Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(1): e29574, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22295061

RESUMO

Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development.


Assuntos
Modelos Animais de Doenças , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Sequência de Aminoácidos , Animais , Movimento Celular , Tamanho Celular , Biologia Computacional , Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Disostose Mandibulofacial/patologia , Camundongos , Dados de Sequência Molecular , Crista Neural/metabolismo , Crista Neural/patologia , Fenótipo , Fosfoproteínas/química , Fosfoproteínas/deficiência , Homologia de Sequência de Aminoácidos , Crânio/embriologia , Crânio/metabolismo , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/deficiência
2.
Dev Dyn ; 223(2): 298-305, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11836794

RESUMO

By using retroviral insertional mutagenesis in zebrafish, we have identified a recessive lethal mutation in the not really started (nrs) gene. The nrs mutation disrupts a gene located in linkage group 3 that is highly homologous to the spinster gene identified in Drosophila and to spinster orthologs identified in mammals. In flies, spinster encodes a membrane protein involved in lysosomal metabolism and programmed cell death in the central nervous system and in the ovary. In nrs mutant fish embryos, we detect an opaque substance in the posterior yolk cell extension at approximately 1 day after fertilization. This material progressively accumulates and by 48 hr after fertilization fills the entire yolk. By day 3 of embryogenesis, mutant embryos are severely reduced in size compared with their wild-type siblings and they die a few hours later. By in situ hybridization, we show that the nrs mRNA is expressed in the yolk cell at the time the mutant phenotype becomes apparent. In wild-type embryos, nrs message is present maternally and zygotically throughout embryogenesis and is also detected in adult animals. In nrs homozygous mutant embryos, nrs transcripts are undetectable at the time the phenotype becomes apparent, indicating that the retroviral insertion has most likely abolished expression of the nrs gene. Finally, the nrs phenotype can be partially rescued by microinjection of nrs encoding DNA. These results suggest that the nrs mutation affects an essential gene encoding a putative membrane-bound protein expressed specifically in the yolk cell during zebrafish embryogenesis.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Ovo/genética , Genes , Proteínas de Membrana/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular , Mapeamento Cromossômico , DNA Recombinante/administração & dosagem , DNA Recombinante/genética , Proteínas de Drosophila/fisiologia , Proteínas do Ovo/fisiologia , Etiquetas de Sequências Expressas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Genes Letais , Ligação Genética , Humanos , Hibridização In Situ , Proteínas de Membrana/deficiência , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras , Camundongos , Microinjeções , Proteínas Associadas aos Microtúbulos , Dados de Sequência Molecular , Mutagênese Insercional , Fosfoproteínas , RNA Mensageiro/genética , Retroviridae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA