Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(50): 20354-20361, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29123025

RESUMO

In the yeast Saccharomyces cerevisiae, the exposure to mating pheromone activates a prototypic mitogen-activated protein kinase (MAPK) cascade and triggers a dose-dependent differentiation response. Whereas a high pheromone dose induces growth arrest and formation of a shmoo-like morphology in yeast cells, lower pheromone doses elicit elongated cell growth. Previous population-level analysis has revealed that the MAPK Fus3 plays an important role in mediating this differentiation switch. To further investigate how Fus3 controls the fate decision process at the single-cell level, we developed a specific translocation-based reporter for monitoring Fus3 activity in individual live cells. Using this reporter, we observed strikingly different dynamic patterns of Fus3 activation in single cells differentiated into distinct fates. Cells committed to growth arrest and shmoo formation exhibited sustained Fus3 activation. In contrast, most cells undergoing elongated growth showed either a delayed gradual increase or pulsatile dynamics of Fus3 activity. Furthermore, we found that chemically perturbing Fus3 dynamics with a specific inhibitor could effectively redirect the mating differentiation, confirming the causative role of Fus3 dynamics in driving cell fate decisions. MAPKs mediate proliferation and differentiation signals in mammals and are therapeutic targets in many cancers. Our results highlight the importance of MAPK dynamics in regulating single-cell responses and open up the possibility that MAPK signaling dynamics could be a pharmacological target in therapeutic interventions.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Substituição de Aminoácidos , Proteínas do Citoesqueleto/agonistas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator de Acasalamento/agonistas , Fator de Acasalamento/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Feromônios/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Análise de Célula Única
2.
Biochemistry ; 56(41): 5471-5475, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28845660

RESUMO

Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serotonina/análise , Engenharia Celular , Meios de Cultivo Condicionados/química , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/genética , Galactose/metabolismo , Deleção de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Fator de Acasalamento/genética , Receptores 5-HT4 de Serotonina/química , Receptores 5-HT4 de Serotonina/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/genética , Serotonina/metabolismo , Espectrometria de Fluorescência
3.
J Biol Chem ; 292(33): 13853-13866, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28642366

RESUMO

Elucidation of the function of synaptonemal complex (SC) in Saccharomyces cerevisiae has mainly focused on in vivo analysis of recombination-defective meiotic mutants. Consequently, significant gaps remain in the mechanistic understanding of the activities of various SC proteins and the functional relationships among them. S. cerevisiae Hop1 and Red1 are essential structural components of the SC axial/lateral elements. Previous studies have demonstrated that Hop1 is a structure-selective DNA-binding protein exhibiting high affinity for the Holliday junction and promoting DNA bridging, condensation, and pairing between double-stranded DNA molecules. However, the exact mode of action of Red1 remains unclear, although it is known to interact with Hop1 and to suppress the spore viability defects of hop1 mutant alleles. Here, we report the purification and functional characterization of the full-length Red1 protein. Our results revealed that Red1 forms a stable complex with Hop1 in vitro and provided quantitative insights into their physical interactions. Mechanistically, Red1 preferentially associated with the Holliday junction and 3-way junction rather than with single- or double-stranded DNA with overhangs. Although Hop1 and Red1 exhibited similar binding affinities toward several DNA substrates, the two proteins displayed some significant differences. Notably, Red1, by itself, lacked DNA-pairing ability; however, it potentiated Hop1-promoted intermolecular pairing between double-stranded DNA molecules. Moreover, Red1 exhibited nonhomologous DNA end-joining activity, thus revealing an unexpected role for Red1 in recombination-based DNA repair. Collectively, this study presents the first direct insights into Red1's mode of action and into the mechanism underlying its role in chromosome synapsis and recombination.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/agonistas , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Complexo Sinaptonêmico/metabolismo , Pareamento de Bases , Pareamento Cromossômico , DNA Circular/química , DNA Circular/metabolismo , DNA Cruciforme/química , DNA Cruciforme/metabolismo , DNA Fúngico/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cinética , Microscopia de Força Atômica , Mutação , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Complexo Sinaptonêmico/química , Complexo Sinaptonêmico/genética
4.
FEBS Lett ; 590(1): 148-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26787465

RESUMO

Coordination and cross talks of MAPK pathways are critical for signaling efficiency, but their mechanisms are not well understood. Slt2, the MAP kinase of cell wall integrity pathway (CWI), is activated by heat stress even in the absence of upstream components of this pathway, suggesting a supplementary input for Slt2 activation. Here, we identify a new interaction of Ste11 and Mkk1, mediated by Nst1 that connects the high-osmolarity glycerol and pheromone pathways directly to CWI pathway in response to heat and pheromone. We suggest that Ser(407) and Thr(411) are novel residues of Mkk1 activated by these MAPK pathways.


Assuntos
MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Substituição de Aminoácidos , Parede Celular/enzimologia , Parede Celular/metabolismo , Deleção de Genes , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemaglutininas Virais/química , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Temperatura Alta/efeitos adversos , MAP Quinase Quinase 1/química , MAP Quinase Quinase 1/genética , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Feromônios/farmacologia , Fosforilação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/efeitos dos fármacos
5.
FEBS J ; 280(16): 3887-905, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23763840

RESUMO

In the Saccharomyces cerevisiae glycolytic pathway, 11 enzymes catalyze the stepwise conversion of glucose to two molecules of ethanol plus two CO2 molecules. In the highly crowded cytoplasm, this pathway would be very inefficient if it were dependent on substrate/enzyme diffusion. Therefore, the existence of a multi-enzymatic glycolytic complex has been suggested. This complex probably uses the cytoskeleton to stabilize the interaction of the various enzymes. Here, the role of filamentous actin (F-actin) in stabilization of a putative glycolytic metabolon is reported. Experiments were performed in isolated enzyme/actin mixtures, cytoplasmic extracts and permeabilized yeast cells. Polymerization of actin was promoted using phalloidin or inhibited using cytochalasin D or latrunculin. The polymeric filamentous F-actin, but not the monomeric globular G-actin, stabilized both the interaction of isolated glycolytic pathway enzyme mixtures and the whole fermentation pathway, leading to higher fermentation activity. The associated complexes were resistant against inhibition as a result of viscosity (promoted by the disaccharide trehalose) or inactivation (using specific enzyme antibodies). In S. cerevisiae, a glycolytic metabolon appear to assemble in association with F-actin. In this complex, fermentation activity is enhanced and enzymes are partially protected against inhibition by trehalose or by antibodies.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Glicólise , Metaboloma , Complexos Multienzimáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Actinas/agonistas , Actinas/antagonistas & inibidores , Actinas/química , Anticorpos Antifúngicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citocalasina D/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/enzimologia , Citoplasma/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Fermentação/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Cinética , Metaboloma/efeitos dos fármacos , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/química , Faloidina/farmacologia , Polimerização/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Tiazolidinas/farmacologia , Trealose/farmacologia , Moduladores de Tubulina/farmacologia , Viscosidade
6.
PLoS One ; 8(1): e53581, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308257

RESUMO

The study of systems genetics is changing the way the genetic and molecular basis of phenotypic variation, such as disease susceptibility and drug response, is being analyzed. Moreover, systems genetics aids in the translation of insights from systems biology into genetics. The use of systems genetics enables greater attention to be focused on the potential impact of genetic perturbations on the molecular states of networks that in turn affects complex traits. In this study, we developed models to detect allele-specific perturbations on interactions, in which a genetic locus with alternative alleles exerted a differing influence on an interaction. We utilized the models to investigate the dynamic behavior of an integrated molecular network undergoing genetic perturbations in yeast. Our results revealed the complexity of regulatory relationships between genetic loci and networks, in which different genetic loci perturb specific network modules. In addition, significant within-module functional coherence was found. We then used the network perturbation model to elucidate the underlying molecular mechanisms of individual differences in response to 100 diverse small molecule drugs. As a result, we identified sub-networks in the integrated network that responded to variations in DNA associated with response to diverse compounds and were significantly enriched for known drug targets. Literature mining results provided strong independent evidence for the effectiveness of these genetic perturbing networks in the elucidation of small-molecule responses in yeast.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Locos de Características Quantitativas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Alelos , Biomarcadores Farmacológicos/metabolismo , Epistasia Genética/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Análise em Microsséries , Farmacogenética , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas
7.
J Mol Biol ; 409(4): 513-28, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21477594

RESUMO

We describe a rapid method to probe for mutations in cell surface ligand-binding proteins that affect the environment of bound ligand. The method uses fluorescence-activated cell sorting to screen randomly mutated receptors for substitutions that alter the fluorescence emission spectrum of environmentally sensitive fluorescent ligands. When applied to the yeast α-factor receptor Ste2p, a G protein-coupled receptor, the procedure identified 22 substitutions that red shift the emission of a fluorescent agonist, including substitutions at residues previously implicated in ligand binding and at additional sites. A separate set of substitutions, identified in a screen for mutations that alter the emission of a fluorescent α-factor antagonist, occurs at sites that are unlikely to contact the ligand directly. Instead, these mutations alter receptor conformation to increase ligand-binding affinity and provide signaling in response to antagonists of normal receptors. These results suggest that receptor--agonist interactions involve at least two sites, of which only one is specific for the activated conformation of the receptor.


Assuntos
Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Mutação , Receptores de Fator de Acasalamento/agonistas , Receptores de Fator de Acasalamento/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Sequência de Aminoácidos , Ligantes , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Receptores de Fator de Acasalamento/genética , Receptores de Fator de Acasalamento/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Mol Microbiol ; 76(4): 1034-48, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20444096

RESUMO

Cadmium (Cd(2+)) is a very toxic metal that causes DNA damage, oxidative stress and apoptosis. Despite many studies, the cellular and molecular mechanisms underlying its high toxicity are not clearly understood. We show here that very low doses of Cd(2+) cause ER stress in Saccharomyces cerevisiae as evidenced by the induction of the unfolded protein response (UPR) and the splicing of HAC1 mRNA. Furthermore, mutant strains (Delta ire1 and Delta hac1) unable to induce the UPR are hypersensitive to Cd(2+), but not to arsenite and mercury. The full functionality of the pathways involved in ER stress response is required for Cd(2+) tolerance. The data also suggest that Cd(2+)-induced ER stress and Cd(2+) toxicity are a direct consequence of Cd(2+) accumulation in the ER. Cd(2+) does not inhibit disulfide bond formation but perturbs calcium metabolism. In particular, Cd(2+) activates the calcium channel Cch1/Mid1, which also contributes to Cd(2+) entry into the cell. The results reinforce the interest of using yeast as a cellular model to study toxicity mechanisms in eukaryotic cells.


Assuntos
Cádmio/toxicidade , Retículo Endoplasmático/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Estresse Fisiológico , Cádmio/metabolismo , Canais de Cálcio/metabolismo , Farmacorresistência Fúngica , Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Proc Natl Acad Sci U S A ; 107(7): 2890-5, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133652

RESUMO

A novel concept in eukaryotic signal transduction is the use of nutrient transporters and closely related proteins as nutrient sensors. The action mechanism of these "transceptors" is unclear. The Pho84 phosphate transceptor in yeast transports phosphate and mediates rapid phosphate activation of the protein kinase A (PKA) pathway during growth induction. We have now identified several phosphate-containing compounds that act as nontransported signaling agonists of Pho84. This indicates that signaling does not require complete transport of the substrate. For the nontransported agonist glycerol-3-phosphate (Gly3P), we show that it is transported by two other carriers, Git1 and Pho91, without triggering signaling. Gly3P is a competitive inhibitor of transport through Pho84, indicating direct interaction with its phosphate-binding site. We also identified phosphonoacetic acid as a competitive inhibitor of transport without agonist function for signaling. This indicates that binding of a compound into the phosphate-binding site of Pho84 is not enough to trigger signaling. Apparently, signaling requires a specific conformational change that may be part of, but does not require, the complete transport cycle. Using Substituted Cysteine Accessibility Method (SCAM) we identified Phe(160) in TMD IV and Val(392) in TMD VIII as residues exposed with their side chain into the phosphate-binding site of Pho84. Inhibition of both transport and signaling by covalent modification of Pho84(F160C) or Pho84(V392C) showed that the same binding site is used for transport of phosphate and for signaling with both phosphate and Gly3P. Our results provide to the best of our knowledge the first insight into the molecular mechanism of a phosphate transceptor.


Assuntos
Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Sítios de Ligação/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicerofosfatos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida , Ácido Fosfonoacéticos/metabolismo , Simportadores de Próton-Fosfato/agonistas , Simportadores de Próton-Fosfato/genética , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/genética
10.
Methods Enzymol ; 460: 399-412, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19446737

RESUMO

G-protein-coupled receptors (GPCR) are prime targets for therapies with small molecule-antagonists. Since yeast have GPCR triggered signaling pathways analogous to those present in mammalian cells, it is possible to express human receptors in yeast coupled to the pheromone responsive signaling cascade in variants that contain mammalian-yeast Galpha subunit chimeras. CXCR4 and CXCR4(N119S), a constitutively active mutant were expressed in yeast coupled to pheromone responsive reporter genes, HIS3, lacZ, or FUI, and tested for signaling activity. Compounds derived from T140, an inverse agonist for CXCR4, were screened for activity using yeast cells expressing CXCR4(N119S) and containing a FUS1-lacZ reporter gene. Levels of inhibition of beta-galactosidase activities triggered by constitutive activation of the pheromone response pathway that were obtained in the presence of the T140 derived compounds correlated with affinities measured in radioligand binding inhibition experiments. The yeast signaling system may provide an effective approach for screening chemokine receptor antagonists.


Assuntos
Quimiocina CXCL12/metabolismo , Regulação Fúngica da Expressão Gênica , Receptores CXCR4/agonistas , Receptores CXCR4/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Receptores CXCR4/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/agonistas
11.
Biochim Biophys Acta ; 1790(1): 1-7, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18996443

RESUMO

BACKGROUND: The S. cerevisiae alpha-factor receptor, Ste2p, is a G-protein coupled receptor that plays key roles in yeast signaling and mating. Oligomerization of Ste2p has previously been shown to be important for intracellular trafficking, receptor processing and endocytosis. However the role of ligand in receptor oligomerization remains enigmatic. METHODS: Using functional recombinant forms of purified Ste2p, atomic force microscopy, dynamic light scattering and chemical crosslinking are applied to investigate the role of ligand in Ste2p oligomerization. RESULTS: Atomic force microscopy images indicate a molecular height for recombinant Ste2p in the presence of alpha-factor nearly double that of Ste2p alone. This observation is supported by complementary dynamic light scattering measurements which indicate a ligand-induced increase in the polydispersity of the Ste2p hydrodynamic radius. Finally, chemical cross-linking of HEK293 plasma membranes presenting recombinant Ste2p indicates alpha-factor induced stabilization of the dimeric form and higher order oligomeric forms of the receptor upon SDS-PAGE analysis. CONCLUSIONS: alpha-factor induces oligomerization of Ste2p in vitro and in membrane. GENERAL SIGNIFICANCE: These results provide additional evidence of a possible role for ligand in mediation of Ste2p oligomerization in vivo.


Assuntos
Receptores de Fator de Acasalamento/química , Proteínas de Saccharomyces cerevisiae/química , Biopolímeros , Linhagem Celular , Membrana Celular/química , Reagentes de Ligações Cruzadas/química , Detergentes , Humanos , Ligantes , Luz , Maleimidas/química , Fator de Acasalamento , Micelas , Microscopia de Força Atômica , Peptídeos/química , Receptores de Fator de Acasalamento/agonistas , Receptores de Fator de Acasalamento/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/genética , Espalhamento de Radiação , Soluções
12.
Mol Microbiol ; 69(4): 982-93, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18573178

RESUMO

Yeast cell wall assembly is a highly regulated and dynamic process. A class of cell surface aspartic peptidases anchored by a glycosylphosphatidylinositol (GPI) group, collectively known as yapsins, was proposed to be involved in cell wall construction. The Saccharomyces cerevisiae Yps1p, the prototypal yapsin, is processed internally within a loop region to produce an alpha/beta two-subunit enzyme. Here we investigated the activation mechanism of GPI-anchored Yps1p and identified some of its substrates. We report that all activation steps of GPI-Yps1p take place at the cell surface and are regulated by the environmental pH. GPI-Yps1p is active in vivo at pH 6.0 and pH 3.0 and functions as a sheddase for a subset of GPI-anchored enzymes, including itself and the Gas1 glucanosyltransferase. Importantly, while native GPI-Yps1p weakly suppresses many phenotypes associated with the yeast kex2Delta mutant, loop mutants that interfere with conversion into the two-subunit enzyme restore the kex2Delta phenotypes to near wild type level. We propose that cleavage of this internal loop region plays an important regulatory function through stimulating its shedding activity. Collectively, our data provide a direct link between the pH regulation of yeast cell wall assembly and the activity of a yapsin.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Parede Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Arginina/química , Arginina/genética , Ácido Aspártico Endopeptidases/genética , Catálise , Parede Celular/enzimologia , Ativação Enzimática , Concentração de Íons de Hidrogênio , Glicoproteínas de Membrana/metabolismo , Mutação , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
13.
FEBS Lett ; 582(10): 1514-8, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18396169

RESUMO

The yeast TRPY1 (Yvc1p) channel is activated by membrane stretch to release vacuolar Ca2+ into the cytoplasm upon osmotic upshock. Exogenously added indole greatly enhances the upshock-induced Ca2+ release in vivo. Indole also reversibly activates the channels under patch clamp. A minimum of 10(-6)M Ca2+ is needed for membrane stretch force to open TPRY1, but indole activation appears to be Ca2+ independent. A deletion of 30 residues at the predicted cytoplasmic domain, 570-600Delta, renders TRPY1 insensitive to stretch force upto 10(-3)M Ca2+. Nonetheless, indole readily activates this mutant channel. Several other aromatic compounds, e.g. the antimicrobial parabens, also activate TRPY1. These compounds likely alter the innate forces in the lipid bilayer received by the channel.


Assuntos
Hidrocarbonetos Aromáticos/farmacologia , Indóis/farmacologia , Proteínas de Saccharomyces cerevisiae/agonistas , Saccharomyces cerevisiae/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio , Técnicas de Patch-Clamp , Saccharomyces cerevisiae/metabolismo , Canais de Cátion TRPC
14.
Curr Opin Cell Biol ; 18(6): 589-97, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17046229

RESUMO

The target of rapamycin (TOR) pathway regulates ribosome biogenesis, protein synthesis, nutrient import, autophagy and cell cycle progression. After 30 years of concentrated attention, how TOR controls these processes is only now beginning to be understood. Recent advances have identified a wide array of TOR inputs, including amino acids, oxygen, ATP and growth factors, as well the regulatory proteins that facilitate their effects on TOR. Such proteins include AMPK, Rheb and the tumor suppressors LKB1, p53, and Tsc1/2. It has only recently been appreciated that TOR resides in two distinct signaling complexes with differing regulatory roles, only one of which is rapamycin-sensitive, thus opening a new avenue of inquiry into TOR function. Finally, TOR appears to regulate feeding behavior by facilitating communication between organ systems, and is thus implicated in the regulation of glucose and fat homeostasis, and possibly diabetes and obesity. TOR thus functions to coordinate growth-permitting inputs with growth-promoting outputs on both a cellular and an organismal level.


Assuntos
Homeostase/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Animais , Regulação do Apetite/fisiologia , Crescimento Celular , Metabolismo Energético/fisiologia , Evolução Molecular , Humanos , Proteínas Serina-Treonina Quinases , Ribossomos/genética , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Transportadoras/genética , Vesículas Transportadoras/metabolismo
15.
Proc Natl Acad Sci U S A ; 103(16): 6202-7, 2006 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-16601096

RESUMO

Previous two-hybrid analysis of the 17 soluble class E Vps yeast proteins revealed that Vps46p/Did2p interacts with Vta1p and the AAA (ATPase associated with a variety of cellular activities) ATPase Vps4p. Here we report that the binding of Vps46p to Vps4p and Vta1p is direct and not mediated by additional proteins, and the binding of Vps46p to Vps4p is ATP independent. Vps46p regulates the membrane association of Vps4p and is required for the interaction of Vta1p with Vps32p/Snf7p of the ESCRT-III complex. Vta1p is a potent activator of Vps4p, stimulating the ATPase activity by 6- to 8-fold. These results reveal functional roles for the Vps46p and Vta1p proteins in regulating the ESCRT complex assembly/disassembly cycle in protein sorting at the yeast late endosome.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Transporte/genética , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte , Modelos Biológicos , Transporte Proteico , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
16.
J Cell Biol ; 168(3): 401-14, 2005 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-15684030

RESUMO

The regulation of cellular membrane flux is poorly understood. Yeast respond to hypertonic stress by fragmentation of the normally large, low copy vacuole. We used this phenomenon as the basis for an in vivo screen to identify regulators of vacuole membrane dynamics. We report here that maintenance of the fragmented phenotype requires the vacuolar casein kinase I Yck3: when Yck3 is absent, salt-stressed vacuoles undergo fission, but reassemble in a SNARE-dependent manner, suggesting that vacuole fusion is disregulated. Accordingly, when Yck3 is deleted, in vitro vacuole fusion is increased, and Yck3 overexpression blocks fusion. Morphological and functional studies show that Yck3 modulates the Rab/homotypic fusion and vacuole protein sorting complex (HOPS)-dependent tethering stage of vacuole fusion. Intriguingly, Yck3 mediates phosphorylation of the HOPS subunit Vps41, a bi-functional protein involved in both budding and fusion during vacuole biogenesis. Because Yck3 also promotes efficient vacuole inheritance, we propose that tethering complex phosphorylation is a part of a general, switch-like mechanism for driving changes in organelle architecture.


Assuntos
Caseína Quinase I/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Vacúolos/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Proteínas Adaptadoras de Transporte Vesicular , Anticorpos/farmacologia , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Inibidores Enzimáticos/farmacologia , Genótipo , Inibidores de Dissociação do Nucleotídeo Guanina/farmacologia , Toxinas Marinhas , Fusão de Membrana/efeitos dos fármacos , Fusão de Membrana/fisiologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Microcistinas , Microscopia de Fluorescência , Modelos Biológicos , Mutação , Proteínas do Tecido Nervoso/imunologia , Organelas/metabolismo , Organelas/fisiologia , Peptídeos Cíclicos/farmacologia , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas SNARE , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/imunologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Solução Salina Hipertônica/farmacologia , Proteína 25 Associada a Sinaptossoma , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/imunologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/imunologia , Proteínas Ativadoras de ras GTPase/agonistas
17.
Mol Cell ; 16(2): 293-9, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15494315

RESUMO

Several examples of G protein-coupled receptors have recently been suggested to respond to common sugars in millimolar concentrations. This low affinity has made it difficult to demonstrate direct receptor-ligand interaction. In the yeast Saccharomyces cerevisiae, rapid activation of the cAMP pathway by glucose and sucrose requires the GPCR Gpr1. Our results obtained by cysteine scanning mutagenesis and SCAM (substituted cysteine accessibility method) of residues in TMD VI provide strong evidence that glucose and sucrose directly interact as ligands with Gpr1. The affinity for sucrose is much higher. Structurally similar sugars such as galactose, mannose, and fructose do not act as agonists, but mannose acts as an antagonist for both sucrose and glucose. These results support the idea that Gpr1 directly senses sugars and that sugars can effectively bind GPCRs with a low affinity in a binding pocket formed by the transmembrane domains. The ligand repertoire of GPCRs can thus be extended to common sugars in millimolar concentrations.


Assuntos
Glucose/metabolismo , Manose/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/metabolismo , Sacarose/metabolismo , AMP Cíclico/metabolismo , Cisteína/genética , Cisteína/metabolismo , Ligantes , Mutagênese Sítio-Dirigida , Mutação , Receptores Acoplados a Proteínas G/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Fatores de Tempo
18.
Biochemistry ; 42(2): 293-301, 2003 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-12525156

RESUMO

The alpha-factor receptor (STE2) stimulates a G protein signaling pathway that promotes mating of the yeast Saccharomyces cerevisiae. Previous random mutagenesis studies implicated residues in the regions near the extracellular ends of the transmembrane domains in ligand activation. In this study, systematic Cys scanning mutagenesis across the ends of transmembrane domains 5 and 6 identified two residues, Phe(204) and Tyr(266), that were important for receptor signaling. These residues play a specific role in responding to alpha-factor since the F204C and Y266C substituted receptors responded to an alternative agonist (novobiocin). To better define the structure of this region, the Cys-substituted mutant receptors were assayed for reactivity with a thiol-specific probe that does not react with membrane-imbedded residues. A drop in reactivity coincided with residues likely to be buried in the membrane. Interestingly, both Phe(204) and Tyr(266) are located very near the interface region. However, these assays predict that Phe(204) is accessible at the surface of the receptor, consistent with the strong defect in binding alpha-factor caused by mutating this residue. In contrast, Tyr(266) was not accessible. This correlates with the ability of Y266C mutant receptors to bind alpha-factor and suggests that this residue is involved in the subsequent triggering of receptor activation. These results highlight the role of aromatic residues near the ends of the transmembrane segments in the alpha-factor receptor, and suggest that similar aromatic residues may play an important role in other G protein-coupled receptors.


Assuntos
Espaço Extracelular/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/fisiologia , Fenilalanina/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição , Tirosina/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Cisteína/genética , Espaço Extracelular/genética , Ligantes , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Novobiocina/metabolismo , Novobiocina/farmacologia , Fenótipo , Fenilalanina/genética , Estrutura Terciária de Proteína/genética , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/genética , Receptores de Fator de Acasalamento , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/genética , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/genética , Tirosina/genética
19.
Nature ; 416(6881): 653-7, 2002 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-11948353

RESUMO

Small molecules that alter protein function provide a means to modulate biological networks with temporal resolution. Here we demonstrate a potentially general and scalable method of identifying such molecules by application to a particular protein, Ure2p, which represses the transcription factors Gln3p and Nil1p. By probing a high-density microarray of small molecules generated by diversity-oriented synthesis with fluorescently labelled Ure2p, we performed 3,780 protein-binding assays in parallel and identified several compounds that bind Ure2p. One compound, which we call uretupamine, specifically activates a glucose-sensitive transcriptional pathway downstream of Ure2p. Whole-genome transcription profiling and chemical epistasis demonstrate the remarkable Ure2p specificity of uretupamine and its ability to modulate the glucose-sensitive subset of genes downstream of Ure2p. These results demonstrate that diversity-oriented synthesis and small-molecule microarrays can be used to identify small molecules that bind to a protein of interest, and that these small molecules can regulate specific functions of the protein.


Assuntos
Dioxanos/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Oxazóis/metabolismo , Príons , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Dioxanos/síntese química , Dioxanos/química , Dioxanos/farmacocinética , Dioxanos/farmacologia , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase , Ligantes , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Oxazóis/síntese química , Oxazóis/química , Oxazóis/farmacocinética , Oxazóis/farmacologia , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/agonistas , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Especificidade por Substrato , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...