Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(1): 1041-1049, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769661

RESUMO

Ultraviolet photodissociation (UVPD) produces rich and informative fragmentation of intact protein ions, but in the case of high mass proteins (>30 kDa) the spectra are congested with overlapping isotope patterns of highly charged fragment ions. In the most congested regions, many fragments cannot be confidently identified even when high-resolution mass analyzers and modern deconvolution algorithms are used. Gas-phase ion-ion proton transfer reactions (PTR), which reduce the charge states of highly charged ions, can be used to alleviate this congestion and facilitate the identification of additional fragment ions when performed following UVPD. We have developed protocols for sequentially performing PTR on multiple populations of ions generated by UVPD in a way that can be tailored to balance the depth of characterization with speed and throughput. The improvements in sequence coverage and fragment identifications are demonstrated for four proteins ranging in size from 29 to 56 kDa. Sequence coverages up to 80% were achieved for carbonic anhydrase (29 kDa), 50% for aldolase (39 kDa), 46% for enolase (46 kDa), and 27% for glutamate dehydrogenase (56 kDa), and up to 74% sequence coverage was obtained for 25 kDa antibody drug conjugate subunits in online LC-MS experiments.


Assuntos
Enzimas/química , Imunoconjugados/química , Prótons , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia Líquida/métodos , Enzimas/efeitos da radiação , Imunoconjugados/efeitos da radiação , Limite de Detecção , Proteólise/efeitos da radiação , Coelhos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Espectrometria de Massas em Tandem/métodos , Raios Ultravioleta
2.
Angew Chem Int Ed Engl ; 58(23): 7626-7630, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908862

RESUMO

Herein, the direct visualization of the dynamic interaction between a photoresponsive transcription factor fusion, GAL4-VVD, and DNA using high-speed atomic force microscopy (HS-AFM) is reported. A series of different GAL4-VVD movements, such as binding, sliding, stalling, and dissociation, was observed. Inter-strand jumping on two double-stranded (ds) DNAs was also observed. Detailed analysis using a long substrate DNA strand containing five GAL4-binding sites revealed that GAL4-VVD randomly moved on the dsDNA using sliding and hopping to rapidly find specific binding sites, and then stalled to the specific sites to form a stable complex formation. These results suggest the existence of different conformations of the protein to enable sliding and stalling. This single-molecule imaging system with nanoscale resolution provides an insight into the searching mechanism used by DNA-binding proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , DNA/química , DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/efeitos da radiação , Proteínas Fúngicas/genética , Proteínas Fúngicas/efeitos da radiação , Luz , Microscopia de Força Atômica , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/efeitos da radiação
3.
Int J Mol Sci ; 12(11): 8063-85, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174650

RESUMO

In eukaryotes, DNA is compacted into a complex structure known as chromatin. The unravelling of DNA is a crucial step in DNA repair, replication, transcription and recombination as this allows access to DNA for these processes. Failure to package DNA into the nucleosome, the individual unit of chromatin, can lead to genomic instability, driving a cell into apoptosis, senescence, or cellular proliferation. Ultraviolet (UV) radiation damage causes destabilisation of chromatin integrity. UV irradiation induces DNA damage such as photolesions and subjects the chromatin to substantial rearrangements, causing the arrest of transcription forks and cell cycle arrest. Highly conserved processes known as nucleotide and base excision repair (NER and BER) then begin to repair these lesions. However, if DNA repair fails, the cell may be forced into apoptosis. The modification of various histones as well as nucleosome remodelling via ATP-dependent chromatin remodelling complexes are required not only to repair these UV-induced DNA lesions, but also for apoptosis signalling. Histone modifications and nucleosome remodelling in response to UV also lead to the recruitment of various repair and pro-apoptotic proteins. Thus, the way in which a cell responds to UV irradiation via these modifications is important in determining its fate. Failure of these DNA damage response steps can lead to cellular proliferation and oncogenic development, causing skin cancer, hence these chromatin changes are critical for a proper response to UV-induced injury.


Assuntos
Cromatina/química , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Raios Ultravioleta , Apoptose/efeitos da radiação , Montagem e Desmontagem da Cromatina , Instabilidade Genômica , Histonas/metabolismo , Estrutura Molecular , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/efeitos da radiação
4.
J Mol Biol ; 408(3): 432-48, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21392508

RESUMO

Yeast prion [PSI(+)] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI(+)] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI(+)]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI(+)] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI(+)] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI(+)] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant.


Assuntos
Temperatura Alta , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/efeitos da radiação , Príons/química , Príons/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Estabilidade Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
FEMS Yeast Res ; 10(4): 402-11, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20402791

RESUMO

Lager beers are traditionally made at lower temperatures (6-14 degrees C) than ales (15-25 degrees C). At low temperatures, lager strains (Saccharomyces pastorianus) ferment faster than ale strains (Saccharomyces cerevisiae). Two lager and two ale strains had similar maltose transport activities at 20 degrees C, but at 0 degrees C the lager strains had fivefold greater activity. AGT1, MTT1 and MALx1 are major maltose transporter genes. In nine tested lager strains, the AGT1 genes contained premature stop codons. None of five tested ale strains had this defect. All tested lager strains, but no ale strain, contained MTT1 genes. When functional AGT1 from an ale strain was expressed in a lager strain, the resultant maltose transport activity had the high temperature dependence characteristic of ale yeasts. Lager yeast MTT1 and MALx1 genes were expressed in a maltose-negative laboratory strain of S. cerevisiae. The resultant Mtt1 transport activity had low temperature dependence and the Malx1 activity had high temperature dependence. Faster fermentation at low temperature by lager strains than ale strains may result from their different maltose transporters. The loss of Agt1 transporters during the evolution of lager strains may have provided plasma membrane space for the Mtt1 transporters that perform better at a low temperature.


Assuntos
Bebidas Alcoólicas/microbiologia , Maltose/metabolismo , Saccharomyces/metabolismo , Saccharomyces/efeitos da radiação , Temperatura , Transporte Biológico/efeitos da radiação , Fermentação/efeitos da radiação , Proteínas Fúngicas/genética , Proteínas Fúngicas/efeitos da radiação , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/efeitos da radiação , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Simportadores/genética , Simportadores/efeitos da radiação
6.
Radiat Environ Biophys ; 47(1): 157-68, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17874115

RESUMO

RAD30-encoded DNA polymerase eta functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an error-free manner. Although its transcript is UV-inducible in Saccharomyces cerevisiae, Rad30 (studied as a Rad30-Myc fusion) is a stable protein whose levels do not fluctuate following UV treatment or during cell cycle progression. Rad30 protein is subject to monoubiquitination whose level is upregulated in G1 and downregulated during S-phase reentry. This downregulation is accelerated in UV-treated cells. A missense mutation (L577Q) of the ubiquitin binding domain (UBZ) confers a reduced degree of ubiquitination outside of G1 and a complete failure to stably interact with ubiquitinated substrates. This mutation confers a phenotype resembling a complete RAD30 deletion, thus attesting to the significance of the UBZ motif for polymerase eta function in vivo.


Assuntos
DNA Polimerase Dirigida por DNA/biossíntese , DNA Polimerase Dirigida por DNA/efeitos da radiação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/efeitos da radiação , Ubiquitinação/fisiologia , Motivos de Aminoácidos , Dano ao DNA/efeitos da radiação , Reparo do DNA/fisiologia , Reparo do DNA/efeitos da radiação , Replicação do DNA/fisiologia , Replicação do DNA/efeitos da radiação , Ativadores de Enzimas , Genes Fúngicos/efeitos da radiação , RNA Fúngico/análise , RNA Fúngico/efeitos da radiação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/efeitos da radiação , Raios Ultravioleta/efeitos adversos
7.
Mol Cell Biol ; 26(24): 9544-54, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17030607

RESUMO

The nucleoprotein filament formed by Rad51 polymerization on single-stranded DNA is essential for homologous pairing and strand exchange. ATP binding is required for Rad51 nucleoprotein filament formation and strand exchange, but ATP hydrolysis is not required for these functions in vitro. Previous studies have shown that a yeast strain expressing the rad51-K191R allele is sensitive to ionizing radiation, suggesting an important role for ATP hydrolysis in vivo. The recruitment of Rad51-K191R to double-strand breaks is defective in vivo, and this phenotype can be suppressed by elimination of the Srs2 helicase, an antagonist of Rad51 filament formation. The phenotype of the rad51-K191R strain is also suppressed by overexpression of Rad54. In vitro, the Rad51-K191R protein exhibits a slight decrease in binding to DNA, consistent with the defect in presynaptic filament formation. However, the rad51-K191R mutation is dominant in heterozygous diploids, indicating that the defect is not due simply to reduced affinity for DNA. We suggest the Rad51-K191R protein either forms an altered filament or is defective in turnover, resulting in a reduced pool of free protein available for DNA binding.


Assuntos
Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/fisiologia , Substituição de Aminoácidos/genética , Nucleoproteínas/metabolismo , Rad51 Recombinase/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/genética , Alelos , Arginina/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Raios gama , Deleção de Genes , Lisina/genética , Mutação , Transporte Proteico/genética , Rad51 Recombinase/genética , Rad51 Recombinase/efeitos da radiação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/efeitos da radiação
8.
Mol Microbiol ; 56(6): 1518-26, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15916602

RESUMO

Summary The Saccharomyces cerevisiae protein Rad4 is involved in damage recognition in nucleotide excision repair (NER). In RNA polymerase II-transcribed regions Rad4 is essential for both NER subpathways global genome repair (GGR) and transcription coupled repair (TCR). In ribosomal DNA (rDNA), however, the RNA polymerase I-transcribed strand can be repaired in the absence of Rad4. In Saccharomyces cerevisiae the YDR314C protein shows homology to Rad4. The possible involvement of YDR314C in NER was studied by analysing strand-specific cyclobutane pyrimidine dimer (CPD) removal in both RNA pol I- and RNA pol II-transcribed genes. Here we show that the Rad4-independent repair of rDNA is dependent on YDR314C. Moreover, in Rad4 proficient cells preferential repair of the transcribed strand of RNA pol I-transcribed genes was lost after deletion of YDR314C, demonstrating that Rad4 cannot replace YDR314C. CPD removal from the RNA pol II-transcribed RPB2 gene was unaffected in ydr314c mutants. We conclude that the two homologous proteins Rad4 and YDR314C are both involved in NER and probably have a similar function, but operate at different loci in the genome and are unable to replace each other.


Assuntos
Reparo do DNA , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/genética , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/efeitos da radiação , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Homologia de Sequência de Aminoácidos , Raios Ultravioleta
9.
Mol Cell ; 18(2): 225-35, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15837425

RESUMO

The proteasome-interacting protein Rad23 is a long-lived protein. Interaction between Rad23 and the proteasome is required for Rad23's functions in nucleotide excision repair and ubiquitin-dependent degradation. Here, we show that the ubiquitin-associated (UBA)-2 domain of yeast Rad23 is a cis-acting, transferable stabilization signal that protects Rad23 from proteasomal degradation. Disruption of the UBA2 domain converts Rad23 into a short-lived protein that is targeted for degradation through its N-terminal ubiquitin-like domain. UBA2-dependent stabilization is required for Rad23 function because a yeast strain expressing a mutant Rad23 that lacks a functional UBA2 domain shows increased sensitivity to UV light and, in the absence of Rpn10, severe growth defects. The C-terminal UBA domains of Dsk2, Ddi1, Ede1, and the human Rad23 homolog hHR23A have similar protective activities. Thus, the UBA2 domain of Rad23 is an evolutionarily conserved stabilization signal that allows Rad23 to interact with the proteasome without facing destruction.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Western Blotting , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Quinase do Ponto de Checagem 2 , Reparo do DNA , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/efeitos da radiação , Citometria de Fluxo , Proteínas Fúngicas/efeitos da radiação , Células HeLa , Humanos , Testes de Precipitina , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/efeitos da radiação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Ubiquitina/metabolismo , Raios Ultravioleta
10.
Biochemistry ; 43(48): 15210-6, 2004 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-15568813

RESUMO

Alpha-anomeric 2'-deoxynucleosides (alphadN) are one of the products formed by ionizing radiation (IR) in DNA under anoxic conditions. Alpha-2'-deoxyadenosine (alphadA) and alpha-thymidine (alphaT) are not recognized by DNA glycosylases, and are likely removed by the alternative nucleotide incision repair (NIR) pathway. Indeed, it has been shown that alphadA is a substrate for the Escherichia coli Nfo and human Ape1 proteins. However, the repair pathway for removal of alphadA and other alphadN in yeast is unknown. Here we report that alphadA when present in DNA is recognized by the Saccharomyces cerevisiae Apn1 protein, a homologue of Nfo. Furthermore, alphaT is a substrate for Nfo and Apn1. Kinetic constants indicate that alphadA and alphaT are equally good substrates, as a tetrahydrofuranyl (THF) residue, for Nfo and Apn1. Using E. coli and S. cerevisiae cell-free extracts, we have further substantiated the role of the nfo and apn1 gene products in the repair of alphadN. Surprisingly, we found that bacteria and yeast NIR-deficient mutants are not sensitive to IR, suggesting that DNA strand breaks with terminal 3'-blocking groups rather than alphadN might contribute to cell survival. We propose that the novel substrate specificities of Nfo and Apn1 play an important role in counteracting oxidative DNA base damage.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Desoxiadenosinas/química , Desoxirribonuclease IV (Fago T4-Induzido)/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Anaerobiose/genética , Anaerobiose/efeitos da radiação , Pareamento de Bases , Sistema Livre de Células/metabolismo , Sistema Livre de Células/efeitos da radiação , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/efeitos da radiação , Desoxiadenosinas/efeitos da radiação , Desoxirribonuclease IV (Fago T4-Induzido)/genética , Desoxirribonuclease IV (Fago T4-Induzido)/efeitos da radiação , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/efeitos da radiação , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/efeitos da radiação , Raios gama , Humanos , Cinética , Mutagênese , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/efeitos da radiação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Especificidade por Substrato/genética , Especificidade por Substrato/efeitos da radiação , Timidina/metabolismo , Timidina/efeitos da radiação
11.
Mutat Res ; 544(2-3): 179-93, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14644320

RESUMO

Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote Saccharomyces cerevisiae was chosen to investigate the cells' genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [PSO1/REV3, PSO8/RAD6, PSO9/MEC3] were allelic to already known repair genes, whereas three, PSO2/SNM1, PSO3/RNR4, and PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in S. cerevisiae. Gene PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase zeta in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene, PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes, PSO6/ERG3 and PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens.


Assuntos
Dano ao DNA/genética , DNA Polimerase Dirigida por DNA/genética , Nucleotidiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/genética , Dano ao DNA/efeitos da radiação , DNA Fúngico/genética , DNA Polimerase Dirigida por DNA/efeitos da radiação , Mutagênicos/farmacocinética , Nucleotidiltransferases/efeitos da radiação , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Enzimas de Conjugação de Ubiquitina/efeitos da radiação , Raios Ultravioleta
12.
DNA Repair (Amst) ; 2(11): 1185-97, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14599741

RESUMO

DNA damage results in the up-regulation of several genes involved in different cellular physiological processes, such as the nucleotide excision repair (NER) mechanism that copes with a broad range of DNA alterations, including the carcinogenic ultraviolet (UV) light-induced pyrimidine dimers (PDs). There are two NER sub-pathways: transcription coupled repair (TCR) that is specific for the transcribed strands (TS) of active genes and global genomic repair (GGR) that repairs non-transcribed DNA sequences (NTD) and the non-transcribed strands (NTS) of expressed genes. To elucidate the role of UV-dependent de novo protein synthesis in nucleotide excision repair in the budding yeast, we investigated the effect of the protein synthesis inhibitor, cycloheximide, on the removal of PDs. Log phase as well as G(1)-synchronized cells were treated with the drug shortly before UV irradiation and immediately thereafter, and the repair of damaged DNA was assessed with the high resolution primer extension technique. The results show that in both cellular conditions, the inhibition of UV-dependent de novo protein synthesis by cycloheximide impairs the excision repair of the transcriptionally active GAL10 and URA3 genes, with a greater effect on the non-transcribed strands. This indicates that UV-mediated de novo protein synthesis is required for efficient nucleotide excision repair, but not for the preferential repair of the TSs. On the other hand, cycloheximide did not affect the repair of either strand of the repressed GAL10 gene or the non-transcribed promoter region of the URA3 gene, showing that UV-induced de novo protein synthesis is not required for PD removal from transcriptionally inactive DNA sequences. Together, these data show that despite the fact that NTD and NTSs are normally repaired by the GGR sub-pathway, their requirement for UV-dependent de novo protein synthesis is different, which may suggest a difference in the processing of UV lesions in these non-transcribed sequences of the genome.


Assuntos
Reparo do DNA , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/genética , Cicloeximida/farmacologia , Dano ao DNA , DNA Fúngico/efeitos da radiação , Inibidores da Síntese de Proteínas/farmacologia , Dímeros de Pirimidina/metabolismo , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Transcrição Gênica , Raios Ultravioleta
13.
Nat Cell Biol ; 5(6): 572-7, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12766777

RESUMO

DNA double-strand break repair (DSBR) is an essential process for preserving genomic integrity in all organisms. To investigate this process at the cellular level, we engineered a system of fluorescently marked DNA double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae to visualize in vivo DSBR in single cells. Using this system, we demonstrate for the first time that Rad52 DNA repair foci and DSBs colocalize. Time-lapse microscopy reveals that the relocalization of Rad52 protein into a focal assembly is a rapid and reversible process. In addition, analysis of DNA damage checkpoint-deficient cells provides direct evidence for coordination between DNA repair and subsequent release from checkpoint arrest. Finally, analyses of cells experiencing multiple DSBs demonstrate that Rad52 foci are centres of DNA repair capable of simultaneously recruiting more than one DSB.


Assuntos
Proteínas de Bactérias , Dano ao DNA , Reparo do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , DNA Fúngico/efeitos da radiação , Proteínas de Ligação a DNA/efeitos da radiação , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Proteínas de Escherichia coli/metabolismo , Fase G1/fisiologia , Fase G1/efeitos da radiação , Fase G2/fisiologia , Fase G2/efeitos da radiação , Raios gama/efeitos adversos , Genes de Insetos , Haploidia , Repressores Lac , Mitose , Proteína Rad52 de Recombinação e Reparo de DNA , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Fatores de Tempo
14.
Biochemistry ; 41(37): 11301-7, 2002 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-12220197

RESUMO

Using a combination of cysteine mutagenesis and covalent cross-linking, we have identified subunits in close proximity to specific sites within subunit B of the vacuolar (H(+))-ATPase (V-ATPase) of yeast. Unique cysteine residues were introduced into subunit B by site-directed mutagenesis, and the resultant V-ATPase complexes were reacted with the bifunctional, photoactivatable maleimide reagent 4-(N-maleimido)benzophenone (MBP) followed by irradiation. Cross-linked products were identified by Western blot using subunit-specific antibodies. Introduction of cysteine residues at positions Glu(106) and Asp(199) led to cross-linking of subunits B and E, at positions Asp(341) and Ala(424) to cross-linking of subunits B and D, and at positions Ala(15) and Lys(45) to cross-linking of subunits B and G. Using a molecular model of subunit B constructed on the basis of sequence homology between the V- and F-ATPases, the X-ray coordinates of the F(1)-ATPase, and energy minimization, Glu(106), Asp(199), Ala(15), and Lys(45) are all predicted to be located on the outer surface of the complex, with Ala(15) and Lys(45) located near the top of the complex furthest from the membrane. By contrast, Asp(341) and Ala(424) are predicted to face the interior of the A(3)B(3) hexamer. These results suggest that subunits E and G form part of a peripheral stalk connecting the V(1) and V(0) domains whereas subunit D forms part of a central stalk. Subunit D is thus the most likely homologue to the gamma subunit of F(1), which undergoes rotation during ATP hydrolysis and serves an essential function in rotary catalysis.


Assuntos
Reagentes de Ligações Cruzadas/química , Cisteína/química , Proteínas de Saccharomyces cerevisiae/química , ATPases Vacuolares Próton-Translocadoras/química , Benzofenonas/química , Cisteína/genética , Ativação Enzimática/genética , Ativação Enzimática/efeitos da radiação , Transporte de Íons/genética , Transporte de Íons/efeitos da radiação , Maleimidas/química , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/efeitos da radiação , Subunidades Proteicas , Prótons , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Raios Ultravioleta , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/efeitos da radiação
15.
Mol Biol Cell ; 13(5): 1536-49, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12006651

RESUMO

The highly conserved Cdc6 protein is required for initiation of eukaryotic DNA replication and, in yeast and Xenopus, for the coupling of DNA replication to mitosis. Herein, we show that human Cdc6 is rapidly destroyed by a p53-independent, proteasome-, and ubiquitin-dependent pathway during early stages of programmed cell death induced by the DNA-damaging drug adozelesin, or by a separate caspase-dependent pathway in cells undergoing apoptosis through an extrinsic pathway induced by tumor necrosis factor-alpha and cycloheximide. The proteasome-dependent pathway induced by adozelesin is conserved in the budding yeast Saccharomyces cerevisiae. The destruction of Cdc6 may be a primordial programmed death response that uncouples DNA replication from the cell division cycle, which is reinforced in metazoans by the evolution of caspases and p53.


Assuntos
Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/fisiologia , Indóis , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Benzofuranos , Caspase 3 , Caspases/metabolismo , Proteínas de Ciclo Celular/efeitos da radiação , Linhagem Celular , Ácidos Cicloexanocarboxílicos/farmacologia , Cicloexenos , Cisteína Endopeptidases/metabolismo , Dano ao DNA , DNA Fúngico/biossíntese , Duocarmicinas , Fibroblastos , Humanos , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...