Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.482
Filtrar
1.
Zhonghua Xue Ye Xue Za Zhi ; 45(4): 383-387, 2024 Apr 14.
Artigo em Chinês | MEDLINE | ID: mdl-38951067

RESUMO

Twelve DEK-NUP214 fusion gene-positive patients with acute myeloid leukemia and on allo-HSCT treatment at the Hematology Hospital of the Chinese Academy of Medical Sciences from November 2016 to August 2022 were included in the study, and their clinical data were retrospectively analyzed. The patients comprised five men and seven women with a median age of 34 (16-52) years. At the time of diagnosis, all the patients were positive for the DEK-NUP214 fusion gene. Chromosome karyotyping analysis showed t (6;9) (p23;q34) translocation in 10 patients (two patients did not undergo chromosome karyotyping analysis), FLT3-ITD mutation was detected in 11 patients, and high expression of WT1 was observed in 11 patients. Nine patients had their primary disease in the first complete remission state before transplantation, one patient had no disease remission, and two patients were in a recurrent state. All patients received myeloablative pretreatment, five patients received sibling allogeneic hematopoietic stem cell transplantation, and seven patients received haploid hematopoietic stem cell transplantation. The median number of mononuclear cells in the transplant was 10.87 (7.09-17.89) ×10(8)/kg, and the number of CD34(+) cells was 3.29 (2.53-6.10) ×10(6)/kg. All patients achieved blood reconstruction, with a median time of 14 (10-20) days for neutrophil implantation and 15 (9-27) days for platelet implantation. The 1 year transplant-related mortality rate after transplantation was 21.2%. The cumulative recurrence rates 1 and 3 years after transplantation were 25.0% and 50.0%, respectively. The leukemia free survival rates were (65.6±14.0) % and (65.6±14.0) %, respectively. The overall survival rates were (72.2±13.8) % and (72.2±13.8) %, respectively.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Complexo de Proteínas Formadoras de Poros Nucleares , Transplante Homólogo , Humanos , Masculino , Feminino , Adulto , Transplante de Células-Tronco Hematopoéticas/métodos , Pessoa de Meia-Idade , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Adolescente , Estudos Retrospectivos , Adulto Jovem , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Oncogênicas/genética , Translocação Genética
2.
Front Immunol ; 15: 1402334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007151

RESUMO

Genetic sequencing has revolutionized immunotherapy in colorectal cancer (CRC). Recent clinical trials have revealed a positive response to immunotherapy-based systemic therapies in CRC patient subgroups with microsatellite instability (MSI)-High or DNA polymerase epsilon (POLE) mutation. However, the unsatisfactory response rates was the major limitation in real-world practice of the precision immunotherapy in CRC. Adding photodynamic therapy (PDT) to systemic immunotherapy has showed synergetic anti-tumor effect by modulating tumor microenvironment, while the eligible patient's subgroups which would benefit from this combination remained equivocal. Here we reported a synchronous colorectal cancer patient with MSI-High and POLE mutation who had accelerated response in less than 2 cycles (42 days) of immunotherapy-based systemic therapies after tumor-directed PDT and has remained progression-free by far. This case enlightened the synergetic effect of PDT in immunotherapy-treated CRC patients, with the MSI and POLE-mutation status as predictors of survival benefits.


Assuntos
Neoplasias Colorretais , DNA Polimerase II , Imunoterapia , Instabilidade de Microssatélites , Mutação , Fotoquimioterapia , Proteínas de Ligação a Poli-ADP-Ribose , Humanos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/genética , Fotoquimioterapia/métodos , DNA Polimerase II/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Imunoterapia/métodos , Terapia Combinada , Masculino , Resultado do Tratamento , Neoplasias Primárias Múltiplas/terapia , Neoplasias Primárias Múltiplas/genética , Pessoa de Meia-Idade , Feminino
3.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39007803

RESUMO

Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.


Assuntos
RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Humanos , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Corpos de Processamento/metabolismo , Corpos de Processamento/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Células HeLa , DNA Helicases/metabolismo , DNA Helicases/genética , Células HEK293 , Ligação Proteica , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas Proto-Oncogênicas
4.
Int J Biol Sci ; 20(9): 3393-3411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993566

RESUMO

Chronic prostatitis is one of the most common urologic diseases that troubles young men, with unclear etiology and ineffective treatment approach. Pyroptosis is a novel model of cell death, and its roles in chronic prostatitis are unknown. In this study, P2X7R, NEK7, and GSDMD-NT expression levels were detected in prostate tissues from benign prostate hyperplasia (BPH) patients and experiment autoimmune prostatitis (EAP) mice. P2X7R agonist, antagonist, NLRP3 inhibitor, and disulfiram were used to explore the roles of the P2X7R-NEK7-NLRP3 axis in prostate epithelial cell pyroptosis and chronic prostatitis development. We found that P2X7R, NEK7, and GSDMD-NT were highly expressed in the prostate epithelial cells of BPH patients with prostatic inflammation and EAP mice. Activation of P2X7R exacerbated prostatic inflammation and increased NLRP3 inflammasome component expressions and T helper 17 (Th17) cell proportion. Moreover, P2X7R-mediated potassium efflux promoted NEK7-NLRP3 interaction, and NLRP3 assembly and activation, which caused GSDMD-NT-mediated prostate epithelial cell pyroptosis to exacerbate EAP development. Disulfiram could effectively improve EAP by inhibiting GSDMD-NT-mediated prostate epithelial cell pyroptosis. In conclusion, the P2X7R-NEK7-NLRP3 axis could promote GSDMD-NT-mediated prostate epithelial cell pyroptosis and chronic prostatitis development, and disulfiram may be an effective drug to treat chronic prostatitis.


Assuntos
Células Epiteliais , Quinases Relacionadas a NIMA , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Próstata , Prostatite , Piroptose , Animais , Humanos , Masculino , Camundongos , Doenças Autoimunes/metabolismo , Células Epiteliais/metabolismo , Gasderminas , Camundongos Endogâmicos C57BL , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Próstata/metabolismo , Prostatite/metabolismo , Piroptose/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo
7.
Nat Commun ; 15(1): 5727, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977669

RESUMO

DNA replication and transcription generate DNA supercoiling, which can cause topological stress and intertwining of daughter chromatin fibers, posing challenges to the completion of DNA replication and chromosome segregation. Type II topoisomerases (Top2s) are enzymes that relieve DNA supercoiling and decatenate braided sister chromatids. How Top2 complexes deal with the topological challenges in different chromatin contexts, and whether all chromosomal contexts are subjected equally to torsional stress and require Top2 activity is unknown. Here we show that catalytic inhibition of the Top2 complex in interphase has a profound effect on the stability of heterochromatin and repetitive DNA elements. Mechanistically, we find that catalytically inactive Top2 is trapped around heterochromatin leading to DNA breaks and unresolved catenates, which necessitate the recruitment of the structure specific endonuclease, Ercc1-XPF, in an SLX4- and SUMO-dependent manner. Our data are consistent with a model in which Top2 complex resolves not only catenates between sister chromatids but also inter-chromosomal catenates between clustered repetitive elements.


Assuntos
DNA Topoisomerases Tipo II , Heterocromatina , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , Heterocromatina/metabolismo , Animais , Inibidores da Topoisomerase II/farmacologia , Sequências Repetitivas de Ácido Nucleico/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Replicação do DNA , DNA Super-Helicoidal/metabolismo , DNA Super-Helicoidal/química , Humanos , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , DNA/metabolismo , DNA/química , Interfase
8.
Nat Commun ; 15(1): 6031, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019869

RESUMO

Mutations in the Cockayne Syndrome group B (CSB) gene cause cancer in mice, but premature aging and severe neurodevelopmental defects in humans. CSB, a member of the SWI/SNF family of chromatin remodelers, plays diverse roles in regulating gene expression and transcription-coupled nucleotide excision repair (TC-NER); however, these functions do not explain the distinct phenotypic differences observed between CSB-deficient mice and humans. During investigating Cockayne Syndrome-associated genome instability, we uncover an intrinsic mechanism that involves elongating RNA polymerase II (RNAPII) undergoing transient pauses at internal T-runs where CSB is required to propel RNAPII forward. Consequently, CSB deficiency retards RNAPII elongation in these regions, and when coupled with G-rich sequences upstream, exacerbates genome instability by promoting R-loop formation. These R-loop prone motifs are notably abundant in relatively long genes related to neuronal functions in the human genome, but less prevalent in the mouse genome. These findings provide mechanistic insights into differential impacts of CSB deficiency on mice versus humans and suggest that the manifestation of the Cockayne Syndrome phenotype in humans results from the progressive evolution of mammalian genomes.


Assuntos
Síndrome de Cockayne , DNA Helicases , Enzimas Reparadoras do DNA , Instabilidade Genômica , Proteínas de Ligação a Poli-ADP-Ribose , Estruturas R-Loop , RNA Polimerase II , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , Síndrome de Cockayne/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Animais , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Camundongos , DNA Helicases/metabolismo , DNA Helicases/genética , Estruturas R-Loop/genética , Reparo do DNA , Elongação da Transcrição Genética , Camundongos Knockout
9.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891861

RESUMO

DNA Topoisomerase IIα (Top2A) is a nuclear enzyme that is a cancer drug target, and there is interest in identifying novel sites on the enzyme to inhibit cancer cells more selectively and to reduce off-target toxicity. The C-terminal domain (CTD) is one potential target, but it is an intrinsically disordered domain, which prevents structural analysis. Therefore, we set out to analyze the sequence of Top2A from 105 species using bioinformatic analysis, including the PSICalc algorithm, Shannon entropy analysis, and other approaches. Our results demonstrate that large (10th-order) interdependent clusters are found including non-proximal positions across the major domains of Top2A. Further, CTD-specific clusters of the third, fourth, and fifth order, including positions that had been previously analyzed via mutation and biochemical assays, were identified. Some of these clusters coincided with positions that, when mutated, either increased or decreased relaxation activity. Finally, sites of low Shannon entropy (i.e., low variation in amino acids at a given site) were identified and mapped as key positions in the CTD. Included in the low-entropy sites are phosphorylation sites and charged positions. Together, these results help to build a clearer picture of the critical positions in the CTD and provide potential sites/regions for further analysis.


Assuntos
Biologia Computacional , DNA Topoisomerases Tipo II , Domínios Proteicos , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/química , Biologia Computacional/métodos , Humanos , Entropia , Sequência de Aminoácidos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/química , Fosforilação
10.
Anticancer Res ; 44(7): 2837-2846, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925852

RESUMO

BACKGROUND/AIM: Pulsed electromagnetic field (PEMF) stimulation enhances the efficacy of several anticancer drugs. Doxorubicin is an anticancer drug used to treat various types of cancer, including breast cancer. However, the effect of PEMF stimulation on the efficacy of doxorubicin and the underlying mechanisms remain unclear. Thus, this study aimed to investigate the effect of PEMF stimulation on the anticancer activity of doxorubicin in MDA-MB-231 human breast cancer cells. MATERIALS AND METHODS: MDA-MB-231 cells were seeded and allowed to incubate for 48 h. The cells were treated with doxorubicin, cisplatin, 5-fluorouracil, or paclitaxel for 48 h. Subsequently, the cells were stimulated with a 60-min PEMF session thrice a day (with an interval of 4 h between each session) for 24 or 48 h. Cell viability was assessed by trypan blue dye exclusion assay and cell-cycle analysis was analyzed by flow cytometry. Molecular mechanisms involved in late G2 arrest were confirmed by a western blot assay and confocal microscopy. RESULTS: MDA-MB-231 cells treated with a combination of doxorubicin and PEMF had remarkably lower viability than those treated with doxorubicin alone. PEMF stimulation increased doxorubicin-induced cell-cycle arrest in the late G2 phase by suppressing cyclin-dependent kinase 1 (CDK1) activity through the enhancement of myelin transcription factor 1 (MYT1) expression, cell division cycle 25C (CDC25C) phosphorylation, and stratifin (14-3-3σ) expression. PEMF also increased doxorubicin-induced DNA damage by inhibiting DNA topoisomerase II alpha (TOP2A). CONCLUSION: These findings support the use of PEMF stimulation as an adjuvant to strengthen the antiproliferative effect of doxorubicin on breast cancer cells.


Assuntos
Neoplasias da Mama , Doxorrubicina , Humanos , Doxorrubicina/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Campos Eletromagnéticos , DNA Topoisomerases Tipo II/metabolismo , Proliferação de Células/efeitos dos fármacos , Paclitaxel/farmacologia , Fluoruracila/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fosfatases cdc25/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(25): e2320995121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865271

RESUMO

Meiosis, a reductional cell division, relies on precise initiation, maturation, and resolution of crossovers (COs) during prophase I to ensure the accurate segregation of homologous chromosomes during metaphase I. This process is regulated by the interplay of RING-E3 ligases such as RNF212 and HEI10 in mammals. In this study, we functionally characterized a recently identified RING-E3 ligase, RNF212B. RNF212B colocalizes and interacts with RNF212, forming foci along chromosomes from zygonema onward in a synapsis-dependent and DSB-independent manner. These consolidate into larger foci at maturing COs, colocalizing with HEI10, CNTD1, and MLH1 by late pachynema. Genetically, RNF212B foci formation depends on Rnf212 but not on Msh4, Hei10, and Cntd1, while the unloading of RNF212B at the end of pachynema is dependent on Hei10 and Cntd1. Mice lacking RNF212B, or expressing an inactive RNF212B protein, exhibit modest synapsis defects, a reduction in the localization of pro-CO factors (MSH4, TEX11, RPA, MZIP2) and absence of late CO-intermediates (MLH1). This loss of most COs by diakinesis results in mostly univalent chromosomes. Double mutants for Rnf212b and Rnf212 exhibit an identical phenotype to that of Rnf212b single mutants, while double heterozygous demonstrate a dosage-dependent reduction in CO number, indicating a functional interplay between paralogs. SUMOylome analysis of testes from Rnf212b mutants and pull-down analysis of Sumo- and Ubiquitin-tagged HeLa cells, suggest that RNF212B is an E3-ligase with Ubiquitin activity, serving as a crucial factor for CO maturation. Thus, RNF212 and RNF212B play vital, yet overlapping roles, in ensuring CO homeostasis through their distinct E3 ligase activities.


Assuntos
Pareamento Cromossômico , Troca Genética , Meiose , Ubiquitina-Proteína Ligases , Animais , Camundongos , Masculino , Feminino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Camundongos Knockout , Humanos , Ligases
13.
Proc Natl Acad Sci U S A ; 121(24): e2404383121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843184

RESUMO

Transcription is extremely important for cellular processes but can be hindered by RNA polymerase II (RNAPII) pausing and stalling. Cockayne syndrome protein B (CSB) promotes the progression of paused RNAPII or initiates transcription-coupled nucleotide excision repair (TC-NER) to remove stalled RNAPII. However, the specific mechanism by which CSB initiates TC-NER upon damage remains unclear. In this study, we identified the indispensable role of the ARK2N-CK2 complex in the CSB-mediated initiation of TC-NER. The ARK2N-CK2 complex is recruited to damage sites through CSB and then phosphorylates CSB. Phosphorylation of CSB enhances its binding to stalled RNAPII, prolonging the association of CSB with chromatin and promoting CSA-mediated ubiquitination of stalled RNAPII. Consistent with this finding, Ark2n-/- mice exhibit a phenotype resembling Cockayne syndrome. These findings shed light on the pivotal role of the ARK2N-CK2 complex in governing the fate of RNAPII through CSB, bridging a critical gap necessary for initiating TC-NER.


Assuntos
Síndrome de Cockayne , DNA Helicases , Enzimas Reparadoras do DNA , Reparo do DNA , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Humanos , Animais , Camundongos , DNA Helicases/metabolismo , DNA Helicases/genética , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Transcrição Gênica , Fosforilação , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Camundongos Knockout , Dano ao DNA , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Cromatina/metabolismo , Ubiquitinação , Reparo por Excisão
14.
In Vivo ; 38(4): 1665-1670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38936909

RESUMO

BACKGROUND/AIM: Hyperthermia represents an adjuvant local anticancer strategy which relies on the increase of temperature beyond the physiological level. In this study, we investigated the anticancer potential of Fe3O4 and Fe3O4core Aushell nanoparticles as hyperthermic agents in terms of cytotoxicity and studied the expression of cellular markers of proliferation (changes in mRNA levels via real-time polymerase chain reaction). MATERIALS AND METHODS: The human breast cancer cell line SK-BR-1 was incubated with either Fe3O4 or Fe3O4core Aushell nanoparticles stabilized with tryptophan, prior to hyperthermia treatment. The normal HEK293 cell line was used as a control. Toxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay to estimate possible toxic effects of the tested nanoparticles. After RNA extraction and cDNA synthesis, mRNA expression of three indicators of proliferation, namely marker of proliferation Ki-67, DNA topoisomerase II alpha (TOP2A) and TPX2 microtubule nucleation factor (TPX2), was investigated. RESULTS: At each concentration tested, Fe3O4core Aushell nanoparticles showed greater toxicity compared to Fe3O4, while SK-BR-3 cells were more susceptible to their cytotoxic effects compared to the HEK293 cell line. The expression of Ki-67, TOP2A and TPX2 was reduced in SK-BR-3 cells by both Fe3O4 or Fe3O4core Aushell nanoparticles compared to untreated cells, while the only observed change in HEK293 cells was the up-regulation of TOP2A. CONCLUSION: Both Fe3O4core Aushell and Fe3O4 NPs exhibit increased cytotoxicity to the cancer cell line tested (SK-BR-3) compared to HEK293 cells. The down-regulation in SK-BR-3 cells of the three proliferative markers studied, Ki-67, TOP2A and TPX2, after incubation with NPs suggests that cells that survived thermal destruction were not actively proliferating.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Proliferação de Células , DNA Topoisomerases Tipo II , Hipertermia Induzida , Antígeno Ki-67 , Proteínas Associadas aos Microtúbulos , Proteínas de Ligação a Poli-ADP-Ribose , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , Proliferação de Células/efeitos dos fármacos , Hipertermia Induzida/métodos , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Linhagem Celular Tumoral , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Feminino , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Células HEK293 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
15.
Eur J Surg Oncol ; 50(7): 108436, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820923

RESUMO

INTRODUCTION: The study aimed to validate the Betella algorithm, focusing on molecular analyses exclusively for endometrial cancer patients, where molecular classification alters risk assessment based on ESGO/ESTRO/ESP 2020 guidelines. MATERIALS AND METHODS: Conducted between March 2021 and March 2023, the retrospective research involved endometrial cancer patients undergoing surgery and comprehensive molecular analyses. These included p53 and mismatch repair proteins immunohistochemistry, as well as DNA sequencing for POLE exonuclease domain. We applied the Betella algorithm to our population and evaluated the proportion of patients in which the molecular analysis changed the risk class attribution. RESULTS: Out of 102 patients, 97 % obtained complete molecular analyses. The cohort exhibited varying molecular classifications: 10.1 % as POLE ultra-mutated, 30.3 % as mismatch repair deficient, 11.1 % as p53 abnormal, and 48.5 % as non-specified molecular classification. Multiple classifiers were present in 3 % of cases. Integrating molecular classification into risk group calculation led to risk group migration in 11.1 % of patients: 7 moved to lower risk classes due to POLE mutations, while 4 shifted to higher risk due to p53 alterations. Applying the Betella algorithm, we can spare the POLE sequencing in 65 cases (65.7 %) and p53 immunochemistry in 17 cases (17.2 %). CONCLUSION: In conclusion, we externally validated the Betella algorithm in our population. The application of this new proposed algorithm enables assignment of the proper risk class and, consequently, the appropriate indication for adjuvant treatment, allowing for the rationalization of the resources that can be allocated otherwise, not only for the benefit of settings with low resources, but of all settings in general.


Assuntos
Algoritmos , DNA Polimerase II , Neoplasias do Endométrio , Proteína Supressora de Tumor p53 , Humanos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Proteína Supressora de Tumor p53/genética , DNA Polimerase II/genética , Mutação , Imuno-Histoquímica , Proteínas de Ligação a Poli-ADP-Ribose/genética , Medição de Risco/métodos , Reparo de Erro de Pareamento de DNA , Idoso de 80 Anos ou mais , Adulto , Análise de Sequência de DNA/métodos
17.
Biochem Soc Trans ; 52(3): 1393-1404, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38778761

RESUMO

Several biomolecular condensates assemble in mammalian cells in response to viral infection. The most studied of these are stress granules (SGs), which have been proposed to promote antiviral innate immune signaling pathways, including the RLR-MAVS, the protein kinase R (PKR), and the OAS-RNase L pathways. However, recent studies have demonstrated that SGs either negatively regulate or do not impact antiviral signaling. Instead, the SG-nucleating protein, G3BP1, may function to perturb viral RNA biology by condensing viral RNA into viral-aggregated RNA condensates, thus explaining why viruses often antagonize G3BP1 or hijack its RNA condensing function. However, a recently identified condensate, termed double-stranded RNA-induced foci, promotes the activation of the PKR and OAS-RNase L antiviral pathways. In addition, SG-like condensates known as an RNase L-induced bodies (RLBs) have been observed during many viral infections, including SARS-CoV-2 and several flaviviruses. RLBs may function in promoting decay of cellular and viral RNA, as well as promoting ribosome-associated signaling pathways. Herein, we review these recent advances in the field of antiviral biomolecular condensates, and we provide perspective on the role of canonical SGs and G3BP1 during the antiviral response.


Assuntos
RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , RNA Viral , Grânulos de Estresse , Humanos , Animais , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Helicases/metabolismo , RNA Viral/metabolismo , Grânulos de Estresse/metabolismo , SARS-CoV-2/fisiologia , Imunidade Inata , Transdução de Sinais , Condensados Biomoleculares/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Viroses/tratamento farmacológico , Viroses/metabolismo , DNA Helicases/metabolismo , eIF-2 Quinase/metabolismo , Endorribonucleases/metabolismo , COVID-19/virologia , COVID-19/imunologia
18.
Phytomedicine ; 129: 155714, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723526

RESUMO

BACKGROUND: Temozolomide (TMZ) resistance is the main obstacle faced by glioblastoma multiforme (GBM) treatment. Muscone, one of the primary active pharmacological ingredients of Shexiang (Moschus), can cross the blood-brain barrier (BBB) and is being investigated as an antineoplastic medication. However, muscone treatment for GBM has received little research, and its possible mechanisms are still unclear. PURPOSE: This study aims to evaluate the effect and the potential molecular mechanism of muscone on TMZ-resistant GBM cells. METHODS: The differentially expressed genes (DEGs) between TMZ-resistant GBM cells and TMZ-sensitive GBM cells were screened using GEO2R. By progressively raising the TMZ concentration, a relatively stable TMZ-resistant human GBM cell line was established. The drug-resistance traits of U251-TR cells were assessed via the CCK-8 assay and Western Blot analysis of MGMT and TOP2A expression. Cell viability, cell proliferation, cell migration ability, and drug synergism were detected by the CCK-8 assay, colony formation assay, wound healing assay, and drug interaction relationship test, respectively. Anoikis was quantified by Calcein-AM/EthD-1 staining, MTT assay, and flow cytometry. Measurements of cell cycle arrest, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) were performed using cell cycle staining, Annexin V-FITC/PI labeling, JC-1 assay, and ROS assay, respectively. DNA damage was measured by TUNEL assay, alkaline comet assay, and γ-H2AX foci assay. GEPIA was used to investigate the link between the anoikis marker (FAK)/drug resistance gene and critical proteins in the EGFR/Integrin ß1 signaling pathway. Molecular docking was used to anticipate the probable targets of muscone. The intracellular co-localization and expression of EGFR and FAK were shown using immunofluorescence. The U251-TR cell line stably overexpressing EGFR was constructed using lentiviral transduction to assess the involvement of EGFR-related signaling in anoikis resistance. Western Blot was employed to detect the expression of migration-related proteins, cyclins, anoikis-related proteins, DNA damage/repair-related proteins, and associated pathway proteins. RESULTS: DEGs analysis identified 97 deregulated chemotherapy-resistant genes and 3779 upregulated genes in TMZ-resistant GBM cells. Subsequent experiments verified TMZ resistance and the hyper-expression of DNA repair-related genes (TOP2A and MGMT) in continuously low-dose TMZ-induced U251-TR cells. Muscone exhibited dose-dependent inhibition of U251-TR cell migration and proliferation, and its co-administration with TMZ showed the potential for enhanced therapeutic efficacy. By downregulating FAK, muscone reduced anoikis resistance in anchorage-independent U251-TR cells. It also caused cell cycle arrest in the G2/M phase by upregulating p21 and downregulating CDK1, CDK2, and Cyclin E1. Muscone-induced anoikis was accompanied by mitochondrial membrane potential collapse, ROS production, an increase in the BAX/Bcl-2 ratio, as well as elevated levels of Cytochrome c (Cyt c), cleaved caspase-9, and cleaved caspase-3. These findings indicated that muscone might trigger mitochondrial-dependent anoikis via ROS generation. Moreover, significant DNA damage, DNA double-strand breaks (DSBs), the formation of γ-H2AX foci, and a reduction in TOP2A expression are also associated with muscone-induced anoikis. Overexpression of EGFR in U251-TR cells boosted the expression of Integrin ß1, FAK, ß-Catenin, and TOP2A, whereas muscone suppressed the expression levels of EGFR, Integrin ß1, ß-Catenin, FAK, and TOP2A. Muscone may influence the expression of the key DNA repair enzyme, TOP2A, by suppressing the EGFR/Integrin ß1/FAK pathway. CONCLUSION: We first demonstrated that muscone suppressed TOP2A expression through the EGFR/Integrin ß1/FAK pathway, hence restoring anoikis sensitivity in TMZ-resistant GBM cells. These data suggest that muscone may be a promising co-therapeutic agent for enhancing GBM treatment, particularly in cases of TMZ-resistant GBM with elevated TOP2A expression.


Assuntos
Anoikis , DNA Topoisomerases Tipo II , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Quinase 1 de Adesão Focal , Glioblastoma , Integrina beta1 , Transdução de Sinais , Temozolomida , Humanos , Glioblastoma/tratamento farmacológico , Temozolomida/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 de Adesão Focal/metabolismo , Anoikis/efeitos dos fármacos , Integrina beta1/metabolismo , Receptores ErbB/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Ann Oncol ; 35(7): 643-655, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777726

RESUMO

BACKGROUND: POLE and POLD1 proofreading deficiency (POLE/D1pd) define a rare subtype of ultramutated metastatic colorectal cancer (mCRC; over 100 mut/Mb). Disease-specific data about the activity and efficacy of immune checkpoint inhibitors (ICIs) in POLE/D1pd mCRC are lacking and it is unknown whether outcomes may be different from mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRCs treated with ICIs. PATIENTS AND METHODS: In this global study, we collected 27 patients with mCRC harboring POLE/D1 mutations leading to proofreading deficiency and treated with anti-programmed cell death-ligand 1 alone +/- anti-cytotoxic T-lymphocyte antigen-4 agents. We collected clinicopathological and genomic characteristics, response, and survival outcomes after ICIs of POLE/D1pd mCRC and compared them with a cohort of 610 dMMR/MSI-H mCRC patients treated with ICIs. Further genomic analyses were carried out in an independent cohort of 7241 CRCs to define POLE and POLD1pd molecular profiles and mutational signatures. RESULTS: POLE/D1pd was associated with younger age, male sex, fewer RAS/BRAF driver mutations, and predominance of right-sided colon cancers. Patients with POLE/D1pd mCRC showed a significantly higher overall response rate (ORR) compared to dMMR/MSI-H mCRC (89% versus 54%; P = 0.01). After a median follow-up of 24.9 months (interquartile range: 11.3-43.0 months), patients with POLE/D1pd showed a significantly superior progression-free survival (PFS) compared to dMMR/MSI-H mCRC [hazard ratio (HR) = 0.24, 95% confidence interval (CI) 0.08-0.74, P = 0.01] and superior overall survival (OS) (HR = 0.38, 95% CI 0.12-1.18, P = 0.09). In multivariable analyses including the type of DNA repair defect, POLE/D1pd was associated with significantly improved PFS (HR = 0.17, 95% CI 0.04-0.69, P = 0.013) and OS (HR = 0.24, 95% CI 0.06-0.98, P = 0.047). Molecular profiling showed that POLE/D1pd tumors have higher tumor mutational burden (TMB). Responses were observed in both subtypes and were associated with the intensity of POLE/D1pd signature. CONCLUSIONS: Patients with POLE/D1pd mCRC showed more favorable outcomes compared to dMMR/MSI-H mCRC to treatment with ICIs in terms of tumor response and survival.


Assuntos
Neoplasias Colorretais , DNA Polimerase III , DNA Polimerase II , Inibidores de Checkpoint Imunológico , Mutação , Proteínas de Ligação a Poli-ADP-Ribose , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Masculino , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Pessoa de Meia-Idade , Idoso , DNA Polimerase II/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , DNA Polimerase III/genética , Adulto , Instabilidade de Microssatélites , Idoso de 80 Anos ou mais , Reparo de Erro de Pareamento de DNA
20.
Toxicol Lett ; 397: 48-54, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734221

RESUMO

The skin, the organ with the largest surface area in the body, is the most susceptible to chemical exposure from the external environment. In this study, we aimed to establish an in vitro skin toxicity monitoring system that utilizes the mechanism of stress granule (SG) formation induced by various cellular stresses. In HaCaT cells, a keratinocyte cell line that comprises the human skin, a green fluorescent protein (GFP) was knocked in at the C-terminal genomic locus of Ras GTPase-activating protein-binding protein 1 (G3BP1), a representative component of SGs. The G3BP1-GFP knock-in HaCaT cells and wild-type (WT) HaCaT cells formed SGs containing G3BP1-GFP upon exposure to arsenite and household chemicals, such as bisphenol A (BPA) and benzalkonium chloride (BAC), in real-time. In addition, the exposure of G3BP1-GFP knock-in HaCaT cells to BPA and BAC promoted the phosphorylation of eukaryotic initiation factor 2 alpha and protein kinase R-like endoplasmic reticulum kinase, which are cell signaling factors involved in SG formation, similar to WT HaCaT cells. In conclusion, this novel G3BP1-GFP knock-in human skin cell system can monitor SG formation in real-time and be utilized to assess skin toxicity to various substances.


Assuntos
Grânulos Citoplasmáticos , DNA Helicases , Proteínas de Fluorescência Verde , Queratinócitos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Humanos , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Arsenitos/toxicidade , Pele/efeitos dos fármacos , Pele/metabolismo , Técnicas de Introdução de Genes , Genes Reporter/efeitos dos fármacos , Fenóis/toxicidade , Células HaCaT , Fosforilação , Compostos Benzidrílicos/toxicidade , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...