Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
Cancer Med ; 13(13): e7424, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988047

RESUMO

BACKGROUND: Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide. Minichromsome maintenance proteins family member 8 (MCM8) assists DNA repair and DNA replication. MCM8 exerts tumor promotor function in multiple digestive system tumors. MCM8 is also considered as a potential cancer therapeutic target. METHODS: Bioinformatics methods were used to analyze MCM8 expression and clinicopathological significance. MCM8 expression was detected by immunohistochemistry (IHC) staining and qRT-PCR. MCM8 functions in GC cell were explored by Celigo cell counting, colony formation, wound-healing, transwell, and annexin V-APC staining assays. The target of MCM8 was determined by human gene expression profile microarray. Human phospho-kinase array kit evaluated changes in key proteins after ribosomal protein S15A (RPS15A) knockdown. MCM8 functions were reassessed in xenograft mouse model. IHC detected related proteins expression in mouse tumor sections. RESULTS: MCM8 was significantly upregulated and predicted poor prognosis in GC. High expression of MCM8 was positively correlated with lymph node positive (p < 0.001), grade (p < 0.05), AJCC Stage (p < 0.001), pathologic T (p < 0.01), and pathologic N (p < 0.001). MCM8 knockdown inhibited proliferation, migration, and invasion while promoting apoptosis. RPS15A expression decreased significantly after MCM8 knockdown. It was also the only candidate target, which ranked among the top 10 downregulated differentially expressed genes (DEGs) in sh-MCM8 group. RPS15A was identified as the target of MCM8 in GC. MCM8/RPS15A promoted phosphorylation of P38α, LYN, and p70S6K. Moreover, MCM8 knockdown inhibited tumor growth, RPS15A expression, and phosphorylation of P38α, LYN, and p70S6K in vivo. CONCLUSIONS: MCM8 is an oncogene and predicts poor prognosis in GC. MCM8/RPS15A facilitates GC progression.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas Ribossômicas , Neoplasias Gástricas , Humanos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Animais , Camundongos , Prognóstico , Feminino , Masculino , Linhagem Celular Tumoral , Progressão da Doença , Pessoa de Meia-Idade , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Apoptose , Camundongos Nus , Movimento Celular , Ensaios Antitumorais Modelo de Xenoenxerto , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
2.
J Cell Mol Med ; 28(12): e18488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031896

RESUMO

MCM8 is a helicase, which participates in DNA replication and tumorigenesis and is upregulated in many human cancers, including lung cancer (LC); however, the function of MCM8 in LC tumour progression is unclear. In this study, we found that MCM8 was expressed at high levels in LC cells and tissues. Further, MCM8 upregulation was associated with advanced tumour grade and lymph node metastasis, and indicated poor prognosis. Silencing of MCM8 suppressed cell growth and migration in vitro and in vivo, while ectopic MCM8 expression promoted cell cycle progression, as well as cell migration, proliferation, and apoptosis. Mechanistically, DNAJC10 was identified as a downstream target of MCM8, using gene array and CO-IP assays. DNAJC10 overexpression combatted the inhibitory activity of MCM8 knockdown on LC progression, while silencing DNAJC10 alleviated the oncogenic function of MCM8 overexpression. MCM8 expression was positively correlated with that of DNAJC10 in LC samples from The Cancer Genome Atlas database, and DNAJC10 upregulation was also associated with poor overall survival of patients with LC. This study indicated that MCM8/DNAJC10 axis plays an important role in in LC development, and maybe as a new potential therapeutic target or a diagnostic biomarker for treating patients with LC.


Assuntos
Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Proteínas de Manutenção de Minicromossomo , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Masculino , Animais , Feminino , Camundongos , Apoptose/genética , Regulação para Cima/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/genética , Prognóstico , Camundongos Nus , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
3.
EMBO J ; 43(14): 3044-3071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858601

RESUMO

MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.


Assuntos
RNA Helicases DEAD-box , Instabilidade Genômica , Proteínas de Manutenção de Minicromossomo , Estruturas R-Loop , Animais , Camundongos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Feminino , Estruturas R-Loop/genética , Humanos , Células Germinativas/metabolismo , Dano ao DNA , Masculino
4.
PLoS Genet ; 20(5): e1011148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776358

RESUMO

The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 -but not RPA-from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Proteína Rad52 de Recombinação e Reparo de DNA , Ribonucleotídeo Redutases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Dano ao DNA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Reparo do DNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo
5.
Nat Commun ; 15(1): 3584, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678026

RESUMO

HROB promotes the MCM8-9 helicase in DNA damage response. To understand how HROB activates MCM8-9, we defined their interaction interface. We showed that HROB makes important yet transient contacts with both MCM8 and MCM9, and binds the MCM8-9 heterodimer with the highest affinity. MCM8-9-HROB prefer branched DNA structures, and display low DNA unwinding processivity. MCM8-9 unwinds DNA as a hexamer that assembles from dimers on DNA in the presence of ATP. The hexamer involves two repeating protein-protein interfaces between the alternating MCM8 and MCM9 subunits. One of these interfaces is quite stable and forms an obligate heterodimer across which HROB binds. The other interface is labile and mediates hexamer assembly, independently of HROB. The ATPase site formed at the labile interface contributes disproportionally more to DNA unwinding than that at the stable interface. Here, we show that HROB promotes DNA unwinding downstream of MCM8-9 loading and ring formation on ssDNA.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA , Proteínas de Manutenção de Minicromossomo , Humanos , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , DNA/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Ligação Proteica , Multimerização Proteica , Reparo do DNA/genética
6.
Gene ; 916: 148449, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38588931

RESUMO

Germline-specific genes are usually activated in cancer cells and drive cancer progression; such genes are called cancer-germline or cancer-testis genes. The RNA-binding protein DAZL is predominantly expressed in germ cells and plays a role in gametogenesis as a translational activator or repressor. However, its expression and role in non-small cell lung cancer (NSCLC) are unknown. Here, mining of RNA-sequencing data from public resources and immunohistochemical analysis of tissue microarrays showed that DAZL was expressed exclusively in testis among normal human tissues but ectopically expressed in NSCLC tissues. Testis and NSCLC cells expressed the shorter and longer transcript variants of the DAZL gene, respectively. Overexpression of the longer DAZL transcript promoted tumor growth in a mouse xenograft model. Silencing of DAZL suppressed cell proliferation, colony formation, migration, invasion, and cisplatin resistance in vitro and tumor growth in vivo. Quantitative proteomic analysis based on tandem mass tag and Western blot analysis showed that DAZL upregulated the expression of JAK2 and MCM8. RNA-binding protein immunoprecipitation assays showed that DAZL bound to the mRNA of JAK2 and MCM8. The JAK2 inhibitor fedratinib attenuated the oncogenic outcomes induced by DAZL overexpression, whereas silencing MCM8 counteracted the effects of DAZL overexpression on cisplatin-damaged DNA synthesis and half-maximal inhibitory concentration of cisplatin. In conclusion, DAZL was identified as a novel cancer-germline gene that enhances the translation of JAK2 and MCM8 to promote NSCLC progression and resistance to cisplatin, respectively. These findings suggest that DAZL is a potential therapeutic target in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Janus Quinase 2 , Neoplasias Pulmonares , Proteínas de Manutenção de Minicromossomo , Proteínas de Ligação a RNA , Animais , Feminino , Humanos , Masculino , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Genes (Basel) ; 15(3)2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540419

RESUMO

The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.


Assuntos
Replicação do DNA , DNA , Humanos , DNA/genética , DNA/metabolismo , Replicação do DNA/genética , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Instabilidade Genômica
8.
BMC Cancer ; 24(1): 319, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454443

RESUMO

BACKGROUND: A high expression pattern of minichromosome maintenance 2 (MCM2) has been observed in various cancers. MCM2 is a protein involved in the cell cycle and plays a role in cancer growth and differentiation by binding to six members of the MCM subfamily. The MCM protein family includes MCM2 through MCM7. METHODS: MCM2 has shown high expression in both lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). We investigated the characteristics of CSCs and the regulation of the epithelial-to-mesenchymal transition (EMT) phenomenon in LCSCs and GSCs by MCM2. Additionally, we explored secreted factors regulated by MCM2. RESULTS: There was a significant difference in survival rates between lung cancer patients and brain cancer patients based on MCM2 expression. MCM2 was found to regulate both markers and regulatory proteins in LCSCs. Moreover, MCM2 is thought to be involved in cancer metastasis by regulating cell migration and invasion, not limited to lung cancer but also identified in glioma. Among chemokines, chemokine (C-X-C motif) ligand 1 (CXCL1) was found to be regulated by MCM2. CONCLUSIONS: MCM2 not only participates in the cell cycle but also affects cancer cell growth by regulating the external microenvironment to create a favorable environment for cells. MCM2 is highly expressed in malignant carcinomas, including CSCs, and contributes to the malignancy of various cancers. Therefore, MCM2 may represent a crucial target for cancer therapeutics.


Assuntos
Neoplasias Pulmonares , Proteínas de Manutenção de Minicromossomo , Humanos , Quimiocina CXCL1 , Proteínas de Manutenção de Minicromossomo/genética , Proteínas , Células-Tronco Neoplásicas/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Ciclo Celular/genética , Microambiente Tumoral
9.
Biomed Pharmacother ; 173: 116408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479176

RESUMO

Malignant tumors constitute a significant category of diseases posing a severe threat to human survival and health, thereby representing one of the most challenging and pressing issues in the field of biomedical research. Due to their malignant nature, which is characterized by a high potential for metastasis, rapid dissemination, and frequent recurrence, the prevailing approach in clinical oncology involves a comprehensive treatment strategy that combines surgery with radiotherapy, chemotherapy, targeted drug therapies, and other interventions. Treatment resistance remains a major obstacle in the comprehensive management of tumors, serving as a primary cause for the failure of integrated tumor therapies and a critical factor contributing to patient relapse and mortality. The Minichromosome Maintenance (MCM) protein family comprises functional proteins closely associated with the development of resistance in tumor therapy.The influence of MCMs manifests through various pathways, encompassing modulation of DNA replication, cell cycle regulation, and DNA damage repair mechanisms. Consequently, this leads to an enhanced tolerance of tumor cells to chemotherapy, targeted drugs, and radiation. Consequently, this review explores the specific roles of the MCM family in various cancer treatment strategies. Its objective is to enhance our comprehension of resistance mechanisms in tumor therapy, thereby presenting novel targets for clinical research aimed at overcoming resistance in cancer treatment. This bears substantial clinical relevance.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Replicação do DNA , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
10.
Science ; 384(6691): 119-124, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484038

RESUMO

Newly copied sister chromatids are tethered together by the cohesin complex, but how sister chromatid cohesion coordinates with DNA replication is poorly understood. Prevailing models suggest that cohesin complexes, bound to DNA before replication, remain behind the advancing replication fork to keep sister chromatids together. By visualizing single replication forks colliding with preloaded cohesin complexes, we find that the replisome instead pushes cohesin to where a converging replisome is met. Whereas the converging replisomes are removed during DNA replication termination, cohesin remains on nascent DNA and provides cohesion. Additionally, we show that CMG (CDC45-MCM2-7-GINS) helicase disassembly during replication termination is vital for proper cohesion in budding yeast. Together, our results support a model wherein sister chromatid cohesion is established during DNA replication termination.


Assuntos
Cromátides , Coesinas , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Troca de Cromátide Irmã , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Coesinas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Mol Diagn Ther ; 28(3): 249-264, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530633

RESUMO

The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.


Assuntos
Replicação do DNA , Proteínas de Manutenção de Minicromossomo , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Instabilidade Genômica , Biomarcadores Tumorais/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Animais
12.
Nat Commun ; 15(1): 1797, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413589

RESUMO

Activation of the replicative Mcm2-7 helicase by loading GINS and Cdc45 is crucial for replication origin firing, and as such for faithful genetic inheritance. Our biochemical and structural studies demonstrate that the helicase activator GINS interacts with TopBP1 through two separate binding surfaces, the first involving a stretch of highly conserved amino acids in the TopBP1-GINI region, the second a surface on TopBP1-BRCT4. The two surfaces bind to opposite ends of the A domain of the GINS subunit Psf1. Mutation analysis reveals that either surface is individually able to support TopBP1-GINS interaction, albeit with reduced affinity. Consistently, either surface is sufficient for replication origin firing in Xenopus egg extracts and becomes essential in the absence of the other. The TopBP1-GINS interaction appears sterically incompatible with simultaneous binding of DNA polymerase epsilon (Polε) to GINS when bound to Mcm2-7-Cdc45, although TopBP1-BRCT4 and the Polε subunit PolE2 show only partial competitivity in binding to Psf1. Our TopBP1-GINS model improves the understanding of the recently characterised metazoan pre-loading complex. It further predicts the coordination of three molecular origin firing processes, DNA polymerase epsilon arrival, TopBP1 ejection and GINS integration into Mcm2-7-Cdc45.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase II/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Replicação Viral
13.
Commun Biol ; 7(1): 167, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336851

RESUMO

Accurate and complete replication of genetic information is a fundamental process of every cell division. The replication licensing is the first essential step that lays the foundation for error-free genome duplication. During licensing, minichromosome maintenance protein complexes, the molecular motors of DNA replication, are loaded to genomic sites called replication origins. The correct quantity and functioning of licensed origins are necessary to prevent genome instability associated with severe diseases, including cancer. Here, we delve into recent discoveries that shed light on the novel functions of licensed origins, the pathways necessary for their proper maintenance, and their implications for cancer therapies.


Assuntos
Replicação do DNA , Neoplasias , Humanos , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Neoplasias/genética
14.
EMBO Rep ; 25(2): 876-901, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177925

RESUMO

FANCJ, a DNA helicase linked to Fanconi anemia and frequently mutated in cancers, counteracts replication stress by dismantling unconventional DNA secondary structures (such as G-quadruplexes) that occur at the DNA replication fork in certain sequence contexts. However, how FANCJ is recruited to the replisome is unknown. Here, we report that FANCJ directly binds to AND-1 (the vertebrate ortholog of budding yeast Ctf4), a homo-trimeric protein adaptor that connects the CDC45/MCM2-7/GINS replicative DNA helicase with DNA polymerase α and several other factors at DNA replication forks. The interaction between FANCJ and AND-1 requires the integrity of an evolutionarily conserved Ctf4-interacting protein (CIP) box located between the FANCJ helicase motifs IV and V. Disruption of the CIP box significantly reduces FANCJ association with the replisome, causing enhanced DNA damage, decreased replication fork recovery and fork asymmetry in cells unchallenged or treated with Pyridostatin, a G-quadruplex-binder, or Mitomycin C, a DNA inter-strand cross-linking agent. Cancer-relevant FANCJ CIP box variants display reduced AND-1-binding and enhanced DNA damage, a finding that suggests their potential role in cancer predisposition.


Assuntos
DNA , Neoplasias , Humanos , DNA/química , Replicação do DNA , Instabilidade Genômica , Proteínas de Manutenção de Minicromossomo
15.
Open Biol ; 14(1): 230407, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38262603

RESUMO

Natural killer (NK) cell deficiency (NKD) is a rare disease in which NK cell function is reduced, leaving affected individuals susceptible to repeated viral infections and cancer. Recently, a patient with NKD was identified carrying compound heterozygous variants of MCM10 (minichromosome maintenance protein 10), an essential gene required for DNA replication, that caused a significant decrease in the amount of functional MCM10. NKD in this patient presented as loss of functionally mature late-stage NK cells. To understand how MCM10 deficiency affects NK cell development, we generated MCM10 heterozygous (MCM10+/-) induced pluripotent stem cell (iPSC) lines. Analyses of these cell lines demonstrated that MCM10 was haploinsufficient, similar to results in other human cell lines. Reduced levels of MCM10 in mutant iPSCs was associated with impaired clonogenic survival and increased genomic instability, including micronuclei formation and telomere erosion. The severity of these phenotypes correlated with the extent of MCM10 depletion. Significantly, MCM10+/- iPSCs displayed defects in NK cell differentiation, exhibiting reduced yields of hematopoietic stem cells (HSCs). Although MCM10+/- HSCs were able to give rise to lymphoid progenitors, these did not generate mature NK cells. The lack of mature NK cells coincided with telomere erosion, suggesting that NKD caused by these MCM10 variants arose from the accumulation of genomic instability including degradation of chromosome ends.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Genes Essenciais , Instabilidade Genômica , Células Matadoras Naturais , Proteínas de Manutenção de Minicromossomo
16.
Histol Histopathol ; 39(4): 471-482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37526267

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSC) is a common malignant tumor in the world and has a poor prognosis. The family of minichromosome maintenance proteins (MCM) improves the stability of genome replication by inhibiting the rate of DNA replication in eukaryotic cells, thus, small changes in physiological MCM levels would increase the instability of gene replication and increase the incidence of tumor formation, most of which are significantly elevated in multiple cancers. However, the expression of different MCM families in HNSC and their prognostic value remain unclear. METHODS: ONCOMINE and GEPIA databases were used to analyze the expression of MCMs in HNSC. The Kaplan-Meier plotter database was used to identify molecules with prognostic values. We collected 77 HNSC tissues and 50 normal tissues to validate the results of the bioinformatics analysis by immunohistochemical staining. RESULTS: The expression of MCM3, MCM5 and MCM6 in mRNA and protein levels were higher in HNSC. Moreover, the increased expression of MCM3, MCM5 and MCM6 in mRNA and protein levels predicted better prognosis of HNSC patients. Furthermore, multivariate analysis showed that high expressions of MCM3, MCM5 and MCM6 in protein level may be independent prognostic factors for HNSC patients. CONCLUSION: The results of this study indicated that MCM3, MCM5 and MCM6 play an important role in occurrence and development in HNSC and might be risk factors for the survival of HNSC patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas de Manutenção de Minicromossomo , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Prognóstico , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , RNA Mensageiro
17.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119621, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907194

RESUMO

The replication of DNA requires specialized and intricate machinery. This machinery is known as a replisome and is highly evolutionarily conserved, from simple unicellular organisms such as yeast to human cells. The replisome comprises multiple protein complexes responsible for various steps in the replication process. One crucial component of the replisome is the Cdc45-MCM-GINS (CMG) helicase complex, which unwinds double-stranded DNA and coordinates the assembly and function of other replisome components, including DNA polymerases. The genes encoding the CMG helicase components are essential for initiating DNA replication. In this study, we aimed to investigate how the absence of one copy of the CMG complex genes in heterozygous Saccharomyces cerevisiae cells impacts the cells' physiology and aging. Our data revealed that these cells exhibited a significant reduction in transcript levels for the respective CMG helicase complex proteins, as well as disruptions in the cell cycle, extended doubling times, and alterations in their biochemical profile. Notably, this study provided the first demonstration that cells heterozygous for genes encoding subunits of the CMG helicase exhibited a significantly increased reproductive potential and delayed chronological aging. Additionally, we observed a noteworthy correlation between RNA and polysaccharide levels in yeast and their reproductive potential, as well as a correlation between fatty acid levels and cell doubling times. Our findings also shed new light on the potential utility of yeast in investigating potential therapeutic targets for cancer treatment.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Humanos , Saccharomyces cerevisiae/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , DNA
18.
Nat Commun ; 14(1): 8049, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081811

RESUMO

The mammalian DNA replication timing (RT) program is crucial for the proper functioning and integrity of the genome. The best-known mechanism for controlling RT is the suppression of late origins of replication in heterochromatin by RIF1. Here, we report that in antigen-activated, hypermutating murine B lymphocytes, RIF1 binds predominantly to early-replicating active chromatin and promotes early replication, but plays a minor role in regulating replication origin activity, gene expression and genome organization in B cells. Furthermore, we find that RIF1 functions in a complementary and non-epistatic manner with minichromosome maintenance (MCM) proteins to establish early RT signatures genome-wide and, specifically, to ensure the early replication of highly transcribed genes. These findings reveal additional layers of regulation within the B cell RT program, driven by the coordinated activity of RIF1 and MCM proteins.


Assuntos
Período de Replicação do DNA , Replicação do DNA , Animais , Camundongos , Cromatina/genética , Replicação do DNA/genética , Heterocromatina/genética , Mamíferos/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Origem de Replicação/genética , Proteínas de Ligação a Telômeros/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(52): e2316466120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109526

RESUMO

DNA replication in all cells begins with the melting of base pairs at the duplex origin to allow access to single-stranded DNA templates which are replicated by DNA polymerases. In bacteria, origin DNA is presumed to be melted by accessory proteins that allow loading of two ring-shaped replicative helicases around single-strand DNA (ssDNA) for bidirectional unwinding and DNA replication. In eukaryotes, by contrast, two replicative CMG (Cdc45-Mcm2-7-GINS) helicases are initially loaded head to head around origin double-strand DNA (dsDNA), and there does not appear to be a separate origin unwinding factor. This led us to investigate whether head-to-head CMGs use their adenosine triphosphate (ATP)-driven motors to initiate duplex DNA unwinding at the origin. Here, we show that CMG tracks on one strand of the duplex while surrounding it, and this feature allows two head-to-head CMGs to unwind dsDNA by using their respective motors to pull on opposite strands of the duplex. We further show that while CMG is capable of limited duplex unwinding on its own, the extent of unwinding is greatly and rapidly stimulated by addition of the multifunctional CMG-binding protein Mcm10 that is critical for productive initiation of DNA replication in vivo. On the basis of these findings, we propose that Mcm10 is a processivity or positioning factor that helps translate the work performed by the dual CMG motors at the origin into productive unwinding that facilitates bidirectional DNA replication.


Assuntos
Proteínas de Manutenção de Minicromossomo , Proteínas de Saccharomyces cerevisiae , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA , DNA/metabolismo , DNA de Cadeia Simples/genética
20.
Turk J Gastroenterol ; 34(11): 1107-1115, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37860833

RESUMO

BACKGROUND/AIMS: Chemotherapy is an essential avenue for curing malignancies; however, tumor cells acquire resistance to chemotherapeutic agents, eventually leading to chemotherapy failure. At present, paclitaxel (PTX) resistance seriously hinders the therapeutic efficacy of gastric cancer (GC). Investigating the molecular mechanism of PTX resistance in GC is critical. This study attempted to delineate the impact of MCM10 on GC resistance to PTX and its mechanism in GC. MATERIALS AND METHODS: The expression of minichromosome maintenance complex component 10 (MCM10) in GC tissues, its enrichment pathways, and its correlation with glycolysis marker genes and stemness index (mRNAsi) were analyzed in a bioinformatics effort. Real-time quantitative polymerase chain reaction was used to assay the expression of MCM10 in cells. Cell counting kit-8 (CCK-8) was used to analyze cell viability and calculate the 50% inhibitor concentration (IC50) value. Western blot was used to measure the expression of MCM10, Hexokinase 2 (HK2) and stemness-related factors in cells. Sphere-forming assay was performed to study cell sphere-forming ability. Seahorse XF 96 was utilized to measure cell extracellular acidification and oxygen consumption rates. The content of glycolysisrelated products was tested with corresponding kits. RESULTS: MCM10 was significantly upregulated in GC and enriched in the glycolysis pathway, and it was positively correlated with both glycolysis-related genes and stemness index. High expression of MCM10 increased sphere-forming ability of drug-resistant cells and GC resistance to PTX. The stimulation of PTX resistance and drug-resistant cell stemness in GC by high MCM10 expression was mediated by the glycolysis pathway. CONCLUSION: MCM10 was upregulated in GC and drove stemness and PTX resistance in GC cells by activating glycolysis. These findings generated new insights into the development of PTX resistance in GC, implicating that targeting MCM10 may be a novel approach to improve GC sensitivity to PTX chemotherapy.


Assuntos
Paclitaxel , Neoplasias Gástricas , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células , Proteínas de Manutenção de Minicromossomo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...