Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38670246

RESUMO

In the ongoing evolutionary arms race between predators and prey, adaptive innovations often trigger a reciprocal response. For instance, the emergence of α-neurotoxins in snake venom has driven prey species targeted by these snakes to evolve sophisticated defense mechanisms. This study zeroes in on the particular motifs within the orthosteric sites of post-synaptic nicotinic acetylcholine receptors (nAChR) that confer resistance to α-neurotoxins, often through structural alterations of nAChR. This research examined Australian agamid lizards, a primary prey group for Australian elapid snakes, which are subject to predatory selection pressures. We previously showed that Pogona vitticeps (Central bearded dragon) was resistant to α-neurotoxic snake venoms through a steric hindrance form resistance evolving within the nAChR orthosteric, specifically through the 187-189NVT motif resulting in the presence of N-glycosylation, with the branching carbohydrate chains impeding the binding by the neurotoxins. This adaptive trait is thought to be a compensatory mechanism for the lizard's limited escape capabilities. Despite the significance of this novel adaptation, the prevalence and evolutionary roots of such venom resistance in Australian agamids have not been thoroughly investigated. To fill this knowledge gap, we undertook a comprehensive sequencing analysis of the nAChR ligand-binding domain across the full taxonomical diversity of Australian agamid species. Our findings reveal that the N-glycosylation resistance mechanism is a trait unique to the Pogona genus and absent in other Australian agamids. This aligns with Pogona's distinctive morphology, which likely increases vulnerability to neurotoxic elapid snakes, thereby increasing selective pressures for resistance. In contrast, biolayer interferometry experiments with death adder (Acanthophis species) venoms did not indicate any resistance-related binding patterns in other agamids, suggesting a lack of similar resistance adaptations, consistent with these lineages either being fast-moving, covered with large defensive spines, or being arboreal. This research not only uncovers a novel α-neurotoxin resistance mechanism in Australian agamids but also highlights the complex dynamics of the predator-prey chemical arms race. It provides a deeper understanding of how evolutionary pressures shape the interactions between venomous snakes and their prey.


Assuntos
Lagartos , Receptores Nicotínicos , Animais , Lagartos/fisiologia , Lagartos/metabolismo , Glicosilação , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Austrália , Neurotoxinas/toxicidade , Comportamento Predatório/efeitos dos fármacos , Proteínas de Répteis/metabolismo , Proteínas de Répteis/genética , Filogenia
2.
Toxins (Basel) ; 13(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34437419

RESUMO

Given that the venom system in sea snakes has a role in enhancing their secondary adaption to the marine environment, it follows that elucidating the diversity and function of venom toxins will help to understand the adaptive radiation of sea snakes. We performed proteomic and de novo NGS analyses to explore the diversity of venom toxins in the annulated sea snake (Hydrophis cyanocinctus) and estimated the adaptive molecular evolution of the toxin-coding unigenes and the toxicity of the major components. We found three-finger toxins (3-FTxs), phospholipase A2 (PLA2) and cysteine-rich secretory protein (CRISP) in the venom proteome and 59 toxin-coding unigenes belonging to 24 protein families in the venom-gland transcriptome; 3-FTx and PLA2 were the most abundant families. Nearly half of the toxin-coding unigenes had undergone positive selection. The short- (i.p. 0.09 µg/g) and long-chain neurotoxin (i.p. 0.14 µg/g) presented fairly high toxicity, whereas both basic and acidic PLA2s expressed low toxicity. The toxicity of H. cyanocinctus venom was largely determined by the 3-FTxs. Our data show the venom is used by H. cyanocinctus as a biochemically simple but genetically complex weapon and venom evolution in H. cyanocinctus is presumably driven by natural selection to deal with fast-moving prey and enemies in the marine environment.


Assuntos
Venenos Elapídicos , Hydrophiidae , Animais , Venenos Elapídicos/química , Venenos Elapídicos/genética , Venenos Elapídicos/toxicidade , Feminino , Dose Letal Mediana , Masculino , Camundongos Endogâmicos ICR , Neurotoxinas/análise , Neurotoxinas/genética , Neurotoxinas/toxicidade , Fosfolipases A2/análise , Fosfolipases A2/genética , Fosfolipases A2/toxicidade , Proteoma/análise , Proteoma/genética , Proteoma/toxicidade , Proteínas de Répteis/análise , Proteínas de Répteis/genética , Proteínas de Répteis/toxicidade , Transcriptoma
3.
Toxins (Basel) ; 13(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437429

RESUMO

Inadequate effectiveness of Indian antivenoms in treating envenomation caused by the Spectacled Cobra/Indian Cobra (Naja naja) in Sri Lanka has been attributed to geographical variations in the venom composition. This study investigated the de novo venom-gland transcriptomics and venom proteomics of the Sri Lankan N. naja (NN-SL) to elucidate its toxin gene diversity and venom variability. The neutralization efficacy of a commonly used Indian antivenom product in Sri Lanka was examined against the lethality induced by NN-SL venom in mice. The transcriptomic study revealed high expression of 22 toxin genes families in NN-SL, constituting 46.55% of total transcript abundance. Three-finger toxins (3FTX) were the most diversely and abundantly expressed (87.54% of toxin gene expression), consistent with the dominance of 3FTX in the venom proteome (72.19% of total venom proteins). The 3FTX were predominantly S-type cytotoxins/cardiotoxins (CTX) and α-neurotoxins of long-chain or short-chain subtypes (α-NTX). CTX and α-NTX are implicated in local tissue necrosis and fatal neuromuscular paralysis, respectively, in envenomation caused by NN-SL. Intra-species variations in the toxin gene sequences and expression levels were apparent between NN-SL and other geographical specimens of N. naja, suggesting potential antigenic diversity that impacts antivenom effectiveness. This was demonstrated by limited potency (0.74 mg venom/ml antivenom) of the Indian polyvalent antivenom (VPAV) in neutralizing the NN-SL venom. A pan-regional antivenom with improved efficacy to treat N. naja envenomation is needed.


Assuntos
Venenos Elapídicos , Glândulas Exócrinas/metabolismo , Naja naja , Animais , Antivenenos/farmacologia , Venenos Elapídicos/química , Venenos Elapídicos/genética , Venenos Elapídicos/toxicidade , Perfilação da Expressão Gênica , Camundongos Endogâmicos ICR , Proteômica , Proteínas de Répteis/genética , Proteínas de Répteis/metabolismo , Transcriptoma
4.
Artigo em Inglês | MEDLINE | ID: mdl-34237608

RESUMO

Circular RNA (circRNA) is a noncoding RNA that can regulate a variety of biological processes. CircRNAs can regulate gene expression posttranscriptionally by acting as microRNA sponges. Many turtle species are remarkable organisms due to their reproductive processes. However, information on circRNA in the gonads of turtles is limited. In this study, 6, 121 circRNAs were identified in the testes and ovaries of Chinese soft-shelled turtles (Pelodiscus sinensis) using the Illumina platform, and 710 circRNAs were significantly differentially expressed (DE). The DE circRNAs included 541 upregulated and 169 downregulated circRNAs in the testes. GO and KEGG pathway analysis indicated that the DE circRNAs were enriched in several signaling pathways, including GnRH, Wnt, FoxO, Progesterone mediated oocyte maturation, and mTOR signaling pathways. Five DE circRNAs were randomly selected, and their relative expression levels in ovaries and testes were detected by quantitative real-time PCR. All of these circRNAs were differentially expressed. In addition, 9, 883 interactions between circRNAs and miRNAs were predicted in the turtles. Target genes of the miRNAs include a range of genes regulating gonadal development. Seven ceRNA networks (DE circRNAs-DE miRNAs-DE mRNAs), including 7 DE circRNAs, 11 DE miRNAs and 20 DE mRNAs, were constructed. The networks included Cdc6, the miR-1 family, the miR-203 family, and the miR-302 family. The expression profile of gonadal circRNAs might help to elucidate the roles of nonprotein coding RNAs in turtle gonadal development.


Assuntos
Regulação da Expressão Gênica , Gônadas/metabolismo , RNA Circular/metabolismo , Proteínas de Répteis/metabolismo , Tartarugas/metabolismo , Animais , Biologia Computacional , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , RNA Circular/genética , Proteínas de Répteis/genética , Tartarugas/genética
5.
PLoS Negl Trop Dis ; 15(3): e0009247, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33764996

RESUMO

BACKGROUND: Snakebite in India results in over 58,000 fatalities and a vast number of morbidities annually. The majority of these clinically severe envenomings are attributed to Russell's viper (Daboia russelii), which has a near pan-India distribution. Unfortunately, despite its medical significance, the influence of biogeography on the composition and potency of venom from disparate D. russelii populations, and the repercussions of venom variation on the neutralisation efficacy of marketed Indian antivenoms, remain elusive. METHODS: Here, we employ an integrative approach comprising proteomic characterisation, biochemical analyses, pharmacological assessment, and venom toxicity profiling to elucidate the influence of varying ecology and environment on the pan-Indian populations of D. russelii. We then conducted in vitro venom recognition experiments and in vivo neutralisation assays to evaluate the efficacy of the commercial Indian antivenoms against the geographically disparate D. russelii populations. FINDINGS: We reveal significant intraspecific variation in the composition, biochemical and pharmacological activities and potencies of D. russelii venoms sourced from five distinct biogeographic zones across India. Contrary to our understanding of the consequences of venom variation on the effectiveness of snakebite therapy, commercial antivenom exhibited surprisingly similar neutralisation potencies against the majority of the investigated populations, with the exception of low preclinical efficacy against the semi-arid population from northern India. However, the ability of Indian antivenoms to counter the severe morbid effects of Daboia envenoming remains to be evaluated. CONCLUSION: The concerning lack of antivenom efficacy against the north Indian population of D. russelii, as well as against two other 'big four' snake species in nearby locations, underscores the pressing need to develop pan-India effective antivenoms with improved efficacy in high snakebite burden locales.


Assuntos
Antivenenos/uso terapêutico , Daboia , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras/genética , Animais , Ecossistema , Índia/epidemiologia , Masculino , Camundongos , Filogeografia , Proteoma , Proteínas de Répteis/química , Proteínas de Répteis/genética , Mordeduras de Serpentes/epidemiologia , Espectrometria de Massas em Tandem , Venenos de Víboras/química
6.
Toxins (Basel) ; 13(2)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567660

RESUMO

The genus Calliophis is the most basal branch of the family Elapidae and several species in it have developed highly elongated venom glands. Recent research has shown that C. bivirgatus has evolved a seemingly unique toxin (calliotoxin) that produces spastic paralysis in their prey by acting on the voltage-gated sodium (NaV) channels. We assembled a transcriptome from C. bivirgatus to investigate the molecular characteristics of these toxins and the venom as a whole. We find strong confirmation that this genus produces the classic elapid eight-cysteine three-finger toxins, that δδ-elapitoxins (toxins that resemble calliotoxin) are responsible for a substantial portion of the venom composition, and that these toxins form a distinct clade within a larger, more diverse clade of C. bivirgatus three-finger toxins. This broader clade of C. bivirgatus toxins also contains the previously named maticotoxins and is somewhat closely related to cytotoxins from other elapids. However, the toxins from this clade that have been characterized are not themselves cytotoxic. No other toxins show clear relationships to toxins of known function from other species.


Assuntos
Venenos Elapídicos/genética , Elapidae/genética , Evolução Molecular , Neurotoxinas/genética , Proteínas de Répteis/genética , Transcriptoma , Animais , Venenos Elapídicos/metabolismo , Elapidae/metabolismo , Perfilação da Expressão Gênica , Neurotoxinas/metabolismo , Filogenia , Proteínas de Répteis/metabolismo
7.
J Immunol ; 206(7): 1653-1667, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33637616

RESUMO

The reptile MHC class I (MCH-I) and MHC class II proteins are the key molecules in the immune system; however, their structure has not been investigated. The crystal structure of green anole lizard peptide-MHC-I-ß2m (pMHC-I or pAnca-UA*0101) was determined in the current study. Subsequently, the features of pAnca-UA*0101 were analyzed and compared with the characteristics of pMHC-I of four classes of vertebrates. The amino acid sequence identities between Anca-UA*0101 and MHC-I from other species are <50%; however, the differences between the species were reflected in the topological structure. Significant characteristics of pAnca-UA*0101 include a specific flip of ∼88° and an upward shift adjacent to the C terminus of the α1- and α2-helical regions, respectively. Additionally, the lizard MHC-I molecule has an insertion of 2 aa (VE) at positions 55 and 56. The pushing force from 55-56VE triggers the flip of the α1 helix. Mutagenesis experiments confirmed that the 55-56VE insertion in the α1 helix enhances the stability of pAnca-UA*0101. The peptide presentation profile and motif of pAnca-UA*0101 were confirmed. Based on these results, the proteins of three reptile lizard viruses were used for the screening and confirmation of the candidate epitopes. These data enhance our understanding of the systematic differences between five classes of vertebrates at the gene and protein levels, the formation of the pMHC-I complex, and the evolution of the MHC-I system.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Lagartos/imunologia , Infecções por Nidovirales/imunologia , Nidovirales/fisiologia , Proteínas de Répteis/química , Sequência de Aminoácidos , Animais , Antígenos Virais/genética , Cristalografia por Raios X , Epitopos/genética , Evolução Molecular , Antígenos de Histocompatibilidade Classe I/genética , Sistema Imunitário , Imunidade , Filogenia , Polimorfismo Genético , Conformação Proteica , Estabilidade Proteica , Proteínas de Répteis/genética
8.
Toxins (Basel) ; 13(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572266

RESUMO

Envenomation resulted from sea snake bite is a highly lethal health hazard in Southeast Asia. Although commonly caused by sea snakes of Hydrophiinae, each species is evolutionarily distinct and thus, unveiling the toxin gene diversity within individual species is important. Applying next-generation sequencing, this study investigated the venom-gland transcriptome of Hydrophis curtus (spine-bellied sea snake) from Penang, West Malaysia. The transcriptome was de novo assembled, followed by gene annotation and sequence analyses. Transcripts with toxin annotation were only 96 in number but highly expressed, constituting 48.18% of total FPKM in the overall transcriptome. Of the 21 toxin families, three-finger toxins (3FTX) were the most abundantly expressed and functionally diverse, followed by phospholipases A2. Lh_FTX001 (short neurotoxin) and Lh_FTX013 (long neurotoxin) were the most dominant 3FTXs expressed, consistent with the pathophysiology of envenomation. Lh_FTX001 and Lh_FTX013 were variable in amino acid compositions and predicted epitopes, while Lh_FTX001 showed high sequence similarity with the short neurotoxin from Hydrophis schistosus, supporting cross-neutralization effect of Sea Snake Antivenom. Other toxins of low gene expression, for example, snake venom metalloproteinases and L-amino acid oxidases not commonly studied in sea snake venom were also identified, enriching the knowledgebase of sea snake toxins for future study.


Assuntos
Venenos Elapídicos/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Hydrophiidae/genética , Neurotoxinas/genética , Proteínas de Répteis/genética , Transcriptoma , Estruturas Animais , Animais , Bases de Dados Genéticas , Venenos Elapídicos/imunologia , Venenos Elapídicos/metabolismo , Venenos Elapídicos/toxicidade , Epitopos , Evolução Molecular , Hydrophiidae/anatomia & histologia , Hydrophiidae/imunologia , Hydrophiidae/metabolismo , Malásia , Neurotoxinas/imunologia , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Filogenia , Proteínas de Répteis/imunologia , Proteínas de Répteis/metabolismo , Proteínas de Répteis/toxicidade
9.
Biochimie ; 182: 206-216, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33485932

RESUMO

The elapid genus, Micruroides, is considered the sister clade of all New World coral snakes (Genus Micrurus), is monotypic, and is represented by Sonoran Coral Snakes, Micruroides euryxanthus. Coral snakes of the genus Micrurus have been reported to have venoms that are predominantly composed of phospholipases A2 (PLA2) or three finger toxins (3FTx), but the venoms of the genus Micruroides are almost completely unstudied. Here, we present the first description of the venom of M. euryxanthus including identification of some proteins as well as transcriptomic, and biological activity assays. The most abundant components within M. euryxanthus venom are 3FTxs (62.3%) and there was relatively low proportion of PLA2s (14.2%). The venom phenotype supports the hypothesis that the common ancestor of Micrurus and Micruroides had a 3FTx-dominated venom. Within the venom, there were two nearly identical α-neurotoxins (α-Ntx), one of which was designated Eurytoxin, that account for approximately 60% of the venom's lethality to mice. Eurytoxin was cloned, expressed in a soluble and active form, and used to produce rabbit hyperimmune serum. This allowed the analysis of its immunochemical properties, showing them to be different from the recombinant αNTx D.H., present in the venoms of some species of Micrurus. Finally, we observed that the commercial antivenom produced in Mexico for coral snake envenomation is unable to neutralize the lethality from M. euryxanthus venom. This work allowed the classification of Micruroides venom into the 3FTx-predominant group and identified the main components responsible for toxicity to mice.


Assuntos
Cobras Corais , Venenos Elapídicos , Fosfolipases A2 , Proteínas de Répteis , Animais , Cobras Corais/genética , Cobras Corais/metabolismo , Venenos Elapídicos/biossíntese , Venenos Elapídicos/genética , Fosfolipases A2/biossíntese , Fosfolipases A2/genética , Proteínas de Répteis/biossíntese , Proteínas de Répteis/genética , Especificidade da Espécie
10.
Dev Comp Immunol ; 117: 103965, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33310083

RESUMO

Peptidoglycan recognition proteins (PGRPs), which are discovered in invertebrates and vertebrates, play an important role in antibacterial immunity. However, the function of PGRPs is largely uninvestigated in reptiles. In the present study, a short-type PGRP gene, designed as C-turtle-PGRP-S, was identified in the Chinese soft-shelled turtle, Pelodiscus sinensis. The C-turtle-PGRP-S contains a highly conserved PGRP domain and has close relationship with PGRP-S orthologues in other species according to sequence and phylogenetic analyses. C-turtle-PGRP-S gene was constitutively expressed in all detected tissues and was induced by Edwardsiella tarda. Additionally, recombinant C-turtle-PGRP-S showed PGN binding activity and antibacterial function against E. tarda. Therefore, it is suggested that the function of PGRP-S is likely to be conserved in reptile vertebrates, as observed in other vertebrates, shedding light on the evolutionary conservation of PGRPs.


Assuntos
Proteínas de Transporte/genética , Proteínas de Répteis/genética , Tartarugas/genética , Amidoidrolases/genética , Amidoidrolases/imunologia , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Linhagem Celular , China , Clonagem Molecular , Edwardsiella tarda/imunologia , Edwardsiella tarda/fisiologia , Perfilação da Expressão Gênica/métodos , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Filogenia , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Proteínas de Répteis/classificação , Proteínas de Répteis/metabolismo , Homologia de Sequência de Aminoácidos , Tartarugas/metabolismo , Tartarugas/microbiologia
11.
Genes (Basel) ; 11(10)2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080926

RESUMO

Across the distribution of the Caspian whipsnake (Dolichophis caspius), populations have become increasingly disconnected due to habitat alteration. To understand population dynamics and this widespread but locally endangered snake's adaptive potential, we investigated population structure, admixture, and effective migration patterns. We took a landscape-genomic approach to identify selected genotypes associated with environmental variables relevant to D. caspius. With double-digest restriction-site associated DNA (ddRAD) sequencing of 53 samples resulting in 17,518 single nucleotide polymorphisms (SNPs), we identified 8 clusters within D. caspius reflecting complex evolutionary patterns of the species. Estimated Effective Migration Surfaces (EEMS) revealed higher-than-average gene flow in most of the Balkan Peninsula and lower-than-average gene flow along the middle section of the Danube River. Landscape genomic analysis identified 751 selected genotypes correlated with 7 climatic variables. Isothermality correlated with the highest number of selected genotypes (478) located in 41 genes, followed by annual range (127) and annual mean temperature (87). We conclude that environmental variables, especially the day-to-night temperature oscillation in comparison to the summer-to-winter oscillation, may have an important role in the distribution and adaptation of D. caspius.


Assuntos
Variação Genética , Genética Populacional , Genoma , Genômica/métodos , Proteínas de Répteis/genética , Serpentes/genética , Adaptação Fisiológica , Animais , Ásia Ocidental , Evolução Biológica , Europa Oriental , Fluxo Gênico , Genótipo
12.
Toxins (Basel) ; 12(10)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081249

RESUMO

Ontogenetic shifts in venom occur in many snakes but establishing their nature as gradual or discrete processes required additional study. We profiled shifts in venom expression from the neonate to adult sizes of two rattlesnake species, the eastern diamondback and the timber rattlesnake. We used serial sampling and venom chromatographic profiling to test if ontogenetic change occurs gradually or discretely. We found evidence for gradual shifts in overall venom composition in six of eight snakes, which sometimes spanned more than two years. Most chromatographic peaks shift gradually, but one quarter shift in a discrete fashion. Analysis of published diet data showed gradual shifts in overall diet composition across the range of body sizes attained by our eight study animals, while the shifts in abundance of different prey classes varied in form from gradual to discrete. Testosterone concentrations were correlated with the change in venom protein composition, but the relationship is not strong enough to suggest causation. Venom research employing simple juvenile versus adult size thresholds may be failing to account for continuous variation in venom composition lifespan. Our results imply that venom shifts represent adaptive matches to dietary shifts and highlight venom for studies of alternative gene regulatory mechanisms.


Assuntos
Venenos de Crotalídeos/metabolismo , Crotalus/metabolismo , Ecossistema , Proteínas de Répteis/metabolismo , Testosterona/metabolismo , Fatores Etários , Animais , Tamanho Corporal , Venenos de Crotalídeos/genética , Crotalus/genética , Crotalus/crescimento & desenvolvimento , Dieta , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Répteis/genética
14.
J Immunol ; 205(3): 637-647, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591403

RESUMO

Atypical TCRδ found in sharks, amphibians, birds, and monotremes and TCRµ found in monotremes and marsupials are TCR chains that use Ig or BCR-like variable domains (VHδ/Vµ) rather than conventional TCR V domains. These unconventional TCR are consistent with a scenario in which TCR and BCR, although having diverged from each other more than 400 million years ago, continue to exchange variable gene segments in generating diversity for Ag recognition. However, the process underlying this exchange and leading to the evolution of these atypical TCR receptor genes remains elusive. In this study, we identified two TCRα/δ gene loci in the Chinese alligator (Alligator sinensis). In total, there were 144 V, 154 Jα, nine Jδ, eight Dδ, two Cα, and five Cδ gene segments in the TCRα/δ loci of the Chinese alligator, representing the most complicated TCRα/δ gene system in both genomic structure and gene content in any tetrapod examined so far. A pool of 32 VHδ genes divided into 18 subfamilies was found to be scattered over the two loci. Phylogenetic analyses revealed that these VHδ genes could be related to bird VHδ genes, VHδ/Vµ genes in platypus or opossum, or alligator VH genes. Based on these findings, a model explaining the evolutionary pattern of atypical TCRδ/TCRµ genes in tetrapods is proposed. This study sheds new light on the evolution of TCR and BCR genes, two of the most essential components of adaptive immunity.


Assuntos
Jacarés e Crocodilos , Evolução Molecular , Loci Gênicos , Receptores de Antígenos de Linfócitos T alfa-beta , Proteínas de Répteis , Jacarés e Crocodilos/genética , Jacarés e Crocodilos/imunologia , Animais , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Proteínas de Répteis/genética , Proteínas de Répteis/imunologia
15.
Front Immunol ; 11: 651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411128

RESUMO

Alligators are crocodilians and among few species that endured the Cretaceous-Paleogene extinction event. With long life spans, low metabolic rates, unusual immunological characteristics, including strong antibacterial and antiviral ability, and cancer resistance, crocodilians may hold information for molecular pathways underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of calcium-activated enzymes that cause posttranslational protein deimination/citrullination in a range of target proteins contributing to protein moonlighting functions in health and disease. PADs are phylogenetically conserved and are also a key regulator of extracellular vesicle (EV) release, a critical part of cellular communication. As little is known about PAD-mediated mechanisms in reptile immunology, this study was aimed at profiling EVs and protein deimination in Alligator mississippiensis. Alligator plasma EVs were found to be polydispersed in a 50-400-nm size range. Key immune, metabolic, and gene regulatory proteins were identified to be posttranslationally deiminated in plasma and plasma EVs, with some overlapping hits, while some were unique to either plasma or plasma EVs. In whole plasma, 112 target proteins were identified to be deiminated, while 77 proteins were found as deiminated protein hits in plasma EVs, whereof 31 were specific for EVs only, including proteins specific for gene regulatory functions (e.g., histones). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed KEGG pathways specific to deiminated proteins in whole plasma related to adipocytokine signaling, while KEGG pathways of deiminated proteins specific to EVs included ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis pathways as well as core histones. This highlights roles for EV-mediated export of deiminated protein cargo with roles in metabolism and gene regulation, also related to cancer. The identification of posttranslational deimination and EV-mediated communication in alligator plasma revealed here contributes to current understanding of protein moonlighting functions and EV-mediated communication in these ancient reptiles, providing novel insight into their unusual immune systems and physiological traits. In addition, our findings may shed light on pathways underlying cancer resistance, antibacterial and antiviral resistance, with translatable value to human pathologies.


Assuntos
Jacarés e Crocodilos/sangue , Jacarés e Crocodilos/imunologia , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Imunidade , Proteoma/genética , Jacarés e Crocodilos/genética , Animais , Citrulinação , Vesículas Extracelulares/genética , Histonas/genética , Masculino , Filogenia , Mapas de Interação de Proteínas/genética , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Répteis/genética , Proteínas de Répteis/metabolismo
16.
PLoS One ; 15(4): e0225233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32324729

RESUMO

The Assam Roofed Turtle, Pangshura sylhetensis is an endangered and least studied species endemic to India and Bangladesh. The present study decodes the first complete mitochondrial genome of P. sylhetensis (16,568 bp) by using next-generation sequencing. The assembly encodes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one control region (CR). Most of the genes were encoded on the majority strand, except NADH dehydrogenase subunit 6 (nad6) and eight tRNAs. All PCGs start with an ATG initiation codon, except for Cytochrome oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 5 (nad5), which both start with GTG codon. The study also found the typical cloverleaf secondary structures in most of the predicted tRNA structures, except for serine (trnS1) which lacks of conventional DHU arm and loop. Both Bayesian and maximum-likelihood phylogenetic inference using 13 concatenated PCGs demonstrated strong support for the monophyly of all 52 Testudines species within their respective families and revealed Batagur trivittata as the nearest neighbor of P. sylhetensis. The mitogenomic phylogeny with other amniotes is congruent with previous research, supporting the sister relationship of Testudines and Archosaurians (birds and crocodilians). Additionally, the mitochondrial Gene Order (GO) analysis indicated plesiomorphy with the typical vertebrate GO in most of the Testudines species.


Assuntos
Espécies em Perigo de Extinção , Genoma Mitocondrial , Tartarugas/genética , Animais , Ordem dos Genes , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética , Proteínas de Répteis/genética
17.
Fish Shellfish Immunol ; 101: 88-98, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32229294

RESUMO

Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of crucial signaling molecules that mediate the signal transduction of various immune signaling pathways. Extensive studies have demonstrated that TRAFs play vital roles in regulating cellular immune responses. However, the biological functions and expression profiling of TRAFs in Chinese soft-shelled turtle (Pelodiscus sinensis) remain unclear. In this study, the genes of the PsTRAF family at the genome-wide level were identified in P. sinensis, revealing six PsTRAF members that contained the conserved TRAF domain in the C-terminal regions. Molecular evolutionary analysis showed that PsTRAFs shared close evolutionary relationships and similar protein crystal structures with the TRAF homologs from other turtles, indicating the evolutionary conservation of PsTRAFs. Further expression analysis revealed the tissue-specific expression of PsTRAF genes. Obvious variations in the expression of PsTRAF genes were observed in the spleen in response to Aeromonas hydrophila infection. Three PsTRAF genes, PsTRAF2, PsTRAF3, and PsTRAF6, were significantly upregulated at the mRNA and protein levels post-infection, indicating their potential function in the immune response. Moreover, the protein-protein associations of PsTRAFs with several signaling receptors were predicted in P. sinensis. These results provide a basis for the investigation of the functional roles of PsTRAFs in immune defense against bacterial infection.


Assuntos
Genoma , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata/genética , Proteínas de Répteis/genética , Transcriptoma/imunologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Tartarugas , Aeromonas hydrophila/fisiologia , Animais , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Proteínas de Répteis/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo
18.
Toxins (Basel) ; 12(3)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178374

RESUMO

The CAP protein superfamily (Cysteine-rich secretory proteins (CRISPs), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) proteins) is widely distributed, but for toxinologists, snake venom CRISPs are the most familiar members. Although CRISPs are found in the majority of venoms, very few of these proteins have been functionally characterized, but those that have been exhibit diverse activities. Snake venom CRISPs (svCRISPs) inhibit ion channels and the growth of new blood vessels (angiogenesis). They also increase vascular permeability and promote inflammatory responses (leukocyte and neutrophil infiltration). Interestingly, CRISPs in lamprey buccal gland secretions also manifest some of these activities, suggesting an evolutionarily conserved function. As we strive to better understand the functions that CRISPs serve in venoms, it is worth considering the broad range of CRISP physiological activities throughout the animal kingdom. In this review, we summarize those activities, known crystal structures and sequence alignments, and we discuss predicted functional sites. CRISPs may not be lethal or major components of venoms, but given their almost ubiquitous occurrence in venoms and the accelerated evolution of svCRISP genes, these venom proteins are likely to have functions worth investigating.


Assuntos
Proteínas de Répteis , Venenos de Serpentes , Animais , Cisteína , Evolução Molecular , Humanos , Ligação Proteica , Proteínas de Répteis/química , Proteínas de Répteis/genética , Proteínas de Répteis/toxicidade , Venenos de Serpentes/química , Venenos de Serpentes/genética , Venenos de Serpentes/toxicidade
19.
Toxins (Basel) ; 12(3)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178380

RESUMO

Small serum proteins (SSPs) are low-molecular-weight proteins in snake serum with affinities for various venom proteins. Five SSPs, PfSSP-1 through PfSSP-5, have been reported in Protobothrops flavoviridis ("habu", Pf) serum so far. Recently, we reported that the five genes encoding these PfSSPs are arranged in tandem on a single chromosome. However, the physiological functions and evolutionary origins of the five SSPs remain poorly understood. In a detailed analysis of the habu draft genome, we found a gene encoding a novel SSP, SSP-6. Structural analysis of the genes encoding SSPs and their genomic arrangement revealed the following: (1) SSP-6 forms a third SSP subgroup; (2) SSP-5 and SSP-6 were present in all snake genomes before the divergence of non-venomous and venomous snakes, while SSP-4 was acquired only by venomous snakes; (3) the composition of paralogous SSP genes in snake genomes seems to reflect snake habitat differences; and (4) the evolutionary emergence of SSP genes is probably related to the physiological functions of SSPs, with an initial snake repertoire of SSP-6 and SSP-5. SSP-4 and its derivative, SSP-3, as well as SSP-1 and SSP-2, appear to be venom-related and were acquired later.


Assuntos
Proteínas Sanguíneas/genética , Crotalinae/genética , Proteínas de Répteis/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Venenos de Crotalídeos/genética , DNA Complementar/genética , Evolução Molecular , Genoma
20.
Cell Prolif ; 53(1): e12729, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31746095

RESUMO

OBJECTIVES: The successional dental lamina is the distinctive structure on the lingual side of the vertebrate tooth germ. The aim of this study was to investigate the relationship among Sox2, Claudin10 and laminin5 and the role of Sox2 in successional dental lamina proliferation during vertebrate tooth development. MATERIALS AND METHODS: To understand the successional dental lamina, two types of successional tooth formation, that in geckos (with multiple rounds of tooth generation) and that in mice (with only one round of tooth generation), were analysed. RESULTS: Unique coexpression patterns of Sox2 and Claudin10 expression were compared in the successional dental lamina from the cap stage to the late bell stage in the mouse tooth germ and in juvenile gecko teeth to support continuous tooth replacement. Furthermore, Laminin5 expression was shown in the cap stage and decreased after the bell stage. Upon comparing the epithelial cell cycles and cell proliferation in successional dental lamina regions between mouse and gecko molars using BrdU and IdU staining and pulse-chase methods, distinctive patterns of continuous expression were revealed. Moreover, Sox2 overexpression with a lentiviral system resulted in hyperplastic dental epithelium in mouse molars. CONCLUSIONS: Our findings indicate that the regulation of Sox2 in dental lamina proliferation is fundamental to the successional dental lamina in both species.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Dente Molar/embriologia , Fatores de Transcrição SOXB1/metabolismo , Germe de Dente/embriologia , Animais , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Claudinas/biossíntese , Claudinas/genética , Células Epiteliais/citologia , Lagartos/embriologia , Camundongos , Camundongos Endogâmicos ICR , Dente Molar/citologia , Proteínas de Répteis/genética , Proteínas de Répteis/metabolismo , Fatores de Transcrição SOXB1/genética , Germe de Dente/citologia , Calinina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...