracted from nuclei by elutive intercalation and the presence of the HMG 1 box. This finding suggests that at least in T. thermophila, proteins with HMG-like properties are not restricted to regions of transcriptionally active chromatin.


Assuntos
Proteínas de Grupo de Alta Mobilidade/genética , Proteínas Nucleares/genética , Tetrahymena/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Núcleo Celular/ultraestrutura , Cromatina/ultraestrutura , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Genes , Proteínas de Grupo de Alta Mobilidade/classificação , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , RNA Mensageiro/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...